1
|
Triumbari EKA, Morland D, Gatta R, Boldrini L, De Summa M, Chiesa S, Cuccaro A, Maiolo E, Hohaus S, Annunziata S. The predictive power of 18F-FDG PET/CT two-lesions radiomics and conventional models in classical Hodgkin's Lymphoma: a comparative retrospectively-validated study. Ann Hematol 2025:10.1007/s00277-025-06190-8. [PMID: 39808225 DOI: 10.1007/s00277-025-06190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
In a previous preliminary study, radiomic features from the largest and the hottest lesion in baseline 18F-FDG PET/CT (bPET/CT) of classical Hodgkin's Lymphoma (cHL) predicted early response-to-treatment and prognosis. Aim of this large retrospectively-validated study is to evaluate the predictive role of two-lesions radiomics in comparison with other clinical and conventional PET/CT models. cHL patients with bPET/CT between 2010 and 2020 were retrospectively included and randomized into training-validation sets. Target lesions were: Lesion_A, with largest axial diameter (Dmax); Lesion_B, with highest SUVmax. Total-metabolic-tumor-volume (TMTV) was calculated and 212 radiomic features were extracted. PET/CT features were harmonized using ComBat across two scanners. Outcomes were progression-free-survival (PFS) and Deauville Score at interim PET/CT (DS). For each outcome, three predictive models and their combinations were trained and validated: - radiomic model "R"; - conventional PET/CT model "P"; - clinical model "C". 197 patients were included (training = 118; validation = 79): 38/197 (19%) patients had adverse events and 42/193 (22%) had DS ≥ 4. In the training phase, only one radiomic feature was selected for PFS prediction in model "R" (Lesion_B F_cm.corr, C-index 66.9%). Best "C" model combined stage and IPS (C-index 74.8%), while optimal "P" model combined TMTV and Dmax (C-index 63.3%). After internal validation, "C", "C + R", "R + P" and "C + R + P" significantly predicted PFS. The best validated model was "C + R" (C-index 66.3%). No model was validated for DS prediction. In this large retrospectively-validated study, a combination of baseline 18F-FDG PET/CT two-lesions radiomics and other conventional models showed an added prognostic power in patients with cHL. As single models, conventional clinical parameters maintain their prognostic power, while radiomics or conventional PET/CT alone seem to be sub-optimal to predict survival.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - David Morland
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institut Godinot and CReSTIC EA 3804, Université de Reims Champagne-Ardenne, Reims, France
| | - Roberto Gatta
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luca Boldrini
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marco De Summa
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medipass S.p.a. Integrative Service, Rome, Italy
| | - Silvia Chiesa
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Annarosa Cuccaro
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Maiolo
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Stefan Hohaus
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Annunziata
- Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Department of Radiology, Radiotherapy and Hematology, Unità di Medicina Nucleare, GSTeP Radiopharmacy, Fondazione Policlinico Universitario A.Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Chauvie S, Castellino A, Bergesio F, De Maggi A, Durmo R. Lymphoma: The Added Value of Radiomics, Volumes and Global Disease Assessment. PET Clin 2024; 19:561-568. [PMID: 38910057 DOI: 10.1016/j.cpet.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Lymphoma represents a condition that holds promise for cure with existing treatment modalities; nonetheless, the primary clinical obstacle lies in advancing therapeutic outcomes by pinpointing high-risk individuals who are unlikely to respond favorably to standard therapy. In this article, the authors will delineate the significant strides achieved in the lymphoma field, with a particular emphasis on the 3 prevalent subtypes: Hodgkin lymphoma, diffuse large B-cell lymphomas, and follicular lymphoma.
Collapse
Affiliation(s)
- Stéphane Chauvie
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy.
| | | | - Fabrizio Bergesio
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy
| | - Adriano De Maggi
- Department of Medical Physics, 'Santa Croce e Carle Hospital, Cuneo, Italy
| | - Rexhep Durmo
- Nuclear Medicine Division, Department of Radiology, Azienda USL IRCCS of Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Chen Y, Zheng S, Wu Z, Lin Y, Miao W. Primary Pancreatic Lymphoma Masquerading as Carcinoma on 18F-FDG PET/CT. Clin Nucl Med 2023:00003072-990000000-00644. [PMID: 37486720 DOI: 10.1097/rlu.0000000000004778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
ABSTRACT A 76-year-old man with yellowish discoloration of sclera and skin for 2 months was referred to 18F-FDG PET/CT for metabolic characterization of the mass in the pancreas. The images showed intense FDG uptake in the head of the pancreas, as well as a lymph nodal mass in the hepatic hilar region, which was consistent with pancreatic malignancy. Histopathologic findings showed characteristic findings of diffuse large B-cell lymphoma with no evidence of adenocarcinoma.
Collapse
|
4
|
Triumbari EKA, Gatta R, Maiolo E, De Summa M, Boldrini L, Mayerhoefer ME, Hohaus S, Nardo L, Morland D, Annunziata S. Baseline 18F-FDG PET/CT Radiomics in Classical Hodgkin's Lymphoma: The Predictive Role of the Largest and the Hottest Lesions. Diagnostics (Basel) 2023; 13:1391. [PMID: 37189492 PMCID: PMC10137254 DOI: 10.3390/diagnostics13081391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) radiomics from two distinct target lesions in patients with classical Hodgkin's lymphoma (cHL). cHL patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT (DS) and 24-month progression-free-survival (PFS) were recorded. Mann-Whitney test identified the most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible radiomic bivariate models were then built through a logistic regression analysis and trained/tested with a cross-fold validation test. The best bivariate models were selected based on their mean area under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions in patients with cHL may provide relevant information in terms of early response-to-treatment and prognosis, thus representing an earlier and stronger decision-making support for therapeutic strategies. External validations of the proposed model are planned.
Collapse
Affiliation(s)
- Elizabeth Katherine Anna Triumbari
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - Roberto Gatta
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy;
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Elena Maiolo
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marco De Summa
- Medipass S.p.a. Integrative Service PET/CT–Radiofarmacy TracerGLab, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Luca Boldrini
- Radiomics, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Marius E. Mayerhoefer
- Division of General and Pediatric Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Wien, Austria;
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stefan Hohaus
- Ematologia, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Hematology Section, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
| | - Lorenzo Nardo
- Department of Radiology, UC Davis, Sacramento, CA 95817, USA;
| | - David Morland
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
- Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- CReSTIC EA 3804 et Laboratoire de Biophysique, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, GSTeP Radiofarmacia, TracerGLab, Dipartimento di Radiologia, Radioterapia ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| |
Collapse
|
5
|
Ortega C, Eshet Y, Prica A, Anconina R, Johnson S, Constantini D, Keshavarzi S, Kulanthaivelu R, Metser U, Veit-Haibach P. Combination of FDG PET/CT Radiomics and Clinical Parameters for Outcome Prediction in Patients with Hodgkin’s Lymphoma. Cancers (Basel) 2023; 15:cancers15072056. [PMID: 37046717 PMCID: PMC10093084 DOI: 10.3390/cancers15072056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Purpose: The aim of the study is to evaluate the prognostic value of a joint evaluation of PET and CT radiomics combined with standard clinical parameters in patients with HL. Methods: Overall, 88 patients (42 female and 46 male) with a median age of 43.3 (range 21–85 years) were included. Textural analysis of the PET/CT images was performed using freely available software (LIFE X). 65 radiomic features (RF) were evaluated. Univariate and multivariate models were used to determine the value of clinical characteristics and FDG PET/CT radiomics in outcome prediction. In addition, a binary logistic regression model was used to determine potential predictors for radiotherapy treatment and odds ratios (OR), with 95% confidence intervals (CI) reported. Features relevant to survival outcomes were assessed using Cox proportional hazards to calculate hazard ratios with 95% CI. Results: albumin (p = 0.034) + ALP (p = 0.028) + CT radiomic feature GLRLM GLNU mean (p = 0.012) (Area under the curve (AUC): 95% CI (86.9; 100.0)—Brier score: 3.9, 95% CI (0.1; 7.8) remained significant independent predictors for PFS outcome. PET-SHAPE Sphericity (p = 0.033); CT grey-level zone length matrix with high gray-level zone emphasis (GLZLM SZHGE mean (p = 0.028)); PARAMS XSpatial Resampling (p = 0.0091) as well as hemoglobin results (p = 0.016) remained as independent factors in the final model for a binary outcome as predictors of the need for radiotherapy (AUC = 0.79). Conclusion: We evaluated the value of baseline clinical parameters as well as combined PET and CT radiomics in HL patients for survival and the prediction of the need for radiotherapy treatment. We found that different combinations of all three factors/features were independently predictive of the here evaluated endpoints.
Collapse
|
6
|
Development and validation of a [18F]FDG PET/CT-based radiomics nomogram to predict the prognostic risk of pretreatment diffuse large B cell lymphoma patients. Eur Radiol 2022; 33:3354-3365. [PMID: 36547676 PMCID: PMC10121518 DOI: 10.1007/s00330-022-09301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/03/2022] [Accepted: 11/13/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Objective
In this study, based on PET/CT radiomics features, we developed and validated a nomogram to predict progression-free survival (PFS) for cases with diffuse large B cell lymphoma (DLBCL) treated with immunochemotherapy.
Methods
This study retrospectively recruited 129 cases with DLBCL. Among them, PET/CT scans were conducted and baseline images were collected for radiomics features along with their clinicopathological features. Radiomics features related to recurrence were screened for survival analysis using univariate Cox regression analysis with p < 0.05. Next, a weighted Radiomics-score (Rad-score) was generated and independent risk factors were obtained from univariate and multivariate Cox regressions to build the nomogram. Furthermore, the nomogram was tested for their ability to predict PFS using time-dependent receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA).
Results
Blood platelet, Rad-score, and gender were included in the nomogram as independent DLBCL risk factors for PFS. We found that the training cohort areas under the curve (AUCs) were 0.79, 0.84, and 0.88, and validation cohort AUCs were 0.67, 0.83, and 0.72, respectively. Further, the DCA and calibration curves confirmed the predictive nomogram’s clinical relevance.
Conclusion
Using Rad-score, blood platelet, and gender of the DLBCL patients, a PET/CT radiomics-based nomogram was developed to guide cases’ recurrence risk assessment prior to treatment. The developed nomogram can help provide more appropriate treatment plans to the cases.
Key Points
• DLBCL cases can be classified into low- and high-risk groups using PET/CT radiomics based Rad-score.
• When combined with other clinical characteristics (gender and blood platelet count), Rad-score can be used to predict the outcome of the pretreatment of DLBCL cases with a certain degree of accuracy.
• A prognostic nomogram was established in this study in order to aid in assessing prognostic risk and providing more accurate treatment plans for DLBCL cases.
Collapse
|
7
|
CT radiomics to predict Deauville score 4 positive and negative Hodgkin lymphoma manifestations. Sci Rep 2022; 12:20008. [PMID: 36411307 PMCID: PMC9678888 DOI: 10.1038/s41598-022-24227-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
18F-FDG-PET/CT is standard to assess response in Hodgkin lymphoma by quantifying metabolic activity with the Deauville score. PET/CT, however, is time-consuming, cost-extensive, linked to high radiation and has a low availability. As an alternative, we investigated radiomics from non-contrast-enhanced computed tomography (NECT) scans. 75 PET/CT examinations of 43 patients on two different scanners were included. Target lesions were classified as Deauville score 4 positive (DS4+) or negative (DS4-) based on their SUVpeak and then segmented in NECT images. From these segmentations, 107 features were extracted with PyRadiomics. All further statistical analyses were then performed scanner-wise: differences between DS4+ and DS4- manifestations were assessed with the Mann-Whitney-U-test and single feature performances with the ROC-analysis. To further verify the reliability of the results, the number of features was reduced using different techniques. The feature median showed a high sensitivity for DS4+ manifestations on both scanners (scanner A: 0.91, scanner B: 0.85). It furthermore was the only feature that remained in both datasets after applying different feature reduction techniques. The feature median from NECT concordantly has a high sensitivity for DS4+ Hodgkin manifestations on two different scanners and thus could provide a surrogate for increased metabolic activity in PET/CT.
Collapse
|
8
|
Eisazadeh R, Mirshahvalad SA. 18F-FDG PET/CT prognostic role in predicting response to salvage therapy in relapsed/refractory Hodgkin's lymphoma. Clin Imaging 2022; 92:25-31. [PMID: 36179394 DOI: 10.1016/j.clinimag.2022.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To evaluate the response predictors, both clinical and 18F-FDG PET/CT parameters, in Hodgkin's lymphoma (HL) patients diagnosed with refractory/relapsed disease who were planned to receive salvage therapy. METHODS In this retrospective study, all HL patients referred to our center between March 2015 and July 2021 were reviewed. Patients with refractory/relapsed disease who were candidates for salvage therapy were included. 18F-FDG PET/CT measurements at the time of diagnosis were extracted as the predictors, and the lesions' response at the end of the salvage therapy was considered the outcomes. The Kaplan-Meier method and multiple Cox regression were utilized to find the significant parameters to predict the time to reach the complete response. The statistical significance level was set at a two-sided p-value <0.05. RESULTS A total of 303 tumoral lesions from 64 patients were included. Regarding the factors associated with the response, B symptoms (p-value < 0.01), pathologic subtype (p-value < 0.001), and patient stage (p-value < 0.01) were the significant clinical parameters. In addition, SUVmax (p-value = 0.03), SUVmax/hepatic background SUVmax (p-value = 0.04), SUVmean (in all thresholds; 41% p-value = 0.02, 51% p-value = 0.04, 61% p-value = 0.01), and MTV (in all thresholds; 41% p-value = 0.04, 51% p-value = 0.04, 61% p-value = 0.05) were the significant parameters in the 18F-FDG PET/CT scans. At the median follow-up of 9 months, we found that pathologic subtype (p-value < 0.01), patient stage (p-value = 0.03), SUVmax (p-value = 0.02), SUVmax/hepatic background SUVmax (p-value = 0.03), SUVmean (in all thresholds; 41% p-value = 0.01, 51% p-value = 0.02, 61% p-value = 0.02), and MTV ≥ 41% (p-value = 0.02) were significant predictive factors. Multiple Cox regression showed the pathologic subtype (p-value = 0.02), SUVmax (p-value = 0.02), and MTV ≥ 41% (p-value = 0.04) were the most significant predictors. CONCLUSION Our study demonstrated that by knowing the histopathology of the lesions, the pre-treatment 18F-FDG PET/CT might be able to predict response after salvage therapy in the relapsed/refractory HL.
Collapse
Affiliation(s)
- Roya Eisazadeh
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran; Joint Department of Medical Imaging, University Health Network, University of Toronto, Canada.
| |
Collapse
|
9
|
Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C, Scarsbrook A. Utility of pre-treatment FDG PET/CT-derived machine learning models for outcome prediction in classical Hodgkin lymphoma. Eur Radiol 2022; 32:7237-7247. [PMID: 36006428 PMCID: PMC9403224 DOI: 10.1007/s00330-022-09039-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/16/2022] [Indexed: 12/22/2022]
Abstract
Objectives Relapse occurs in ~20% of patients with classical Hodgkin lymphoma (cHL) despite treatment adaption based on 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography response. The objective was to evaluate pre-treatment FDG PET/CT–derived machine learning (ML) models for predicting outcome in patients with cHL. Methods All cHL patients undergoing pre-treatment PET/CT at our institution between 2008 and 2018 were retrospectively identified. A 1.5 × mean liver standardised uptake value (SUV) and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test (20%) cohorts stratified around 2-year event-free survival (EFS), age, sex, ethnicity and disease stage were defined. Seven ML models were trained and hyperparameters tuned using stratified 5-fold cross-validation. Area under the curve (AUC) from receiver operator characteristic analysis was used to assess performance. Results A total of 289 patients (153 males), median age 36 (range 16–88 years), were included. There was no significant difference between training (n = 231) and test cohorts (n = 58) (p value > 0.05). A ridge regression model using a 1.5 × mean liver SUV segmentation had the highest performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01 and 0.81 ± 0.12. However, there was no significant difference between a logistic model derived from metabolic tumour volume and clinical features or the highest performing radiomic model. Conclusions Outcome prediction using pre-treatment FDG PET/CT–derived ML models is feasible in cHL patients. Further work is needed to determine optimum predictive thresholds for clinical use. Key points • A fixed threshold segmentation method led to more robust radiomic features. • A radiomic-based model for predicting 2-year event-free survival in classical Hodgkin lymphoma patients is feasible. • A predictive model based on ridge regression was the best performing model on our dataset. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-022-09039-0.
Collapse
Affiliation(s)
- Russell Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Leeds Institute of Health Research, University of Leeds, Leeds, UK.
| | - Matt Clark
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Cathy Burton
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center of Groningen, University of Groningen, Groningen, Netherlands.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Alejandro F Frangi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, UK.,Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Chirag Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Andrew Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Health Research, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Eertink JJ, Zwezerijnen GJC, Cysouw MCF, Wiegers SE, Pfaehler EAG, Lugtenburg PJ, van der Holt B, Hoekstra OS, de Vet HCW, Zijlstra JM, Boellaard R. Comparing lesion and feature selections to predict progression in newly diagnosed DLBCL patients with FDG PET/CT radiomics features. Eur J Nucl Med Mol Imaging 2022; 49:4642-4651. [PMID: 35925442 PMCID: PMC9606052 DOI: 10.1007/s00259-022-05916-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/14/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Biomarkers that can accurately predict outcome in DLBCL patients are urgently needed. Radiomics features extracted from baseline [18F]-FDG PET/CT scans have shown promising results. This study aims to investigate which lesion- and feature-selection approaches/methods resulted in the best prediction of progression after 2 years. METHODS A total of 296 patients were included. 485 radiomics features (n = 5 conventional PET, n = 22 morphology, n = 50 intensity, n = 408 texture) were extracted for all individual lesions and at patient level, where all lesions were aggregated into one VOI. 18 features quantifying dissemination were extracted at patient level. Several lesion selection approaches were tested (largest or hottest lesion, patient level [all with/without dissemination], maximum or median of all lesions) and compared to the predictive value of our previously published model. Several data reduction methods were applied (principal component analysis, recursive feature elimination (RFE), factor analysis, and univariate selection). The predictive value of all models was tested using a fivefold cross-validation approach with 50 repeats with and without oversampling, yielding the mean cross-validated AUC (CV-AUC). Additionally, the relative importance of individual radiomics features was determined. RESULTS Models with conventional PET and dissemination features showed the highest predictive value (CV-AUC: 0.72-0.75). Dissemination features had the highest relative importance in these models. No lesion selection approach showed significantly higher predictive value compared to our previous model. Oversampling combined with RFE resulted in highest CV-AUCs. CONCLUSION Regardless of the applied lesion selection or feature selection approach and feature reduction methods, patient level conventional PET features and dissemination features have the highest predictive value. Trial registration number and date: EudraCT: 2006-005174-42, 01-08-2008.
Collapse
Affiliation(s)
- Jakoba J Eertink
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.
| | - Gerben J C Zwezerijnen
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Matthijs C F Cysouw
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sanne E Wiegers
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | | | - Pieternella J Lugtenburg
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, the Netherlands
| | - Bronno van der Holt
- Department of Hematology, HOVON Data Center, Erasmus MC Cancer Institute, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Otto S Hoekstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henrica C W de Vet
- Epidemiology and Data Science, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Public Health Research Institute, Methodology, Amsterdam, The Netherlands
| | - Josée M Zijlstra
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands.,Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Morland D, Triumbari EKA, Maiolo E, Cuccaro A, Treglia G, Hohaus S, Annunziata S. Healthy Organs Uptake on Baseline 18F-FDG PET/CT as an Alternative to Total Metabolic Tumor Volume to Predict Event-Free Survival in Classical Hodgkin's Lymphoma. Front Med (Lausanne) 2022; 9:913866. [PMID: 35814740 PMCID: PMC9256984 DOI: 10.3389/fmed.2022.913866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeHealthy organs uptake, including cerebellar and liver SUVs have been reported to be inversely correlated to total metabolic tumor volume (TMTV), a controversial predictor of event-free survival (EFS) in classical Hodgkin's Lymphoma (cHL). The objective of this study was to estimate TMTV by using healthy organs SUV measurements and assess the performance of this new index (UF, Uptake Formula) to predict EFS in cHL.MethodsPatients with cHL were retrospectively included. SUV values and TMTV derived from baseline 18F-FDG PET/CT were harmonized using ComBat algorithm across PET/CT systems. UF was estimated using ANOVA analysis. Optimal thresholds of TMTV and UF were calculated and tested using Cox models.Results163 patients were included. Optimal UF model of TMTV included age, lymphoma maximum SUVmax, hepatic SUVmean and cerebellar SUVmax (R2 14.0% - p < 0.001). UF > 236.8 was a significant predictor of EFS (HR: 2.458 [1.201–5.030], p = 0.01) and was not significantly different from TMTV > 271.0 (HR: 2.761 [1.183–5.140], p = 0.001). UF > 236.8 remained significant in a bivariate model including IPS score (p = 0.02) and determined two populations with different EFS (63.7 vs. 84.9%, p = 0.01).ConclusionThe Uptake Formula, a new index including healthy organ SUV values, shows similar performance to TMTV in predicting EFS in Hodgkin's Lymphoma. Validation cohorts will be needed to confirm this new prognostic parameter.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Service de Médecine Nucléaire, Institut Godinot, Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l'Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, Reims, France
- *Correspondence: David Morland
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Elena Maiolo
- Unità di Ematologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Annarosa Cuccaro
- Unità di Ematologia, ASL Toscana N/O Spedali Riuniti Livorno, Livorno, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Stefan Hohaus
- Unità di Ematologia, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
- Section of Hematology, Department of Radiological Sciences, Radiotherapy and Hematology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| |
Collapse
|
12
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 2, Infradiaphragmatic Cancers, Blood Malignancies, Melanoma and Musculoskeletal Cancers. Diagnostics (Basel) 2022; 12:diagnostics12061330. [PMID: 35741139 PMCID: PMC9222024 DOI: 10.3390/diagnostics12061330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this review was to summarize published radiomics studies dealing with infradiaphragmatic cancers, blood malignancies, melanoma, and musculoskeletal cancers, and assess their quality. PubMed database was searched from January 1990 to February 2022 for articles performing radiomics on PET imaging of at least 1 specified tumor type. Exclusion criteria includd: non-oncological studies; supradiaphragmatic tumors; reviews, comments, cases reports; phantom or animal studies; technical articles without a clinically oriented question; studies including <30 patients in the training cohort. The review database contained PMID, first author, year of publication, cancer type, number of patients, study design, independent validation cohort and objective. This database was completed twice by the same person; discrepant results were resolved by a third reading of the articles. A total of 162 studies met inclusion criteria; 61 (37.7%) studies included >100 patients, 13 (8.0%) were prospective and 61 (37.7%) used an independent validation set. The most represented cancers were esophagus, lymphoma, and cervical cancer (n = 24, n = 24 and n = 19 articles, respectively). Most studies focused on 18F-FDG, and prognostic and response to treatment objectives. Although radiomics and artificial intelligence are technically challenging, new contributions and guidelines help improving research quality over the years and pave the way toward personalized medicine.
Collapse
Affiliation(s)
- David Morland
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Correspondence:
| | - Elizabeth Katherine Anna Triumbari
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Unità di Radioterapia Oncologica, Radiomics, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Unità di Medicina Nucleare, TracerGLab, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
13
|
Automatic classification of lymphoma lesions in FDG-PET–Differentiation between tumor and non-tumor uptake. PLoS One 2022; 17:e0267275. [PMID: 35436321 PMCID: PMC9015138 DOI: 10.1371/journal.pone.0267275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction The automatic classification of lymphoma lesions in PET is a main topic of ongoing research. An automatic algorithm would enable the swift evaluation of PET parameters, like texture and heterogeneity markers, concerning their prognostic value for patients outcome in large datasets. Moreover, the determination of the metabolic tumor volume would be facilitated. The aim of our study was the development and evaluation of an automatic algorithm for segmentation and classification of lymphoma lesions in PET. Methods Pre-treatment PET scans from 60 Hodgkin lymphoma patients from the EuroNet-PHL-C1 trial were evaluated. A watershed algorithm was used for segmentation. For standardization of the scan length, an automatic cropping algorithm was developed. All segmented volumes were manually classified into one of 14 categories. The random forest method and a nested cross-validation was used for automatic classification and evaluation. Results Overall, 853 volumes were segmented and classified. 203/246 tumor lesions and 554/607 non-tumor volumes were classified correctly by the automatic algorithm, corresponding to a sensitivity, a specificity, a positive and a negative predictive value of 83%, 91%, 79% and 93%. In 44/60 (73%) patients, all tumor lesions were correctly classified. In ten out of the 16 patients with misclassified tumor lesions, only one false-negative tumor lesion occurred. The automatic classification of focal gastrointestinal uptake, brown fat tissue and composed volumes consisting of more than one tissue was challenging. Conclusion Our algorithm, trained on a small number of patients and on PET information only, showed a good performance and is suitable for automatic lymphoma classification.
Collapse
|
14
|
Jiang C, Huang X, Li A, Teng Y, Ding C, Chen J, Xu J, Zhou Z. Radiomics signature from [ 18F]FDG PET images for prognosis predication of primary gastrointestinal diffuse large B cell lymphoma. Eur Radiol 2022; 32:5730-5741. [PMID: 35298676 DOI: 10.1007/s00330-022-08668-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the prognostic value of PET radiomics feature in the prognosis of patients with primary gastrointestinal diffuse large B cell lymphoma (PGI-DLBCL) treated with R-CHOP-like regimen. METHODS A total of 140 PGI-DLBCL patients who underwent pre-therapy [18F] FDG PET/CT were enrolled in this retrospective analysis. PET radiomics features obtained from patients in the training cohort were subjected to three machine learning methods and Pearson's correlation test for feature selection. Support vector machine (SVM) was used to build a radiomics signature classifier associated with progression-free survival (PFS) and overall survival (OS). A multivariate Cox proportional hazards regression model was established to predict survival outcomes. RESULTS A total of 1421 PET radiomics features were extracted and reduced to 5 features to build a radiomics signature which was significantly associated with PFS and OS (p < 0.05). The combined model incorporating radiomics signatures, metabolic metrics, and clinical risk factors showed high C-indices in both the training (PFS: 0.825, OS: 0.834) and validation sets (PFS: 0.831, OS: 0.877). Decision curve analysis (DCA) demonstrated that the combined models achieved the most net benefit across a wider reasonable range of threshold probabilities for predicting PFS and OS. CONCLUSION The newly developed radiomics signatures obtained by the ensemble strategy were independent predictors of PFS and OS for PGI-DLBCL patients. Moreover, the combined model with clinical and metabolic factors was able to predict patient prognosis and may enable personalized treatment decision-making. KEY POINTS • Radiomics signatures generated from the optimal radiomics feature set from the [18F]FDG PET images can predict the survival of PGI-DLBCL patients. • The optimal radiomics feature set is constructed by integrating the feature selection outputs of LASSO, RF, Xgboost, and PC methods. • Combined models incorporating radiomics signatures from18F-FDG PET images, metabolic parameters, and clinical factors outperformed clinical models, and NCCN-IPI.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xiangjun Huang
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Ang Li
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321, Zhongshan Road, Nanjing City, Jiangsu Province, 210008, China.
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
15
|
Liu S, Li R, Liu Q, Sun D, Yang H, Pan H, Wang L, Song S. Radiomics model of 18F-FDG PET/CT imaging for predicting disease-free survival of early-stage uterine cervical squamous cancer. Cancer Biomark 2022; 33:249-259. [PMID: 35213357 DOI: 10.3233/cbm-210201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND To explore an effective predictive model based on PET/CT radiomics for the prognosis of early-stage uterine cervical squamous cancer. METHODS Preoperative PET/CT data were collected from 201 uterine cervical squamous cancer patients with stage IB-IIA disease (FIGO 2009) who underwent radical surgery between 2010 and 2015. The tumor regions were manually segmented, and 1318 radiomic features were extracted. First, model-based univariate analysis was performed to exclude features with small correlations. Then, the redundant features were further removed by feature collinearity. Finally, the random survival forest (RSF) was used to assess feature importance for multivariate analysis. The prognostic models were established based on RSF, and their predictive performances were measured by the C-index and the time-dependent cumulative/dynamics AUC (C/D AUC). RESULTS In total, 6 radiomic features (5 for CT and 1 for PET) and 6 clinicopathologic features were selected. The radiomic, clinicopathologic and combination prognostic models yielded C-indexes of 0.9338, 0.9019 and 0.9527, and the mean values of the C/D AUC (mC/D AUC) were 0.9146, 0.8645 and 0.9199, respectively. CONCLUSIONS PET/CT radiomics could achieve approval power in predicting DFS in early-stage uterine cervical squamous cancer.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ruikun Li
- Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qiufang Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application, Fudan University, Shanghai, China
| | - Dazheng Sun
- Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxing Yang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application, Fudan University, Shanghai, China
| | - Herong Pan
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application, Fudan University, Shanghai, China
| | - Lisheng Wang
- SJTU-USYD Joint Research Alliance for Translational Medicine, Shanghai China.,Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China.,Key Laboratory of Nuclear Physics and Ion-beam Application, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Jiang C, Li A, Teng Y, Huang X, Ding C, Chen J, Xu J, Zhou Z. Optimal PET-based radiomic signature construction based on the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging 2022; 49:2902-2916. [PMID: 35146578 DOI: 10.1007/s00259-022-05717-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE To develop and externally validate models incorporating a PET radiomics signature (R-signature) obtained by the cross-combination method for predicting the survival of patients with diffuse large B-cell lymphoma (DLBCL). METHODS A total of 383 patients with DLBCL from two medical centres between 2011 and 2019 were included. The cross-combination method was used on three types of PET radiomics features from the training cohort to generate 49 feature selection-classification candidates based on 7 different machine learning models. The R-signature was then built by selecting the optimal candidates based on their progression-free survival (PFS) and overall survival (OS). Cox regression analysis was used to develop the survival prediction models. The calibration, discrimination, and clinical utility of the models were assessed and externally validated. RESULTS The R-signatures determined by 12 and 31 radiomics features were significantly associated with PFS and OS, respectively (P<0.05). The combined models that incorporated R-signatures, metabolic metrics, and clinical risk factors exhibited significant prognostic superiority over the clinical models, PET-based models, and the National Comprehensive Cancer Network International Prognostic Index in terms of both PFS (C-index: 0.801 vs. 0.732 vs. 0.785 vs. 0.720, respectively) and OS (C-index: 0.807 vs. 0.740 vs. 0.773 vs. 0.726, respectively). For external validation, the C-indices were 0.758 vs. 0.621 vs. 0.732 vs. 0.673 and 0.794 vs. 0.696 vs. 0.781 vs. 0.708 in the PFS and OS analyses, respectively. The calibration curves showed good consistency, and the decision curve analysis supported the clinical utility of the combined model. CONCLUSION The R-signature could be used as a survival predictor for DLBCL, and its combination with clinical factors may allow for accurate risk stratification.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Ang Li
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China
| | - Xiangjun Huang
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Chongyang Ding
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianxin Chen
- The Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Jingyan Xu
- Department of Hematology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210000, China.
| |
Collapse
|
17
|
Feres CCP, Nunes RF, Teixeira LLC, Arcuri LJ, Perini GF. Baseline total metabolic tumor volume (TMTV) application in Hodgkin lymphoma: a review article. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00481-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
El-Galaly TC, Villa D, Cheah CY, Gormsen LC. Pre-treatment total metabolic tumour volumes in lymphoma: Does quantity matter? Br J Haematol 2022; 197:139-155. [PMID: 35037240 DOI: 10.1111/bjh.18016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Positron emission tomography/computed tomography (PET/CT) is used for the staging of lymphomas. Clinical information, such as Ann Arbor stage and number of involved sites, is derived from baseline staging and correlates with tumour volume. With modern imaging software, exact measures of total metabolic tumour volumes (tMTV) can be determined, in a semi- or fully-automated manner. Several technical factors, such as tumour segmentation and PET/CT technology influence tMTV and there is no consensus on a standardized uptake value (SUV) thresholding method, or how to include the volumes in the bone marrow and spleen. In diffuse large B-cell lymphoma, follicular lymphoma, peripheral T-cell lymphoma, and Hodgkin lymphoma, tMTV has been shown to predict progression-free survival and/or overall survival, after adjustments for clinical risk scores. However, most studies have used receiver operating curves to determine the optimal cut-off for tMTV and many studies did not include a training-validation approach, which led to the risk of overestimation of the independent prognostic value of tMTV. The identified cut-off values are heterogeneous, even when the same SUV thresholding method is used. Future studies should focus on testing tMTV in homogeneously-treated cohorts and seek to validate identified cut-off values externally so that a prognostic value can be documented, over and above currently used clinical surrogates for tumour volume.
Collapse
Affiliation(s)
- Tarec Christoffer El-Galaly
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Diego Villa
- BC Cancer Centre for Lymphoid Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Chan Yoon Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Lars C Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Jiang H, Li A, Ji Z, Tian M, Zhang H. Role of Radiomics-Based Baseline PET/CT Imaging in Lymphoma: Diagnosis, Prognosis, and Response Assessment. Mol Imaging Biol 2022; 24:537-549. [PMID: 35031945 DOI: 10.1007/s11307-022-01703-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
Radiomic analysis provides information on the underlying tumour heterogeneity in lymphoma, reflecting the real-time evolution of malignancy. 2-Deoxy-2-[18F] fluoro-D-glucose positron emission tomography ([18F] FDG PET/CT) imaging is recommended before, during, and at the end of treatment for almost all lymphoma patients. This methodology offers high specificity and sensitivity, which can aid in accurate staging and assist in prompt treatment. Pretreatment [18F] FDG PET/CT-based radiomics facilitates improved diagnostic ability, guides individual treatment regimens, and boosts outcome prognosis based on heterogeneity as well as the biological, pathological, and metabolic status of the lymphoma. This technique has attracted considerable attention given its numerous applications in medicine. In the current review, we will briefly describe the basic radiomics workflow and types of radiomic features. Details of current applications of baseline [18F] FDG PET/CT-based radiomics in lymphoma will be discussed, such as differential diagnosis from other primary malignancies, diagnosis of bone marrow involvement, and response and prognostic prediction. We will also describe how this technique provides a unique noninvasive platform to assess tumour heterogeneity. Newly emerging PET radiotracers and multimodality technology will improve diagnostic specificity and further clarify tumor biology and even genetic variations in lymphoma, potentially promoting the development of precision medicine.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ang Li
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Zhongyou Ji
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China.
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China. .,Key Laboratory of Medical Molecular Imaging of Zhejiang Province, 8 Hangzhou, Hangzhou, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Hasani N, Paravastu SS, Farhadi F, Yousefirizi F, Morris MA, Rahmim A, Roschewski M, Summers RM, Saboury B. Artificial Intelligence in Lymphoma PET Imaging:: A Scoping Review (Current Trends and Future Directions). PET Clin 2022; 17:145-174. [PMID: 34809864 PMCID: PMC8735853 DOI: 10.1016/j.cpet.2021.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. 18F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognostication. However, manual delineation of hypermetabolic lesions is often a time-consuming and impractical task. Applications of artificial intelligence (AI) may provide solutions to overcome this challenge. Beyond segmentation and detection of lesions, AI could enhance tumor characterization and heterogeneity quantification, as well as treatment response prediction and recurrence risk stratification. In this scoping review, we have systematically mapped and discussed the current applications of AI (such as detection, classification, segmentation as well as the prediction and prognostication) in lymphoma PET.
Collapse
Affiliation(s)
- Navid Hasani
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans, LA 70121, USA
| | - Sriram S Paravastu
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Faraz Farhadi
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada; Department of Radiology, BC Cancer Research Institute, University of British Columbia, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD, USA
| | - Ronald M Summers
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA.
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Building 10, Room 1C455, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland-Baltimore Country, Baltimore, MD, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Furtado FS, Johnson MK, Catalano OA. PET imaging of hematological neoplasia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Yang X, Liu J, Lu X, Kan Y, Wang W, Zhang S, Liu L, Zhang H, Li J, Yang J. Development and Validation of a Nomogram Based on 18F-FDG PET/CT Radiomics to Predict the Overall Survival in Adult Hemophagocytic Lymphohistiocytosis. Front Med (Lausanne) 2021; 8:792677. [PMID: 35004761 PMCID: PMC8740551 DOI: 10.3389/fmed.2021.792677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Hemophagocytic lymphohistiocytosis (HLH) is a rare and severe disease with a poor prognosis. We aimed to determine if 18F-fluorodeoxyglucose (18F-FDG) PET/CT-derived radiomic features alone or combination with clinical parameters could predict survival in adult HLH. Methods: This study included 70 adults with HLH (training cohort, n = 50; validation cohort, n = 20) who underwent pretherapeutic 18F-FDG PET/CT scans between August 2016 and June 2020. Radiomic features were extracted from the liver and spleen on CT and PET images. For evaluation of 6-month survival, the features exhibiting p < 0.1 in the univariate analysis between non-survivors and survivors were selected. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to develop a radiomics score (Rad-score). A nomogram was built by the multivariate regression analysis to visualize the predictive model for 3-month, 6-month, and 1-year survival, while the performance and usefulness of the model were evaluated by calibration curves, the receiver operating characteristic (ROC) curves, and decision curves. Results: The Rad-score was able to predict 6-month survival in adult HLH, with area under the ROC curves (AUCs) of 0.927 (95% CI: 0.878–0.974) and 0.869 (95% CI: 0.697–1.000) in the training and validation cohorts, respectively. The radiomics nomogram combining the Rad-score with the clinical parameters resulted in better performance for predicting 6-month survival than the clinical model or the Rad-score alone. Moreover, the nomogram displayed superior discrimination, calibration, and clinical usefulness in both the cohorts. Conclusion: The newly developed Rad-score is a powerful predictor for overall survival (OS) in adults with HLH. The nomogram has great potential for predicting 3-month, 6-month, and 1-year survival, which may timely guide personalized treatments for adult HLH.
Collapse
Affiliation(s)
- Xu Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jun Liu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ying Kan
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuxin Zhang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Sinounion Medical Technology (Beijing) Co., Ltd., Beijing, China
| | - Hui Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jixia Li
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- Department of Molecular Medicine and Pathology, School of Medical Science, The University of Auckland, Auckland, New Zealand
- Jixia Li
| | - Jigang Yang
- Department of Nuclear Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jigang Yang
| |
Collapse
|
23
|
Radiomic Features of 18F-FDG PET in Hodgkin Lymphoma Are Predictive of Outcomes. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6347404. [PMID: 34887712 PMCID: PMC8629643 DOI: 10.1155/2021/6347404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/10/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Purpose In the present study, we aimed to investigate whether the radiomic features of baseline 18F-FDG PET can predict the prognosis of Hodgkin lymphoma (HL). Methods A total 65 HL patients (training cohort: n = 49; validation cohort: n = 16) were retrospectively enrolled in the present study. A total of 47 radiomic features were extracted from pretreatment PET images. The least absolute shrinkage and selection operator (LASSO) regression was used to select the most useful prognostic features in the training cohort. The distance between the two lesions that were the furthest apart (Dmax) was recorded. The receiver operating characteristic (ROC) curve, Kaplan–Meier method, and Cox proportional hazards model were used to assess the prognostic factors. Results Long-zone high gray-level emphasis extracted from a gray-level zone-length matrix (LZHGEGLZLM) (HR = 9.007; p=0.044) and Dmax (HR = 3.641; p=0.048) were independently correlated with 2-year progression-free survival (PFS). A prognostic stratification model was established based on both risk predictors, which could distinguish three risk categories for PFS (p=0.0002). The 2-year PFS was 100.0%, 64.7%, and 33.3%, respectively. Conclusions LZHGEGLZLM and Dmax were independent prognostic factors for survival outcomes. Besides, we proposed a prognostic stratification model that could further improve the risk stratification of HL patients.
Collapse
|
24
|
|
25
|
Michalet M, Azria D, Tardieu M, Tibermacine H, Nougaret S. Radiomics in radiation oncology for gynecological malignancies: a review of literature. Br J Radiol 2021; 94:20210032. [PMID: 33882246 DOI: 10.1259/bjr.20210032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Radiomics is the extraction of a significant number of quantitative imaging features with the aim of detecting information in correlation with useful clinical outcomes. Features are extracted, after delineation of an area of interest, from a single or a combined set of imaging modalities (including X-ray, US, CT, PET/CT and MRI). Given the high dimensionality, the analytical process requires the use of artificial intelligence algorithms. Firstly developed for diagnostic performance in radiology, it has now been translated to radiation oncology mainly to predict tumor response and patient outcome but other applications have been developed such as dose painting, prediction of side-effects, and quality assurance. In gynecological cancers, most studies have focused on outcomes of cervical cancers after chemoradiation. This review highlights the role of this new tool for the radiation oncologists with particular focus on female GU oncology.
Collapse
Affiliation(s)
- Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France.,INSERM U1194 IRCM, Montpellier, France
| | | | | | | |
Collapse
|
26
|
Role in staging and prognostic value of pretherapeutic F-18 FDG PET/CT in patients with gastric MALT lymphoma without high-grade transformation. Sci Rep 2021; 11:9243. [PMID: 33927319 PMCID: PMC8084924 DOI: 10.1038/s41598-021-88815-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of this retrospective study was to investigate the role in staging and prognostic value of pretherapeutic fluorine-18-fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET)/computed tomography (CT) in patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma without high-grade transformation (HT). We retrospectively reviewed 115 consecutive patients with histopathologically confirmed gastric MALT lymphoma without HT who underwent pretherapeutic F-18 FDG PET/CT. Kaplan–Meier and Cox proportional-hazards regression analyses were used to identify independent prognostic factors for disease free survival (DFS) among 13 clinical parameters and three PET parameters. In two of 115 patients (1.7%), the clinical stage appeared higher according to F-18 FDG PET/CT. In univariate analysis, Helicobacter pylori (HP) infection (P = 0.023), treatment modality (P < 0.001), and stage including PET/CT (P = 0.015) were significant prognostic factors for DFS. In multivariate analysis, only treatment modality was an independent prognostic factor (P = 0.003). In conclusion, F-18 FDG PET/CT played an important role in enabling upstaging of patients with gastric MALT lymphoma without HT. F-18 FDG PET/CT may have a prognostic role in gastric MALT lymphoma without HT by contributing to better staging.
Collapse
|
27
|
Husmann L, Muehlematter UJ, Grimm F, Ledergerber B, Messerli M, Kudura K, Gruenig H, Muellhaupt B, Hasse B, Huellner MW. PET/CT helps to determine treatment duration in patients with resected as well as inoperable alveolar echinococcosis. Parasitol Int 2021; 83:102356. [PMID: 33872794 DOI: 10.1016/j.parint.2021.102356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The aim of the study was to determine the role of 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) at the end of benzimidazole therapy in alveolar echinococcosis. METHODS A total of 22 patients undergoing PET/CT at the end of benzimidazole therapy were retrospectively registered. Maximum standardized uptake values (SUVmax) were measured in remaining echinococcus manifestations and compared to normal liver tissue. Long-term clinical follow-up was performed, and recorded data included laboratory parameters, clinical information and imaging. RESULTS All patients had no detectable levels of Em-18 antibodies and all echinococcus manifestations were negative on PET/CT, i.e. without focally increased FDG uptake or uptake higher than normal/non-infected liver tissue. All manifestations displayed significantly less FDG-uptake than normal liver tissue, i.e. SUVmax 1.8 (interquartile range (IQR) 1.5-3.5) vs. 3.0 (IQR 2.6-5.7), (p < 0.001). Patients were clinically followed for a median of 9.5 years (IQR 6.5-32.0 years) after their initial diagnosis and for 4.5 years (IQR 3.0-14.0 years) after discontinuation of benzimidazole therapy. No patient showed signs of recurrent infection at the last clinical visit. The 10-year and 20-year freedom from all-cause mortality was 95.0% (95% confidence interval 69.5% - 99.3%), for both. Two events occurred in 292 patient years of follow-up; i.e. two patients (9%) died, one because of pancreatic cancer, the other one because of unknown reasons with no detectable antibody levels. CONCLUSIONS Negative FDG-PET/CT results combined with no detectable levels of Em-18 antibodies may allow for the safe discontinuation of benzimidazole therapy in patients with alveolar echinococcosis.
Collapse
Affiliation(s)
- Lars Husmann
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland.
| | - Urs J Muehlematter
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Felix Grimm
- Institute of Parasitology, University of Zurich, Switzerland
| | - Bruno Ledergerber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Ken Kudura
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Hannes Gruenig
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| | - Beat Muellhaupt
- Division of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Switzerland
| | - Barbara Hasse
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
28
|
Wang P, Zhang S, Huo L, Jing H, Li F. Prognostic Value of Positive Presurgical FDG PET/CT in the Evaluation of Tumor-Induced Osteomalacia. Clin Nucl Med 2021; 46:214-219. [PMID: 33351512 DOI: 10.1097/rlu.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
METHODS Seventy-six patients who had surgically removed tumors that caused osteomalacia were included in this retrospective investigation. All patients underwent both 18F-FDG and 68Ga-DOTATATE PET/CT prior to surgery. The prognostic value of presurgical FDG PET/CT study was determined with 5-year follow-up. RESULTS In the presurgical evaluation, 68Ga-DOTATATE detected lesions in all 76 patients. However, FDG PET/CT was positive in only 25 among all 76 patients. Following surgical removal of the causative tumor, all 76 patients had symptomatic relief and normalization of the serum phosphate level initially. However, 15 of 76 cases (19.7%) had recurrent hypophosphatemia and became symptomatic again during the follow-up. Among these 15 patients with recurrence, 11 (73.3%) had recurrent lesions at the original location of the resected causative tumors, whereas 4 were in other locations due to malignant nature of the primary tumor. Interestingly, 14 of these 15 patients with recurrent disease had positive presurgical FDG PET/CT findings with an incident ratio of 56.0% (14 of 25). In contrast, only 1 patient with recurrent disease had negative presurgical FDG PET/CT scan with an incident ratio of 1.9% (1 of 51), significantly less than the positive presurgical FDG PET/CT group (P < 0.05). CONCLUSIONS A positive presurgical FDG PET/CT suggests increased likelihood for possible recurrence of TIO after surgical resection. In contrast, when a causative tumor detected by 68Ga-DOTATATE PET/CT does not have elevated activity on FDG PET/CT, the chance of recurrence is very small.
Collapse
Affiliation(s)
| | - Shu Zhang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | |
Collapse
|
29
|
Rodríguez Taroco MG, Cuña EG, Pages C, Schelotto M, González-Sprinberg GA, Castillo LA, Alonso O. Prognostic value of imaging markers from 18FDG-PET/CT in paediatric patients with Hodgkin lymphoma. Nucl Med Commun 2021; 42:306-314. [PMID: 33306628 DOI: 10.1097/mnm.0000000000001337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Identification of imaging prognostic parameters for early therapy personalisation to reduce treatment-related morbidity in paediatric Hodgkin lymphoma (HL). Our aim was to evaluate quantitative markers from baseline 2-[18F]fluoro-2-deoxy-d-glucose PET/CT as prognostic factors for treatment outcomes. Another goal was assessing the prognostic value of Deauville score at interim PET/CT. METHODS Twenty-one patients were prospectively enrolled. Median age was 12 years (range 6-17); 13 were female. Patients underwent PET/CT for disease staging (bPET), at the end of two cycles of chemotherapy (iPET) and after chemotherapy. A total of 173 lesions were segmented from bPET. We calculated 51 texture features for each lesion. Total metabolic tumour volume and total lesion glycolysis from bPET were calculated for response prediction at iPET. Univariate and multivariate analyses were used for optimal cut-off values to separate responders at iPET according to the Deauville score. RESULTS We identified four texture features as possible independent predictors of treatment outcomes at iPET. The areas under the ROC for univariate analysis were 0.89 (95% CI, 0.75-1), 0.82 (95% CI, 0.64-1), 0.79 (95% CI, 0.59-0.99) and 0.89 (95% CI, 0.75-1). The survival curves for patients assigned Deauville scores 1, 2, 3 and X were different from those assigned a score 4, with 4-year progression free-survival (PFS) rates of 85 versus 29%, respectively (P = 0.05). CONCLUSIONS We found four textural features as candidates for predicting early response to chemotherapy in paediatric patients with HL. The Deauville score at iPET was useful for differentiating PFS rates.
Collapse
Affiliation(s)
| | - Enrique G Cuña
- Uruguayan Centre of Molecular Imaging (CUDIM)
- Physics Institute, Sciences Faculty, University of the Republic
| | - Carolina Pages
- Paediatric Haemato Oncology Service, Pereira Rossell Hospital
| | | | | | - Luis A Castillo
- Paediatric Haemato Oncology Service, Pereira Rossell Hospital
| | - Omar Alonso
- Uruguayan Centre of Molecular Imaging (CUDIM)
- Nuclear Medicine and Molecular Imaging Centre, Clinical Hospital, Medicine Faculty, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
30
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
31
|
Frood R, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C, Scarsbrook A. Baseline PET/CT imaging parameters for prediction of treatment outcome in Hodgkin and diffuse large B cell lymphoma: a systematic review. Eur J Nucl Med Mol Imaging 2021; 48:3198-3220. [PMID: 33604689 PMCID: PMC8426243 DOI: 10.1007/s00259-021-05233-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Purpose To systematically review the literature evaluating clinical utility of imaging metrics derived from baseline fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) for prediction of progression-free (PFS) and overall survival (OS) in patients with classical Hodgkin lymphoma (HL) and diffuse large B cell lymphoma (DLBCL). Methods A search of MEDLINE/PubMed, Web of Science, Cochrane, Scopus and clinicaltrials.gov databases was undertaken for articles evaluating PET/CT imaging metrics as outcome predictors in HL and DLBCL. PRISMA guidelines were followed. Risk of bias was assessed using the Quality in Prognosis Studies (QUIPS) tool. Results Forty-one articles were included (31 DLBCL, 10 HL). Significant predictive ability was reported in 5/20 DLBCL studies assessing SUVmax (PFS: HR 0.13–7.35, OS: HR 0.83–11.23), 17/19 assessing metabolic tumour volume (MTV) (PFS: HR 2.09–11.20, OS: HR 2.40–10.32) and 10/13 assessing total lesion glycolysis (TLG) (PFS: HR 1.078–11.21, OS: HR 2.40–4.82). Significant predictive ability was reported in 1/4 HL studies assessing SUVmax (HR not reported), 6/8 assessing MTV (PFS: HR 1.2–10.71, OS: HR 1.00–13.20) and 2/3 assessing TLG (HR not reported). There are 7/41 studies assessing the use of radiomics (4 DLBCL, 2 HL); 5/41 studies had internal validation and 2/41 included external validation. All studies had overall moderate or high risk of bias. Conclusion Most studies are retrospective, underpowered, heterogenous in their methodology and lack external validation of described models. Further work in protocol harmonisation, automated segmentation techniques and optimum performance cut-off is required to develop robust methodologies amenable for clinical utility. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05233-2.
Collapse
Affiliation(s)
- R Frood
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK. .,Leeds Institute of Health Research, University of Leeds, Leeds, UK.
| | - C Burton
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - C Tsoumpas
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - A F Frangi
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.,Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of Computing and School of Medicine, University of Leeds, Leeds, UK.,Medical Imaging Research Center (MIRC), University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - F Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - C Patel
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - A Scarsbrook
- Department of Nuclear Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.,Leeds Institute of Health Research, University of Leeds, Leeds, UK
| |
Collapse
|
32
|
Annunziata S, Pelliccioni A, Hohaus S, Maiolo E, Cuccaro A, Giordano A. The prognostic role of end-of-treatment FDG-PET/CT in diffuse large B cell lymphoma: a pilot study application of neural networks to predict time-to-event. Ann Nucl Med 2021; 35:102-110. [PMID: 33094420 DOI: 10.1007/s12149-020-01542-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the prognostic role of end-of-treatment (EoT) FDG-PET/CT parameters in diffuse large B cell lymphoma (DLBCL), and then to explore a pilot application of Neural Networks (NN) in predicting time-to-relapse. METHODS For conventional survival analysis, parameters as Deauville score (DS) and quantitative extension of DS (qPET) were correlated to adverse events as relapse or progression in the follow-up. To build NN and conventional multi-regression models (MM) for time-to-event prediction, patients with residual FDG uptake (DS ≥ 2) and an adverse event were divided into a training and a test group. Models developed on the training group were evaluated in the test group. Pearson correlation coefficient (R) and mean relative error between observed and forecasted time-to-event were calculated. RESULTS FDG-PET/CT data of 308 patients with DLBCL were analyzed. DS and qPET were prognostic factors in conventional univariate analysis. Positive and negative predictive values, respectively, were 55% and 83% for DS 4-5, 89% and 82% for positive qPET. Focusing on 37 relapsed patients with a residual FDG uptake, R between observed and forecasted time-to-event was of 0.63 in the NN model and 0.49 in the MM. Mean relative error in predicting time-to-event was of 58% for NN and 67% for MM. CONCLUSIONS EoT FDG-PET/CT visual score (DS) is a strong outcome predictor in DLBCL in a large monocentric cohort. The semi-quantitative parameter qPET may increase this prognostic performance. A pilot NN model applied on residual FDG uptake parameters seems to predict time-to-event in the follow-up.
Collapse
Affiliation(s)
- Salvatore Annunziata
- Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Roma, Italia.
| | | | - Stefan Hohaus
- Institute of Hematology, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, Roma, Italia
| | - Elena Maiolo
- Dipartimento Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, Roma, Italia
| | - Annarosa Cuccaro
- Dipartimento Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, Roma, Italia
| | - Alessandro Giordano
- Institute of Nuclear Medicine, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168, Roma, Italia
- Dipartimento Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|
33
|
Prognostic Value of Baseline Radiomic Features of 18F-FDG PET in Patients with Diffuse Large B-Cell Lymphoma. Diagnostics (Basel) 2020; 11:diagnostics11010036. [PMID: 33379166 PMCID: PMC7824203 DOI: 10.3390/diagnostics11010036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
This study investigates whether baseline 18F-FDG PET radiomic features can predict survival outcomes in patients with diffuse large B-cell lymphoma (DLBCL). We retrospectively enrolled 83 patients diagnosed with DLBCL who underwent 18F-FDG PET scans before treatment. The patients were divided into the training cohort (n = 58) and the validation cohort (n = 25). Eighty radiomic features were extracted from the PET images for each patient. Least absolute shrinkage and selection operator regression were used to reduce the dimensionality within radiomic features. Cox proportional hazards model was used to determine the prognostic factors for progression-free survival (PFS) and overall survival (OS). A prognostic stratification model was built in the training cohort and validated in the validation cohort using Kaplan-Meier survival analysis. In the training cohort, run length non-uniformity (RLN), extracted from a gray level run length matrix (GLRLM), was independently associated with PFS (hazard ratio (HR) = 15.7, p = 0.007) and OS (HR = 8.64, p = 0.040). The International Prognostic Index was an independent prognostic factor for OS (HR = 2.63, p = 0.049). A prognostic stratification model was devised based on both risk factors, which allowed identification of three risk groups for PFS and OS in the training (p < 0.001 and p < 0.001) and validation (p < 0.001 and p = 0.020) cohorts. Our results indicate that the baseline 18F-FDG PET radiomic feature, RLNGLRLM, is an independent prognostic factor for survival outcomes. Furthermore, we propose a prognostic stratification model that may enable tailored therapeutic strategies for patients with DLBCL.
Collapse
|
34
|
Abstract
A 69-year-old man underwent FDG PET/CT to evaluate a right upper abdominal mass. The images showed peripherally increased activity with central photopenic region in the head of the pancreas, which was consistent with pancreatic malignancy. Histopathologic findings showed characteristic findings of diffuse large B-cell lymphoma. The activity was diminished on follow-up PET/CT after 8 courses of chemotherapy.
Collapse
|
35
|
Sun Y, Qiao X, Jiang C, Liu S, Zhou Z. Texture Analysis Improves the Value of Pretreatment 18F-FDG PET/CT in Predicting Interim Response of Primary Gastrointestinal Diffuse Large B-Cell Lymphoma. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:2981585. [PMID: 32922221 PMCID: PMC7463417 DOI: 10.1155/2020/2981585] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
Objectives To explore the application of pretreatment 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) texture analysis (TA) in predicting the interim response of primary gastrointestinal diffuse large B-cell lymphoma (PGIL-DLBCL). Methods Pretreatment 18F-FDG PET/CT images of 30 PGIL-DLBCL patients were studied retrospectively. The interim response was evaluated after 3-4 cycles of chemotherapy. The complete response (CR) rates in patients with different clinicopathological characteristics were compared by Fisher's exact test. The differences in the maximum standard uptake value (SUVmax), metabolic tumor volume (MTV), and texture features between the CR and non-CR groups were compared by the Mann-Whitney U test. Feature selection was performed according to the results of the Mann-Whitney U test and feature categories. The predictive efficacies of the SUVmax, MTV, and the selected texture features were assessed by receiver operating characteristic (ROC) analysis. A prediction probability was generated by binary logistic regression analysis. Results The SUVmax, MTV, some first-order texture features, volume, and entropy were significantly higher in the non-CR group. The energy was significantly lower in the non-CR group. The SUVmax, volume, and entropy were excellent predictors of the interim response, and the areas under the curves (AUCs) were 0.850, 0.805, and 0.800, respectively. The CR rate was significantly lower in patients with intestinal involvement. The prediction probability generated from the combination of the SUVmax, entropy, volume, and intestinal involvement had a higher AUC (0.915) than all single parameters. Conclusions TA has potential in improving the value of pretreatment PET/CT in predicting the interim response of PGIL-DLBCL. However, prospective studies with large sample sizes and validation analyses are needed to confirm the current results.
Collapse
Affiliation(s)
- Yiwen Sun
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Xiangmei Qiao
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Chong Jiang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Zhengyang Zhou
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, China
| |
Collapse
|
36
|
Mayerhoefer ME, Umutlu L, Schöder H. Functional imaging using radiomic features in assessment of lymphoma. Methods 2020; 188:105-111. [PMID: 32634555 DOI: 10.1016/j.ymeth.2020.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Lymphomas are typically large, well-defined, and relatively homogeneous tumors, and therefore represent ideal targets for the use of radiomics. Of the available functional imaging tests, [18F]FDG-PET for body lymphoma and diffusion-weighted MRI (DWI) for central nervous system (CNS) lymphoma are of particular interest. The current literature suggests that two main applications for radiomics in lymphoma show promise: differentiation of lymphomas from other tumors, and lymphoma treatment response and outcome prognostication. In particular, encouraging results reported in the limited number of presently available studies that utilize functional imaging suggest that (1) MRI-based radiomics enables differentiation of CNS lymphoma from glioblastoma, and (2) baseline [18F]FDG-PET radiomics could be useful for survival prognostication, adding to or even replacing commonly used metrics such as standardized uptake values and metabolic tumor volume. However, due to differences in biological and clinical characteristics of different lymphoma subtypes and an increasing number of treatment options, more data are required to support these findings. Furthermore, a consensus on several critical steps in the radiomics workflow -most importantly, image reconstruction and post processing, lesion segmentation, and choice of classification algorithm- is desirable to ensure comparability of results between research institutions.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA
| |
Collapse
|
37
|
Sollini M, Kirienko M, Cavinato L, Ricci F, Biroli M, Ieva F, Calderoni L, Tabacchi E, Nanni C, Zinzani PL, Fanti S, Guidetti A, Alessi A, Corradini P, Seregni E, Carlo-Stella C, Chiti A. Methodological framework for radiomics applications in Hodgkin's lymphoma. Eur J Hybrid Imaging 2020; 4:9. [PMID: 34191173 PMCID: PMC8218114 DOI: 10.1186/s41824-020-00078-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND According to published data, radiomics features differ between lesions of refractory/relapsing HL patients from those of long-term responders. However, several methodological aspects have not been elucidated yet. PURPOSE The study aimed at setting up a methodological framework in radiomics applications in Hodgkin's lymphoma (HL), especially at (a) developing a novel feature selection approach, (b) evaluating radiomic intra-patient lesions' similarity, and (c) classifying relapsing refractory (R/R) vs non-(R/R) patients. METHODS We retrospectively included 85 patients (male:female = 52:33; median age 35 years, range 19-74). LIFEx (www.lifexsoft.org) was used for [18F]FDG-PET/CT segmentation and feature extraction. Features were a-priori selected if they were highly correlated or uncorrelated to the volume. Principal component analysis-transformed features were used to build the fingerprints that were tested to assess lesions' similarity, using the silhouette. For intra-patient similarity analysis, we used patients having multiple lesions only. To classify patients as non-R/R and R/R, the fingerprint considering one single lesion (fingerprint_One) and all lesions (fingerprint_All) was tested using Random Undersampling Boosting of Tree Ensemble (RUBTE). RESULTS HL fingerprints included up to 15 features. Intra-patient lesion similarity analysis resulted in mean/median silhouette values below 0.5 (low similarity especially in the non-R/R group). In the test set, the fingerprint_One classification accuracy was 62% (78% sensitivity and 53% specificity); the classification by RUBTE using fingerprint_All resulted in 82% accuracy (70% sensitivity and 88% specificity). CONCLUSIONS Lesion similarity analysis was developed, and it allowed to demonstrate that HL lesions were not homogeneous within patients in terms of radiomics signature. Therefore, a random target lesion selection should not be adopted for radiomics applications. Moreover, the classifier to predict R/R vs non-R/R performed the best when all the lesions were used.
Collapse
Affiliation(s)
- Martina Sollini
- Humanitas University, Via Rita Levi Montalcini 4, MI 20090 Pieve Emanuele, Italy
- Humanitas Clinical and Research Center – IRCCS -, via Manzoni 56, 20089 Rozzano, MI Italy
| | - Margarita Kirienko
- Humanitas University, Via Rita Levi Montalcini 4, MI 20090 Pieve Emanuele, Italy
| | - Lara Cavinato
- Humanitas Clinical and Research Center – IRCCS -, via Manzoni 56, 20089 Rozzano, MI Italy
- MOX–Modelling and Scientific Computing lab., Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Ricci
- Humanitas Clinical and Research Center – IRCCS -, via Manzoni 56, 20089 Rozzano, MI Italy
| | - Matteo Biroli
- Humanitas University, Via Rita Levi Montalcini 4, MI 20090 Pieve Emanuele, Italy
| | - Francesca Ieva
- MOX–Modelling and Scientific Computing lab., Department of Mathematics, Politecnico di Milano, Milano, Italy
- CADS–Center for Analysis, Decision, and Society, Human Technopole, Milano, Italy
| | | | | | | | - Pier Luigi Zinzani
- Institute of Hematology “Seràgnoli”, University of Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, AOU S.Orsola-Malpighi, Bologna, Italy
| | - Anna Guidetti
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- University of Milan, Milan, Italy
| | | | - Paolo Corradini
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- University of Milan, Milan, Italy
| | - Ettore Seregni
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carmelo Carlo-Stella
- Humanitas University, Via Rita Levi Montalcini 4, MI 20090 Pieve Emanuele, Italy
- Humanitas Clinical and Research Center – IRCCS -, via Manzoni 56, 20089 Rozzano, MI Italy
| | - Arturo Chiti
- Humanitas University, Via Rita Levi Montalcini 4, MI 20090 Pieve Emanuele, Italy
- Humanitas Clinical and Research Center – IRCCS -, via Manzoni 56, 20089 Rozzano, MI Italy
| |
Collapse
|
38
|
Current status and quality of radiomics studies in lymphoma: a systematic review. Eur Radiol 2020; 30:6228-6240. [PMID: 32472274 DOI: 10.1007/s00330-020-06927-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 04/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To perform a systematic review regarding the developments in the field of radiomics in lymphoma. To evaluate the quality of included articles by the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2), the phases classification criteria for image mining studies, and the radiomics quality scoring (RQS) tool. METHODS We searched for eligible articles in the MEDLINE/PubMed and EMBASE databases using the terms "radiomics", "texture" and "lymphoma". The included studies were divided into two categories: diagnosis-, therapy response- and outcome-related studies. The diagnosis-related studies were evaluated using the QUADAS-2; all studies were evaluated using the phases classification criteria for image mining studies and the RQS tool by two reviewers. RESULTS Forty-five studies were included; thirteen papers (28.9%) focused on the differential diagnosis of primary central nervous system lymphoma (PCNSL) and glioblastoma (GBM). Thirty-two (71.1%) studies were classified as discovery science according to the phase classification criteria for image mining studies. The mean RQS score of all studies was 14.2% (ranging from 0.0 to 40.3%), and 23 studies (51.1%) were given a score of < 10%. CONCLUSION The radiomics features could serve as diagnostic and prognostic indicators in lymphoma. However, the current conclusions should be interpreted with caution due to the suboptimal quality of the studies. In order to introduce radiomics into lymphoma clinical settings, the lesion segmentation and selection, the influence of the pathological pattern and the extraction of multiple modalities and multiple time points features need to be further studied. KEY POINTS • The radiomics approach may provide useful information for diagnosis, prediction of the therapy response, and outcome of lymphoma. • The quality of published radiomics studies in lymphoma has been suboptimal to date. • More studies are needed to examine lesion selection and segmentation, the influence of pathological patterns, and the extraction of multiple modalities and multiple time point features.
Collapse
|
39
|
Development and validation of an 18F-FDG PET radiomic model for prognosis prediction in patients with nasal-type extranodal natural killer/T cell lymphoma. Eur Radiol 2020; 30:5578-5587. [PMID: 32435928 DOI: 10.1007/s00330-020-06943-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To identify an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) radiomics-based model for predicting progression-free survival (PFS) and overall survival (OS) of nasal-type extranodal natural killer/T cell lymphoma (ENKTL). METHODS In this retrospective study, a total of 110 ENKTL patients were divided into a training cohort (n = 82) and a validation cohort (n = 28). Forty-one features were extracted from pretreatment PET images of the patients. Least absolute shrinkage and selection operator (LASSO) regression was used to develop the radiomic signatures (R-signatures). A radiomics-based model was built and validated in the two cohorts and compared with a metabolism-based model. RESULTS The R-signatures were constructed with moderate predictive ability in the training and validation cohorts (R-signaturePFS: AUC = 0.788 and 0.473; R-signatureOS: AUC = 0.637 and 0.730). For PFS, the radiomics-based model showed better discrimination than the metabolism-based model in the training cohort (C-index = 0.811 vs. 0.751) but poorer discrimination in the validation cohort (C-index = 0.588 vs. 0.693). The calibration of the radiomics-based model was poorer than that of the metabolism-based model (training cohort: p = 0.415 vs. 0.428, validation cohort: p = 0.228 vs. 0.652). For OS, the performance of the radiomics-based model was poorer (training cohort: C-index = 0.818 vs. 0.828, p = 0.853 vs. 0.885; validation cohort: C-index = 0.628 vs. 0.753, p < 0.05 vs. 0.913). CONCLUSIONS Radiomic features derived from PET images can predict the outcomes of patients with ENKTL, but the performance of the radiomics-based model was inferior to that of the metabolism-based model. KEY POINTS • The R-signatures calculated by using 18F-FDG PET radiomic features can predict the survival of patients with ENKTL. • The radiomics-based models integrating the R-signatures and clinical factors achieved good predictive values. • The performance of the radiomics-based model was inferior to that of the metabolism-based model in the two cohorts.
Collapse
|
40
|
18F-FDG PET/CT in diagnostic and prognostic evaluation of patients with cardiac masses: a retrospective study. Eur J Nucl Med Mol Imaging 2019; 47:1083-1093. [DOI: 10.1007/s00259-019-04632-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
|