1
|
Association between Heavy Metal Exposure and Parkinson's Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122467. [PMID: 36552676 PMCID: PMC9774122 DOI: 10.3390/antiox11122467] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is a gradually progressing neurodegenerative condition that is marked by a loss of motor coordination along with non-motor features. Although the precise cause of PD has not been determined, the disease condition is mostly associated with the exposure to environmental toxins, such as metals, and their abnormal accumulation in the brain. Heavy metals, such as iron (Fe), mercury (Hg), manganese (Mn), copper (Cu), and lead (Pb), have been linked to PD and contribute to its progression. In addition, the interactions among the components of a metal mixture may result in synergistic toxicity. Numerous epidemiological studies have demonstrated a connection between PD and either single or mixed exposure to these heavy metals, which increase the prevalence of PD. Chronic exposure to heavy metals is related to the activation of proinflammatory cytokines resulting in neuronal loss through neuroinflammation. Similarly, metals disrupt redox homeostasis while inducing free radical production and decreasing antioxidant levels in the substantia nigra. Furthermore, these metals alter molecular processes and result in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis, which can potentially trigger dopaminergic neurodegenerative disorders. This review focuses on the roles of Hg, Pb, Mn, Cu, and Fe in the development and progression of PD. Moreover, it explores the plausible roles of heavy metals in neurodegenerative mechanisms that facilitate the development of PD. A better understanding of the mechanisms underlying metal toxicities will enable the establishment of novel therapeutic approaches to prevent or cure PD.
Collapse
|
2
|
Abstract
Mercury (Hg) exists in the environment as inorganic (metallic Hg vapor, mercurous and mercuric salts) or organic (bonded to a structure containing carbon atoms) forms. Neurotoxic effect of Hg is known for years. While the organic form (methylmercury (meHg)) led to the Minamata incidence in Japan and "wonder-wheat" disaster in Iraq, the "mad hatters" and "Danbury shakes" were related to the inorganic elemental form (Hg vapor). Human exposure to toxic Hg continues in the modern world to a large extent by artisanal gold mining, biomass combustion, chloralkali production, and indigenous medicine use to name a few. Heavy industrial use of Hg contaminates air and landfills, affecting the aquatic ecosystem and marine food chain. A detailed social and occupational history with a high index of clinical suspicion is required to not miss this toxic etiology for movement disorders like ataxia, tremor, or myoclonus. In this review, we have discussed the past and present global health impact of Hg from a movement disorder perspective. The connection of Hg with neurodegeneration and autoimmunity has been highlighted. We have also discussed the role of chelating agents and the preventive strategies to combat the neurotoxic effects of Hg in the modern world.
Collapse
|
3
|
Crespo-López ME, Soares ES, Macchi BDM, Santos-Sacramento L, Takeda PY, Lopes-Araújo A, Paraense RSDO, Souza-Monteiro JR, Augusto-Oliveira M, Luz DA, Maia CDSF, Rogez H, Lima MDO, Pereira JP, Oliveira DC, Burbano RR, Lima RR, do Nascimento JLM, Arrifano GDP. Towards Therapeutic Alternatives for Mercury Neurotoxicity in the Amazon: Unraveling the Pre-Clinical Effects of the Superfruit Açaí ( Euterpe oleracea, Mart.) as Juice for Human Consumption. Nutrients 2019; 11:nu11112585. [PMID: 31717801 PMCID: PMC6893510 DOI: 10.3390/nu11112585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Methylmercury (MeHg) exposure is a serious problem of public health, especially in the Amazon. Exposure in riverine populations is responsible for neurobehavioral abnormalities. It was hypothesized that consumption of Amazonian fruits could protect by reducing mercury accumulation. This work analyzed the effects of commercial samples of Euterpe oleracea (EO) for human consumption (10 μL/g) against MeHg i.p. exposure (2.5 mg/Kg), using neurobehavioral (open field, rotarod and pole tests), biochemical (lipid peroxidation and nitrite levels), aging-related (telomerase reverse transcriptase (TERT) mRNA expression) and toxicokinetic (MeHg content) parameters in mice. Both the pole and rotarod tests were the most sensitive tests accompanied by increased lipid peroxidation and nitrite levels in brains. MeHg reduced TERT mRNA about 50% demonstrating a strong pro-aging effect. The EO intake, similar to that of human populations, prevented all alterations, without changing the mercury content, but avoiding neurotoxicity and premature aging of the Central Nervous System (CNS). Contrary to the hypothesis found in the literature on the possible chelating properties of Amazonian fruits consumption, the effect of EO would be essentially pharmacodynamics, and possible mechanisms are discussed. Our data already support the regular consumption of EO as an excellent option for exposed Amazonian populations to have additional protection against MeHg intoxication.
Collapse
Affiliation(s)
| | - Ericks Sousa Soares
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-PA 66075-110, Brazil
- Laboratory of Neurochemical Investigation, Center of Biological Sciences, Federal University of Santa, Catarina, Florianópolis-SC 88040-900, Brazil
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Federal University of Pará, Belém-PA 66075-110, Brazil
| | | | - Priscila Yuki Takeda
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-PA 66075-110, Brazil
| | - Amanda Lopes-Araújo
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-PA 66075-110, Brazil
| | | | | | - Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-PA 66075-110, Brazil
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Diandra Araújo Luz
- Laboratory of Pharmacology of Inflammation and Behavior and Federal University of Pará, Belém-PA 66075-110, Brazil
| | | | - Hervé Rogez
- Centre for Valorisation of Amazonian Bioactive Compounds (CVACBA) and Federal University of Pará, Belém-PA 66075-110, Brazil
| | | | - João Paulo Pereira
- Evandro Chagas Institute, Secretary of Sanitary Surveillance, Belém-PA 66093-020, Brazil
| | | | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Federal University of Pará, Belém-PA 66075-110, Brazil
| | | | - Gabriela de Paula Arrifano
- Laboratory of Molecular Pharmacology, Federal University of Pará, Belém-PA 66075-110, Brazil
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
4
|
Coherent and Contradictory Facts, Feats and Fictions Associated with Metal Accumulation in Parkinson's Disease: Epicenter or Outcome, Yet a Demigod Question. Mol Neurobiol 2016; 54:4738-4755. [PMID: 27480264 DOI: 10.1007/s12035-016-0016-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/12/2016] [Indexed: 01/30/2023]
Abstract
Unwarranted exposure due to liberal use of metals for maintaining the lavish life and to achieve the food demand for escalating population along with an incredible boost in the average human life span owing to orchestrated progress in rejuvenation therapy have gradually increased the occurrence of Parkinson's disease (PD). Etiology is albeit elusive; association of PD with metal accumulation has never been overlooked due to noteworthy similitude between metal-exposure symptoms and a few cardinal features of disease. Even though metals are entailed in the vital functions, a hysterical shift, primarily augmentation, escorts the stern nigrostriatal dopaminergic neurodegeneration. An increase in the passage of metals through the blood brain barrier and impaired metabolic activity and elimination system could lead to metal accumulation in the brain, which eventually makes dopaminergic neurons quite susceptible. In the present article, an update on implication of metal accumulation in PD/Parkinsonism has been provided. Moreover, encouraging and paradoxical facts and fictions associated with metal accumulation in PD/Parkinsonism have also been compiled. Systematic literature survey of PD is performed to describe updated information if metal accumulation is an epicenter or merely an outcome. Finally, a perspective on the association of metal accumulation with pesticide-induced Parkinsonism has been explained to unveil the likely impact of the former in the latter.
Collapse
|
5
|
Sex-dependent and non-monotonic enhancement and unmasking of methylmercury neurotoxicity by prenatal stress. Neurotoxicology 2014; 41:123-40. [PMID: 24502960 DOI: 10.1016/j.neuro.2014.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/20/2022]
Abstract
Methylmercury (MeHg) and prenatal stress (PS) are risk factors for neurotoxicity that may co-occur in human populations. Because they also share biological substrates and can produce common behavioral deficits, this study examined their joint effects on behavioral and neurochemical effects in male and female rats. Dams had access to 0, 0.5 or 2.5ppm MeHg chloride drinking water from two to three weeks prior to breeding through weaning. Half of the dams in each of these treatment groups also underwent PS on gestational days 16-17. This yielded 6 groups/gender: 0-NS, 0-PS, 0.5-NS, 0.5-PS, 2.5-NS, and 2.5-PS. Behavioral testing began in young adulthood and included fixed interval (FI) schedule-controlled behavior, novel object recognition (NOR) and locomotor activity, behaviors previously demonstrated to be sensitive to MeHg and/or mediated by brain mesocorticolimbic dopamine glutamate systems targeted by both MeHg and PS. Behavioral deficits were more pronounced in females and included impaired NOR recognition memory only under conditions of combined MeHg and PS, while non-monotonic reductions in FI response rates occurred, with greatest effects at the 0.5ppm concentration; the less reduced 2.5ppm FI response rates were further reduced under conditions of PS (2.5-PS). Correspondingly, many neurochemical changes produced by MeHg were only seen under conditions of PS, particularly in striatum in males and in hippocampus and nucleus accumbens in females, regions of significance to the mediation of FI and NOR performance. Collectively these findings demonstrate sex-dependent and non-monotonic effects of developmental MeHg exposure that can be unmasked or enhanced by PS, particularly for behavioral outcomes in females, but for both sexes in neurochemical changes, that were observed at MeHg exposure concentrations that did not influence either reproductive outcomes or maternal behavior. Thus, assessment of risks associated with MeHg may be underestimated in the absence of other extant risk factors with which it may share common substrates and effects.
Collapse
|
6
|
Abstract
Parkinson's disease (PD) is a chronic, progressive, disabling neurodegenerative disorder that begins in mid to late life and is characterized by motor impairment, autonomic dysfunction, and, in many, psychological and cognitive changes. Recent advances have helped delineate pathogenetic mechanisms, yet the cause of PD in most individuals is unknown. Although at least 15 genes and genetic loci have been associated with PD, identified genetic causes are responsible for only a few percent of cases. Epidemiologic studies have found increased risk of PD associated with exposure to environmental toxicants such as pesticides, solvents, metals, and other pollutants, and many of these compounds recapitulate PD pathology in animal models. This review summarizes the environmental toxicology of PD, highlighting the consistency of observations across cellular, animal, and human studies of PD pathogenesis.
Collapse
|
7
|
Geier DA, Pretorius HT, Richards NM, Geier MR. A quantitative evaluation of brain dysfunction and body-burden of toxic metals. Med Sci Monit 2012; 18:CR425-31. [PMID: 22739732 PMCID: PMC3560777 DOI: 10.12659/msm.883210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Toxic metal exposure (e.g. Hg, Pb, As) exposure is known to induce significant adverse effects on human brain function. The aim this study was to assess toxic metal body-burden in relation to potential brain dysfunction in patients diagnosed with neurological disorders (NDs). Material/Methods The Liberty Institutional Review Board (Deland, FL) approved the present study. Quantitative, fractionated, random urinary porphyrin testing (μg/L) from the Clinical Laboratory Improvement Act/Amendment (CLIA)-approved Laboratory Corporation of America (LabCorp) and cortical perfusion index (CPi) values from single-photon-emission-computed-tomography (SPECT) brain scans were employed to evaluate a prospective cohort of qualifying patients with diagnosed NDs (n=52) presenting for medical care at an endocrinology practice in the Cincinnati, OH area. Results Patients with more severe in comparison to mild brain dysfunction had significant increases in the mean urinary concentration of uroporphyrins (uP), coproporphyrins I (cP I), and total cP (cP I + III), as well as a trend towards significantly increased mean urinary concentration of pentacarboxyporphyins (5cxP) and cP III. A significant positive correlation between Hg body-burden associated porphyrins (5cxP + cP I + cP III) and increased brain dysfunction was observed. Conclusions The present study associated brain dysfunction with Hg body-burden in a cohort of patients diagnosed with NDs, but the contributions of other heavy metals or genetic factors cannot be ruled-out. Additional studies should be conducted to evaluate the consistency of the present findings with examinations of other populations.
Collapse
Affiliation(s)
- David A Geier
- Institute of Chronic Illnesses, Inc., Silver Spring, MD 20905, USA.
| | | | | | | |
Collapse
|
8
|
Industrial toxicants and Parkinson's disease. Neurotoxicology 2012; 33:178-88. [PMID: 22309908 DOI: 10.1016/j.neuro.2012.01.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/19/2012] [Accepted: 01/23/2012] [Indexed: 11/22/2022]
Abstract
The exposure of the human population to environmental contaminants is recognized as a significant contributing factor for the development of Parkinson's disease (PD) and other forms of parkinsonism. While pesticides have repeatedly been identified as risk factors for PD, these compounds represent only a subset of environmental toxicants that we are exposed to on a regular basis. Thus, non-pesticide contaminants, such as metals, solvents, and other organohalogen compounds have also been implicated in the clinical and pathological manifestations of these movement disorders and it is these non-pesticide compounds that are the subject of this review. As toxic exposures to these classes of compounds can result in a spectrum of PD or PD-related disorders, it is imperative to appreciate shared clinico-pathological characteristics or mechanisms of action of these compounds in order to further delineate the resultant disorders as well as identify improved preventive strategies or therapeutic interventions.
Collapse
|