1
|
Tompkins RM, Fujiwara T, Schrauben EM, Browne LP, van Schuppen J, Clur SA, Friesen RM, Englund EK, Barker AJ, van Ooij P. Third trimester fetal 4D flow MRI with motion correction. Magn Reson Med 2025. [PMID: 39789817 DOI: 10.1002/mrm.30411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE To correct maternal breathing and fetal bulk motion during fetal 4D flow MRI. METHODS A Doppler-ultrasound fetal cardiac-gated free-running 4D flow acquisition was corrected post hoc for maternal respiratory and fetal bulk motion in separate automated steps, with optional manual intervention to assess and limit fetal motion artifacts. Compressed-sensing reconstruction with a data outlier rejection algorithm was adapted from previous work. Pre- and post-motion correction comparison included qualitative visibility of vasculature on phase-contrast MR angiograms (five-point Likert scale), conservation of mass of the aortic isthmus, ductus arteriosus, and descending aorta, and coefficient of variation of flow along the descending aorta. RESULTS Twenty-nine third trimester acquisitions were performed for 15 healthy fetuses and two patients with postnatally confirmed aortic coarctation during a single examination for each participant. Only 15/27 (56%) of all volunteers and 1/2 (50%) of all patient precorrection acquisitions were suitable for flow analysis. Motion correction recovered eight "failed" acquisitions, including one patient, with 24/29 (83%) suitable for flow analysis. In the 15 viable uncorrected volunteer acquisitions, motion correction improved phase-contrast MR angiograms visibility significantly in the ductus arteriosus (from 4.0 to 4.3, p = 0.04) and aortic arch (3.7 to 4.0, p = 0.03). Motion correction improved conservation of mass to a median (interquartile range) percent difference of 5% (9%) from 14% (24%) with improvement shown in 14/15 acquisitions (p = 0.002), whereas coefficient of variation changes were not significantly different (uncorrected: 0.15 (0.09), corrected: 0.11 (0.09), p = 0.3). CONCLUSIONS Motion correction compensated for maternal and fetal motion in fetal 4D flow MRI data, improving image quality and conservation of mass.
Collapse
Affiliation(s)
- Reagan M Tompkins
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lorna P Browne
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joost van Schuppen
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sally-Ann Clur
- Department of Pediatric Cardiology, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Richard M Friesen
- Department of Pediatrics, Section of Cardiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erin K Englund
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Alex J Barker
- Department of Radiology, Section of Pediatric Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tian Y, Detterich J, Pruetz JD, Yagiz E, Wood JC, Nayak KS. Feasibility of fetal cardiac function and anatomy assessment by real-time spiral balanced steady-state free precession magnetic resonance imaging at 0.55T. J Cardiovasc Magn Reson 2024; 27:101130. [PMID: 39638149 DOI: 10.1016/j.jocmr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Contemporary 0.55T magnetic resonance imaging (MRI) is promising for fetal MRI, due to the larger bore, reduced safety concerns, lower acoustic noise, and improved fast imaging capability. In this work, we explore improved fetal cardiovascular magnetic resonance (CMR) without relying on any synchronizing devices, prospective, or retrospective gating, to determine the feasibility of real-time MRI evaluation of fetal cardiac function as well as cardiac and great vessel anatomies by using spiral balanced steady-state free precession (bSSFP) at 0.55T. METHODS A real-time spiral bSSFP pulse sequence for fetal CMR was implemented and optimized on a 0.55T whole-body MRI. Fetal CMR was prospectively performed between May 2022 and August 2023. The protocol included (1) real-time images at standard cardiac views, for 10-20 s/view and 40-43.6 ms/frame and (2) 4-9 stacks of slices at standard cardiac views that each cover the whole heart, with 15-30 slices/stack, and 2-5 s/slice, at 320-349 ms/frame. Images were evaluated by a fetal cardiologist. Quantitative measurements of cardiothoracic area ratio and cardiac axis were compared with previous reports. Diagnostic accuracy was compared against postnatal echocardiographic findings. RESULTS Twenty-nine participants were enrolled for 32 CMR exams, with mean maternal age 33.6 ± 5.8 years (range 22-44 years) and mean gestational age 32.8 ± 3.9 weeks (range 23-38 weeks). The proposed sequence enabled evaluation of the fetal heart in <30 min in all cases (average 22 min). Real-time MRI allowed easy adjustment of scan plan, automatic whole-heart volumetric sweeping, and flexible choice of reconstruction temporal resolution. For key cardiac anatomic features, 60% (315/527) were delineated well. Mean cardiothoracic area ratio and cardiac axis were 0.27 ± 0.04 and 45.8 ± 7.8 degrees. Diagnostic agreement with postnatal echocardiographic findings was 84% (26/31). CONCLUSION A spiral real-time bSSFP pulse sequence at 0.55T can provide both low-framerate and high-framerate fetal heart images without relying on maternal breath-hold, specialized gating devices, or cardiac gating. The low-framerate images offer high diagnostic quality structural evaluations of the fetal heart, while the high-framerate images capture fetal heart motion and may enable functional assessments.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA.
| | - Jon Detterich
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Jay D Pruetz
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Ecrin Yagiz
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - John C Wood
- Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Xu H, Shi W, Sun J, Zheng T, Xu X, Sun C, Yi S, Wang G, Wu D. A motion assessment method for reference stack selection in fetal brain MRI reconstruction based on tensor rank approximation. NMR IN BIOMEDICINE 2024; 37:e5248. [PMID: 39231762 DOI: 10.1002/nbm.5248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
Slice-to-volume registration and super-resolution reconstruction are commonly used to generate 3D volumes of the fetal brain from 2D stacks of slices acquired in multiple orientations. A critical initial step in this pipeline is to select one stack with the minimum motion among all input stacks as a reference for registration. An accurate and unbiased motion assessment (MA) is thus crucial for successful selection. Here, we presented an MA method that determines the minimum motion stack based on 3D low-rank approximation using CANDECOMP/PARAFAC (CP) decomposition. Compared to the current 2D singular value decomposition (SVD) based method that requires flattening stacks into matrices to obtain ranks, in which the spatial information is lost, the CP-based method can factorize 3D stack into low-rank and sparse components in a computationally efficient manner. The difference between the original stack and its low-rank approximation was proposed as the motion indicator. Experiments on linearly and randomly simulated motion illustrated that CP demonstrated higher sensitivity in detecting small motion with a lower baseline bias, and achieved a higher assessment accuracy of 95.45% in identifying the minimum motion stack, compared to the SVD-based method with 58.18%. CP also showed superior motion assessment capabilities in real-data evaluations. Additionally, combining CP with the existing SRR-SVR pipeline significantly improved 3D volume reconstruction. The results indicated that our proposed CP showed superior performance compared to SVD-based methods with higher sensitivity to motion, assessment accuracy, and lower baseline bias, and can be used as a prior step to improve fetal brain reconstruction.
Collapse
Affiliation(s)
- Haoan Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Wen Shi
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiwei Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Tianshu Zheng
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Xinyi Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Cong Sun
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sun Yi
- MR Collaboration, Siemens Healthcare China, Shanghai, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Anand S, Lustig M. Beat Pilot Tone (BPT): Simultaneous MRI and RF motion sensing at arbitrary frequencies. Magn Reson Med 2024; 92:1768-1787. [PMID: 38872443 PMCID: PMC11429784 DOI: 10.1002/mrm.30150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE To introduce a simple system exploitation with the potential to turn MRI scanners into general-purpose radiofrequency (RF) motion monitoring systems. METHODS Inspired by Pilot Tone (PT), this work proposes Beat Pilot Tone (BPT), in which two or more RF tones at arbitrary frequencies are transmitted continuously during the scan. These tones create motion-modulated standing wave patterns that are sensed by the receiver coil array, incidentally mixed by intermodulation in the receiver chain, and digitized simultaneously with the MRI data. BPT can operate at almost any frequency as long as the intermodulation products lie within the bandwidth of the receivers. BPT's mechanism is explained in electromagnetic simulations and validated experimentally. RESULTS Phantom and volunteer experiments over a range of transmit frequencies suggest that BPT may offer frequency-dependent sensitivity to motion. Using a semi-flexible anterior receiver array, BPT appears to sense cardiac-induced body vibrations at microwave frequencies (≥ $$ \ge $$ 1.2 GHz). At lower frequencies, it exhibits a similar cardiac signal shape to PT, likely due to blood volume changes. Other volunteer experiments with respiratory, bulk, and head motion show that BPT can achieve greater sensitivity to motion than PT and greater separability between motion types. Basic multiple-input multiple-output (4 × 22 $$ 4\times 22 $$ MIMO) operation with simultaneous PT and BPT in head motion is demonstrated using two transmit antennas and a 22-channel head-neck coil. CONCLUSION BPT may offer a rich source of motion information that is frequency-dependent, simultaneous, and complementary to PT and the MRI exam.
Collapse
Affiliation(s)
- Suma Anand
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| | - Michael Lustig
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California
| |
Collapse
|
5
|
Hergert B, Tavares de Sousa M, Herrmann J, Bannas P, Huber L, Götz S, Hecher K, Adam G, Dargahpour Barough M, Schoennagel BP. A comparative study of fetal cardiovascular assessment: utilizing Doppler ultrasound gated MRI and echocardiography with detailed analysis using five axial views. Front Cardiovasc Med 2024; 11:1408071. [PMID: 39376620 PMCID: PMC11457166 DOI: 10.3389/fcvm.2024.1408071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
Objectives To investigate the diagnostic performance of fetal cardiovascular magnetic resonance imaging (MRI) using Doppler ultrasound (DUS) gating for the evaluation of the standardized five axial views in comparison with fetal echocardiography. Methods In this prospective study 29 pregnant women (median: 34.4 weeks of gestation) underwent fetal cardiovascular MRI using DUS gating at 3 Tesla. The standardized five axial views in prenatal screening (fetal abdomen, four-chamber view, left ventricular outflow tract, right ventricular outflow tract, and three-vessel view) were independently assessed and analysed by both fetal MRI and fetal echocardiography on the same day. Image analysis included qualitative assessment and quantitative measurements of cardiovascular structures. MR image quality was assessed using a 4-point scale (from 1 = low to 4 = excellent). Postnatal echocardiography was performed for validation. Results 17/28 fetuses (60.7%) had pathological findings [16 congenital heart defect (CHD), one diaphragmatic hernia] in prenatal echocardiography. One fetus was excluded due to severe motion. Overall sensitivity and specificity in detecting fetal cardiac abnormalities was 88% and 100%, respectively, for fetal MRI and 100% and 100% for fetal echocardiography. MR image quality for evaluation of cardiac structures was high with a mean score of 2.8 (±0.8) (score 4: 15.9%, score 3: 53.8%, score 2: 19.3%, score 1: 11%). Quantitative measurements did not differ between fetal cardiovascular MRI and fetal echocardiography (all p > 0.05). Conclusion Diagnostic performance of fetal cardiovascular MRI using DUS gating was comparable to fetal echocardiography. Fetal cardiovascular MRI using DUS gating might be a valuable diagnostic adjunct for the prenatal evaluation of CHD.
Collapse
Affiliation(s)
- B. Hergert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M. Tavares de Sousa
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J. Herrmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - P. Bannas
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Huber
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - S. Götz
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - K. Hecher
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G. Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M. Dargahpour Barough
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - B. P. Schoennagel
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Zhang CY, Cleri M, Woodgate T, Ramirez Gilliland P, Bansal S, Aviles Verdera J, Uus AU, Kyriakopoulou V, St Clair K, Story L, Hall M, Pushparajah K, Hajnal JV, Lloyd D, Rutherford MA, Hutter J, Payette K. Structural and functional fetal cardiac imaging using low field (0.55 T) MRI. Front Pediatr 2024; 12:1418645. [PMID: 39318614 PMCID: PMC11421172 DOI: 10.3389/fped.2024.1418645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Purpose This study aims to investigate the feasibility of using a commercially available clinical 0.55 T MRI scanner for comprehensive structural and functional fetal cardiac imaging. Methods Balanced steady-state free precession (bSSFP) and phase contrast (PC) sequences were optimized by in utero studies consisting of 14 subjects for bSSFP optimization and 9 subjects for PC optimization. The signal-to-noise ratio (SNR) of the optimized sequences were investigated. Flow measurements were performed in three vessels, umbilical vein (UV), descending aorta (DAo), and superior vena cava (SVC) using the PC sequences and retrospective gating. The optimized bSSFP, PC and half-Fourier single shot turbo spin-echo (HASTE) sequences were acquired in a cohort of 21 late gestation-age fetuses (>36 weeks) to demonstrate the feasibility of a fetal cardiac exam at 0.55 T. The HASTE stacks were reconstructed to create an isotropic reconstruction of the fetal thorax, followed by automatic great vessel segmentations. The intra-abdominal UV blood flow measurements acquired with MRI were compared to ultrasound UV free-loop flow measurements. Results Using the parameters from 1.5 T as a starting point, the bSSFP sequences were optimized at 0.55 T, resulting in a 1.6-fold SNR increase and improved image contrast compared to starting parameters, as well as good visibility of most cardiac structures as rated by two experienced fetal cardiologists. The PC sequence resulted in increased SNR and reduced scan time, subsequent retrospective gating enabled successful blood flow measurements. The reconstructions and automatic great vessel segmentations showed good quality, with 18/21 segmentations requiring no or minor refinements. Blood flow measurements were within the expected range. A comparison of the UV measurements performed with ultrasound and MRI showed agreement between the two sets of measurements, with better correlation observed at lower flows. Conclusion We demonstrated the feasibility of low-field (0.55 T) MRI for fetal cardiac imaging. The reduced SNR at low field strength can be effectively compensated for by strategically optimizing sequence parameters. Major fetal cardiac structures and vessels were consistently visualized, and flow measurements were successfully obtained. The late gestation study demonstrated the robustness and reproducibility at low field strength. MRI performed at 0.55 T is a viable option for fetal cardiac examination.
Collapse
Affiliation(s)
- Charlie Yuli Zhang
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Michela Cleri
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- London Collaborative Ultra High Field Systems (LoCUS), King’s College London, London, United Kingdom
| | - Tomas Woodgate
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Paula Ramirez Gilliland
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Simi Bansal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Alena U. Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Vanessa Kyriakopoulou
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Kamilah St Clair
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Women & Children’s Health, King’s College London, London, United Kingdom
| | - Kuberan Pushparajah
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - David Lloyd
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Department of Congenital Heart Disease, Evelina Children Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| | - Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Cundari G, Galea N, Di Mascio D, Gennarini M, Ventriglia F, Curti F, Dodaro M, Rizzo G, Catalano C, Giancotti A, Manganaro L. The New Frontiers of Fetal Imaging: MRI Insights into Cardiovascular and Thoracic Structures. J Clin Med 2024; 13:4598. [PMID: 39200740 PMCID: PMC11354430 DOI: 10.3390/jcm13164598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Fetal magnetic resonance imaging (fMRI) represents a second-line imaging modality that provides multiparametric and multiplanar views that are crucial for confirming diagnoses, detecting associated pathologies, and resolving inconclusive ultrasound findings. The introduction of high-field magnets and new imaging sequences has expanded MRI's role in pregnancy management. Recent innovations in ECG-gating techniques have revolutionized the prenatal evaluation of congenital heart disease by synchronizing imaging with the fetal heartbeat, thus addressing traditional challenges in cardiac imaging. Fetal cardiac MRI (fCMR) is particularly valuable for assessing congenital heart diseases, especially when ultrasound is limited by poor imaging conditions. fCMR allows for detailed anatomical and functional evaluation of the heart and great vessels and is also useful for diagnosing additional anomalies and analyzing blood flow patterns, which can aid in understanding abnormal fetal brain growth and placental perfusion. This review emphasizes fMRI's potential in evaluating cardiac and thoracic structures, including various gating techniques like metric optimized gating, self-gating, and Doppler ultrasound gating. The review also covers the use of static and cine images for structural and functional assessments and discusses advanced techniques like 4D-flow MRI and T1 or T2 mapping for comprehensive flow quantification and tissue characterization.
Collapse
Affiliation(s)
- Giulia Cundari
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Nicola Galea
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Daniele Di Mascio
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Marco Gennarini
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Flavia Ventriglia
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Federica Curti
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Martina Dodaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Giuseppe Rizzo
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Carlo Catalano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (D.D.M.); (F.V.); (G.R.)
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy; (G.C.); (N.G.); (M.G.); (F.C.); (M.D.); (C.C.); (L.M.)
| |
Collapse
|
8
|
Maher S, Seed M. Fetal Cardiovascular MR Imaging. Magn Reson Imaging Clin N Am 2024; 32:479-487. [PMID: 38944435 DOI: 10.1016/j.mric.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Prenatal diagnosis of congenital heart disease allows for appropriate planning of delivery and an opportunity to inform families about the prognosis of the cardiac malformation. On occasion, prenatal therapies may be offered to improve perinatal outcomes. While ultrasound is the primary diagnostic method, advances have led to interest in fetal MRI for its potential to aid in clinical decision-making. This review explores technical innovations and the clinical utility of fetal cardiovascular magnetic resonance (CMR), highlighting its role in diagnosing and planning interventions for complex heart conditions. Future directions include the prediction of perinatal physiology and guidance of delivery planning.
Collapse
Affiliation(s)
- Samer Maher
- Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | - Mike Seed
- Cardiology, The Hospital for Sick Children, University of Toronto, 170 Elizabeth Street, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Minocha PK, Englund EK, Friesen RM, Fujiwara T, Smith SA, Meyers ML, Browne LP, Barker AJ. Reference Values for Fetal Cardiac Dimensions, Volumes, Ventricular Function and Left Ventricular Longitudinal Strain Using Doppler Ultrasound Gated Cardiac Magnetic Resonance Imaging in Healthy Third Trimester Fetuses. J Magn Reson Imaging 2024; 60:365-374. [PMID: 37855630 PMCID: PMC11026299 DOI: 10.1002/jmri.29077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Recent advances in hardware and software permit the use of cardiac MRI of late gestation fetuses, however there is a paucity of MRI-based reference values. PURPOSE To provide initial data on fetal cardiac MRI-derived cardiac dimensions, volumes, ventricular function, and left ventricular longitudinal strain in healthy developing fetuses >30 weeks gestational age. STUDY TYPE Prospective. POPULATION Twenty-five third trimester (34 ± 1 weeks, range of 32-37 weeks gestation) women with healthy developing fetuses. FIELD STRENGTH/SEQUENCE Studies were performed at 1.5 T and 3 T. Cardiac synchronization was achieved with a Doppler ultrasound device. The protocol included T2 single shot turbo spin echo stacks for fetal weight and ultrasound probe positioning, and multiplanar multi-slice cine balanced steady state free precession gradient echo sequences. ASSESSMENT Primary analyses were performed by a single observer. Weight indexed right ventricular (RV) and left ventricular (LV) volumes and function were calculated from short axis (SAX) stacks. Cardiac dimensions were calculated from the four-chamber and SAX stacks. Single plane LV longitudinal strain was calculated from the four-chamber stack. Interobserver variability was assessed in 10 participants. Cardiac MRI values were compared against available published normative fetal echocardiogram data using z-scores. STATISTICAL TESTS Mean and SDs were calculated for baseline maternal/fetal demographics, cardiac dimensions, volumes, ventricular function, and left ventricular longitudinal strain. Bland-Altman and intraclass correlation coefficient analysis was performed to test interobserver variability. RESULTS The mean gestational age was 34 ± 1.4 weeks. The mean RV and LV end diastolic volumes were 3.1 ± 0.6 mL/kg and 2.4 ± 0.5 mL/kg respectively. The mean RV cardiac output was 198 ± 49 mL/min/kg while the mean LV cardiac output was 173 ± 43 mL/min/kg. DATA CONCLUSION This paper reports initial reference values obtained by cardiac MRI in healthy developing third trimester fetuses. MRI generally resulted in slightly larger indexed values (by z-score) compared to reports in literature using fetal echocardiography. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Prashant K. Minocha
- Division of Cardiology, Heart Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, USA
| | - Erin K. Englund
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Richard M. Friesen
- Division of Cardiology, Heart Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, USA
| | - Takashi Fujiwara
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Sarah A. Smith
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Mariana L. Meyers
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Lorna P. Browne
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
| | - Alex J. Barker
- Department of Radiology, Section of Pediatric Radiology, Children’s Hospital Colorado, University of Colorado Anschutz Medical Campus, USA
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
10
|
Guseh S, Tworetzky W. Transforming congenital heart disease management: Advances in fetal cardiac interventions. Prenat Diagn 2024; 44:733-738. [PMID: 38768017 DOI: 10.1002/pd.6592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
This review addresses the transformative advancements in fetal cardiac interventions (FCI) for congenital heart diseases (CHD), with a particular focus on aortic stenosis with evolving hypoplastic left heart syndrome, pulmonary atresia with an intact ventricular septum, and HLHS with an intact atrial septum (HLHS-IAS). We outline the specific FCI techniques employed, the refined criteria for selecting appropriate fetal and maternal candidates, and the promising yet varied outcomes associated with these procedures. Procedural strategies and clinical decision-making are examined as we take into account the fetal pathophysiology and the benefits and risks of early intervention. We highlight the role of multidisciplinary teams in improving technical success and managing immediate procedural complications, which have led to significant improvements in procedural outcomes. Additionally, the review discusses the long-term outcomes, challenges, and future research directions in FCI, emphasizing the necessity for continuous innovation and collaboration across specialties to advance the management of CHD. The integration of new technologies and research findings holds the promise of further enhancing FCI success rates and patient outcomes.
Collapse
Affiliation(s)
- Stephanie Guseh
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne Tworetzky
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Renik-Jankowska W, Buczyńska A, Sidorkiewicz I, Kosiński P, Zbucka-Krętowska M. Exploring new perspectives on congenital diaphragmatic hernia: A comprehensive review. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167105. [PMID: 38428682 DOI: 10.1016/j.bbadis.2024.167105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Congenital diaphragmatic hernia (CDH) represents a developmental anomaly that profoundly impacts the embryonic development of both the respiratory and cardiovascular systems. Understanding the influences of developmental defects, their origins, and clinical consequences is of paramount importance for further research and the advancement of therapeutic strategies for this condition. In recent years, groundbreaking studies in the fields of metabolomics and genomics have significantly expanded our knowledge regarding the pathogenic mechanisms of CDH. These investigations introduce novel diagnostic and therapeutic avenues. CDH implies a scarcity of available information within this domain. Consequently, a comprehensive literature review has been undertaken to synthesize existing data, providing invaluable insights into this rare disease. Improved comprehension of the molecular underpinnings of CDH has the potential to refine diagnostic precision and therapeutic interventions, thus potentially enhancing clinical outcomes for CDH patients. The identification of potential biomarkers assumes paramount significance for early disease detection and risk assessment in CDH, facilitating prompt recognition and the implementation of appropriate interventions. The process of translating research findings into clinical practice is significantly facilitated by an exhaustive literature review. It serves as a pivotal step, enabling the integration of novel, more effective diagnostic and therapeutic modalities into the management of CDH patients.
Collapse
Affiliation(s)
- Weronika Renik-Jankowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Iwona Sidorkiewicz
- Clinical Research Support Centre, Medical University of Bialystok, ul. M. Skłodowskiej-Curie 24a, 15-276 Bialystok, Poland.
| | - Przemysław Kosiński
- Department of Obstetrics, Perinatology, and Gynecology, Medical University of Warsaw, Żwirki i Wigury 63A, 02-091 Warszawa, Poland.
| | - Monika Zbucka-Krętowska
- Department of Gynecological Endocrinology and Adolescent Gynecology, Medical University of Bialystok, M. Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| |
Collapse
|
12
|
Vollbrecht TM, Bissell MM, Kording F, Geipel A, Isaak A, Strizek BS, Hart C, Barker AJ, Luetkens JA. Fetal Cardiac MRI Using Doppler US Gating: Emerging Technology and Clinical Implications. Radiol Cardiothorac Imaging 2024; 6:e230182. [PMID: 38602469 PMCID: PMC11056758 DOI: 10.1148/ryct.230182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
Fetal cardiac MRI using Doppler US gating is an emerging technique to support prenatal diagnosis of congenital heart disease and other cardiovascular abnormalities. Analogous to postnatal electrocardiographically gated cardiac MRI, this technique enables directly gated MRI of the fetal heart throughout the cardiac cycle, allowing for immediate data reconstruction and review of image quality. This review outlines the technical principles and challenges of cardiac MRI with Doppler US gating, such as loss of gating signal due to fetal movement. A practical workflow of patient preparation for the use of Doppler US-gated fetal cardiac MRI in clinical routine is provided. Currently applied MRI sequences (ie, cine or four-dimensional flow imaging), with special consideration of technical adaptations to the fetal heart, are summarized. The authors provide a literature review on the clinical benefits of Doppler US-gated fetal cardiac MRI for gaining additional diagnostic information on cardiovascular malformations and fetal hemodynamics. Finally, future perspectives of Doppler US-gated fetal cardiac MRI and further technical developments to reduce acquisition times and eliminate sources of artifacts are discussed. Keywords: MR Fetal, Ultrasound Doppler, Cardiac, Heart, Congenital, Obstetrics, Fetus Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Thomas M. Vollbrecht
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Malenka M. Bissell
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Fabian Kording
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Annegret Geipel
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alexander Isaak
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Brigitte S. Strizek
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Christopher Hart
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Alex J. Barker
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| | - Julian A. Luetkens
- From the Department of Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (T.M.V., A.I.,
C.H., J.A.L.); Quantitative Imaging Laboratory Bonn (QILaB), University Hospital
Bonn, Bonn, Germany (T.M.V., A.I., C.H., J.A.L.); Department of Biomedical
Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine,
University of Leeds, Leeds, United Kingdom (M.M.B.); Northh Medical, Hamburg,
Germany (F.K.); Departments of Obstetrics and Prenatal Medicine (A.G., B.S.S.)
and Pediatric Cardiology (C.H.), University Hospital Bonn, Bonn, Germany;
Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora,
Colo (A.J.B.); Department of Pediatric Radiology, Children’s Hospital
Colorado, Aurora, Colo (A.J.B.)
| |
Collapse
|
13
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Sprinkart AM, Isaak A, Attenberger U, Pieper CC, Kuetting D, Geipel A, Strizek B, Luetkens JA. Deep learning denoising reconstruction for improved image quality in fetal cardiac cine MRI. Front Cardiovasc Med 2024; 11:1323443. [PMID: 38410246 PMCID: PMC10894983 DOI: 10.3389/fcvm.2024.1323443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
Purpose This study aims to evaluate deep learning (DL) denoising reconstructions for image quality improvement of Doppler ultrasound (DUS)-gated fetal cardiac MRI in congenital heart disease (CHD). Methods Twenty-five fetuses with CHD (mean gestational age: 35 ± 1 weeks) underwent fetal cardiac MRI at 3T. Cine imaging was acquired using a balanced steady-state free precession (bSSFP) sequence with Doppler ultrasound gating. Images were reconstructed using both compressed sensing (bSSFP CS) and a pre-trained convolutional neural network trained for DL denoising (bSSFP DL). Images were compared qualitatively based on a 5-point Likert scale (from 1 = non-diagnostic to 5 = excellent) and quantitatively by calculating the apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (aCNR). Diagnostic confidence was assessed for the atria, ventricles, foramen ovale, valves, great vessels, aortic arch, and pulmonary veins. Results Fetal cardiac cine MRI was successful in 23 fetuses (92%), with two studies excluded due to extensive fetal motion. The image quality of bSSFP DL cine reconstructions was rated superior to standard bSSFP CS cine images in terms of contrast [3 (interquartile range: 2-4) vs. 5 (4-5), P < 0.001] and endocardial edge definition [3 (2-4) vs. 4 (4-5), P < 0.001], while the extent of artifacts was found to be comparable [4 (3-4.75) vs. 4 (3-4), P = 0.40]. bSSFP DL images had higher aSNR and aCNR compared with the bSSFP CS images (aSNR: 13.4 ± 6.9 vs. 8.3 ± 3.6, P < 0.001; aCNR: 26.6 ± 15.8 vs. 14.4 ± 6.8, P < 0.001). Diagnostic confidence of the bSSFP DL images was superior for the evaluation of cardiovascular structures (e.g., atria and ventricles: P = 0.003). Conclusion DL image denoising provides superior quality for DUS-gated fetal cardiac cine imaging of CHD compared to standard CS image reconstruction.
Collapse
Affiliation(s)
- Thomas M Vollbrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
- Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, PD Clinical Science, Hamburg, Germany
| | | | - Alois M Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| | - Annegret Geipel
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Lab Bonn (QILaB), Bonn, Germany
| |
Collapse
|
14
|
Goolaub DS, Macgowan CK. Reducing clustering of readouts in non-Cartesian cine magnetic resonance imaging. J Cardiovasc Magn Reson 2024; 26:101003. [PMID: 38290615 PMCID: PMC11211237 DOI: 10.1016/j.jocmr.2024.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Non-Cartesian magnetic resonance imaging trajectories at golden angle increments have the advantage of allowing motion correction and gating using intermediate real-time reconstructions. However, when the acquired data are cardiac binned for cine imaging, trajectories can cluster together at certain heart rates (HR) causing image artifacts. Here, we demonstrate an approach to reduce clustering by inserting additional angular increments within the trajectory, and optimizing them while still allowing for intermediate reconstructions. METHODS Three acquisition models were simulated under constant and variable HR: golden angle (Mtrd), random additional angles (Mrnd), and optimized additional angles (Mopt). The standard deviations of trajectory angular differences (STAD) were compared through their interquartile ranges (IQR) and the Kolmogorov-Smirnov test (significance level: p = 0.05). Agreement between an image reconstructed with uniform sampling and images from Mtrd, Mrnd, and Mopt was analyzed using the structural similarity index measure (SSIM). Mtrd and Mopt were compared in three adults at high, low, and no HR variability. RESULTS STADs from Mtrd were significantly different (p < 0.05) from Mopt and Mrnd. STAD (IQR × 10-2 rad) showed that Mopt (0.5) and Mrnd (0.5) reduced clustering relative to Mtrd (1.9) at constant HR. For variable HR, Mopt (0.5) and Mrnd (0.5) outperformed Mtrd (0.9). The SSIM (IQR) showed that Mopt (0.011) produced the best image quality, followed by Mrnd (0.014), and Mtrd (0.030). Mopt outperformed Mtrd at reduced HR variability in in-vivo studies. At high HR variability, both models performed well. CONCLUSION This approach reduces clustering in k-space and improves image quality.
Collapse
Affiliation(s)
- Datta Singh Goolaub
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada.
| | - Christopher K Macgowan
- Division of Translational Medicine, The Hospital for Sick Children, 686 Bay St., Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, 101 College St Suite 15-701, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
15
|
Hussain NM, O'Halloran M, McDermott B, Elahi MA. Fetal monitoring technologies for the detection of intrapartum hypoxia - challenges and opportunities. Biomed Phys Eng Express 2024; 10:022002. [PMID: 38118183 DOI: 10.1088/2057-1976/ad17a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 12/20/2023] [Indexed: 12/22/2023]
Abstract
Intrapartum fetal hypoxia is related to long-term morbidity and mortality of the fetus and the mother. Fetal surveillance is extremely important to minimize the adverse outcomes arising from fetal hypoxia during labour. Several methods have been used in current clinical practice to monitor fetal well-being. For instance, biophysical technologies including cardiotocography, ST-analysis adjunct to cardiotocography, and Doppler ultrasound are used for intrapartum fetal monitoring. However, these technologies result in a high false-positive rate and increased obstetric interventions during labour. Alternatively, biochemical-based technologies including fetal scalp blood sampling and fetal pulse oximetry are used to identify metabolic acidosis and oxygen deprivation resulting from fetal hypoxia. These technologies neither improve clinical outcomes nor reduce unnecessary interventions during labour. Also, there is a need to link the physiological changes during fetal hypoxia to fetal monitoring technologies. The objective of this article is to assess the clinical background of fetal hypoxia and to review existing monitoring technologies for the detection and monitoring of fetal hypoxia. A comprehensive review has been made to predict fetal hypoxia using computational and machine-learning algorithms. The detection of more specific biomarkers or new sensing technologies is also reviewed which may help in the enhancement of the reliability of continuous fetal monitoring and may result in the accurate detection of intrapartum fetal hypoxia.
Collapse
Affiliation(s)
- Nadia Muhammad Hussain
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Martin O'Halloran
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| | - Barry McDermott
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
- College of Medicine, Nursing & Health Sciences, University of Galway, Ireland
| | - Muhammad Adnan Elahi
- Discipline of Electrical & Electronic Engineering, University of Galway, Ireland
- Translational Medical Device Lab, Lambe Institute for Translational Research, University Hospital Galway, Ireland
| |
Collapse
|
16
|
Shima T, Kinjo T, Park S, Sonoda M. Perinatal clinical course of Vici syndrome associated with novel EPG5 variants: unique cardiac changes and difficulty with foetal diagnosis. BMJ Case Rep 2024; 17:e255847. [PMID: 38182173 PMCID: PMC10773411 DOI: 10.1136/bcr-2023-255847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
Vici syndrome is a genetic disorder involving autophagy dysfunction caused by biallelic pathogenic variants in ectopic P-granules 5 autophagy tethering factor (EPG5). We report the perinatal clinical course of a neonate with Vici syndrome with a unique cardiac presentation. Foetal ultrasonography (US) detected right ventricular hypertrophy, hypoplastic left ventricle and narrowing of the foramen ovale, which were alleviated after birth. Agenesis of the corpus callosum and cerebellar hypoplasia were missed antenatally. After delivery, the patient was clinically diagnosed with Vici syndrome and two novel pathogenic mutations were detected in EPG5 The T-cell receptor repertoire was selectively skewed in the Vβ2 family. Immunological prophylaxis and tube feeding were introduced. Early diagnosis helps parents accept their child's prognosis and decide on a care plan. However, US has limited potential to detect clinical phenotypes associated with Vici syndrome. Foetal MRI may detect the characteristic abnormalities and contribute to antenatal diagnosis.
Collapse
Affiliation(s)
- Takashi Shima
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Tadamune Kinjo
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Sungyeon Park
- Department of Hematology, Infection, and Immunology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| | - Motoshi Sonoda
- Neonatology, Fukuoka Children's Hospital, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Science, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
17
|
van Amerom JFP, Goolaub DS, Schrauben EM, Sun L, Macgowan CK, Seed M. Fetal cardiovascular blood flow MRI: techniques and applications. Br J Radiol 2023; 96:20211096. [PMID: 35687661 PMCID: PMC10321246 DOI: 10.1259/bjr.20211096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/05/2022] Open
Abstract
Fetal cardiac MRI is challenging due to fetal and maternal movements as well as the need for a reliable cardiac gating signal and high spatiotemporal resolution. Ongoing research and recent technical developments to address these challenges show the potential of MRI as an adjunct to ultrasound for the assessment of the fetal heart and great vessels. MRI measurements of blood flow have enabled the assessment of normal fetal circulation as well as conditions with disrupted circulations, such as congenital heart disease, along with associated organ underdevelopment and hemodynamic instability. This review provides details of the techniques used in fetal cardiovascular blood flow MRI, including single slice and volumetric imaging sequences, post-processing and analysis, along with a summary of applications in human studies and animal models.
Collapse
Affiliation(s)
- Joshua FP van Amerom
- Division of Translational Medicine, SickKids Research Institute, Toronto, Canada
| | | | - Eric M Schrauben
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | | | | | | |
Collapse
|
18
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
19
|
Kühle H, Cho SKS, Barber N, Goolaub DS, Darby JRT, Morrison JL, Haller C, Sun L, Seed M. Advanced imaging of fetal cardiac function. Front Cardiovasc Med 2023; 10:1206138. [PMID: 37288263 PMCID: PMC10242056 DOI: 10.3389/fcvm.2023.1206138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Over recent decades, a variety of advanced imaging techniques for assessing cardiovascular physiology and cardiac function in adults and children have been applied in the fetus. In many cases, technical development has been required to allow feasibility in the fetus, while an appreciation of the unique physiology of the fetal circulation is required for proper interpretation of the findings. This review will focus on recent advances in fetal echocardiography and cardiovascular magnetic resonance (CMR), providing examples of their application in research and clinical settings. We will also consider future directions for these technologies, including their ongoing technical development and potential clinical value.
Collapse
Affiliation(s)
- Henriette Kühle
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Cardiac and Thoracic Surgery, University Hospital Magdeburg, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Steven K. S. Cho
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Nathaniel Barber
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Datta Singh Goolaub
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
| | - Janna L. Morrison
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Early Origins of Adult Health Research Group, University of South Australia, Adelaide, SA, Australia
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Christoph Haller
- Division of Cardiac Surgery, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Liqun Sun
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Moscatelli S, Leo I, Lisignoli V, Boyle S, Bucciarelli-Ducci C, Secinaro A, Montanaro C. Cardiovascular Magnetic Resonance from Fetal to Adult Life-Indications and Challenges: A State-of-the-Art Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10050763. [PMID: 37238311 DOI: 10.3390/children10050763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Cardiovascular magnetic resonance (CMR) imaging offers a comprehensive, non-invasive, and radiation-free imaging modality, which provides a highly accurate and reproducible assessment of cardiac morphology and functions across a wide spectrum of cardiac conditions spanning from fetal to adult life. It minimises risks to the patient, particularly the risks associated with exposure to ionising radiation and the risk of complications from more invasive haemodynamic assessments. CMR utilises high spatial resolution and provides a detailed assessment of intracardiac and extracardiac anatomy, ventricular and valvular function, and flow haemodynamic and tissue characterisation, which aid in the diagnosis, and, hence, with the management of patients with cardiac disease. This article aims to discuss the role of CMR and the indications for its use throughout the different stages of life, from fetal to adult life.
Collapse
Affiliation(s)
- Sara Moscatelli
- Inherited Cardiovascular Diseases, Great Ormond Street, Children NHS Foundation Trust, London WC1N 3JH, UK
- Paediatric Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Veronica Lisignoli
- Department of Cardiac Surgery, Cardiology, Heart and Lung Transplantation, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
| | - Siobhan Boyle
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Cardiology Department, Logan Hospital, Loganlea Rd, Meadowbrook, QLD 4131, Australia
| | - Chiara Bucciarelli-Ducci
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College University, London SW7 2BX, UK
| | - Aurelio Secinaro
- Radiology Department, Bambino Gesù Children's Hospital IRCCS, 00165 Rome, Italy
| | - Claudia Montanaro
- CMR Unit, Cardiology Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- Adult Congenital Heart Disease Department, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London SW3 5NP, UK
- National Heart and Lung Institute, Imperial Collage London, Dovehouse St, London SW3 6LY, UK
| |
Collapse
|
21
|
Faruk Topaloğlu Ö, Koplay M, Kılınçer A, Örgül G, Sedat Durmaz M. Quantitative measurements and morphological evaluation of fetal cardiovascular structures with fetal cardiac MRI. Eur J Radiol 2023; 163:110828. [PMID: 37059007 DOI: 10.1016/j.ejrad.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Fetal cardiac magnetic resonance imaging (FCMR) can be used as an imaging modality in fetal cardiovascular evaluation as studied in recent years. We aimed to evaluate cardiovascular morphology using FCMR and to observe the development of cardiovascular structures according to gestational age (GA) in pregnant women. METHOD In our prospective study, 120 pregnant women between 19 and 37 weeks of gestation in whom absence of cardiac anomaly could not be excluded by ultrasonography (US) or, who were referred to us for magnetic resonance imaging (MRI) for suspected non-cardiovascular system pathology, were included. According to the axis of the fetal heart, axial, coronal, and sagittal multiplanar steady-state free precession (SSFP) and 'real time' untriggered SSFP sequence, respectively, were obtained. The morphology of the cardiovascular structures and their relationships with each other were evaluated, and their sizes were measured. RESULTS Seven cases (6.3%) contained motion artefacts that did not allow the assessment and measurement of cardiovascular morphology, and three (2.9%) cases with cardiac pathology in the analysed images were excluded from the study. The study included a total of 100 cases. Cardiac chamber diameter, heart diameter, heart length, heart area, thoracic diameter, and thoracic area were measured in all fetuses. The diameters of the aorta ascendens (Aa), aortic isthmus (Ai), aorta descendens (Ad), main pulmonary artery (MPA), ductus arteriosus (DA, superior vena cava (SVC), and inferior vena cava (IVC) were measured in all fetuses. The left pulmonary artery (LPA) was visualised in 89 patients (89%). The right PA (RPA) was visualised in 99 (99%) cases. Four pulmonary veins (PVs) were seen in 49 (49%) cases, three in 33 (33%), and two in 18 (18%). High correlation values were found for all diameter measurements performed with GW. CONCLUSION In cases where US cannot achieve adequate image quality, FCMR can contribute to diagnosis. The very short acquisition time and parallel imaging technique with the SSFP sequence allow for adequate image quality without maternal or fetal sedation.
Collapse
Affiliation(s)
| | - Mustafa Koplay
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Abidin Kılınçer
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Gökçen Örgül
- Department of Obstetrics and Gynecology, Selcuk University, Faculty of Medicine, Konya, Turkey
| | - Mehmet Sedat Durmaz
- Department of Radiology, Selcuk University, Faculty of Medicine, Konya, Turkey
| |
Collapse
|
22
|
Lesieur E, Zaffran S, Chaoui R, Quarello E. Prenatal screening and diagnosis of pulmonary artery anomalies. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:445-457. [PMID: 36178851 DOI: 10.1002/uog.26078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Congenital pulmonary artery anomalies are rare. Their antenatal diagnosis requires good knowledge of fetal cardiac anatomy because their clinical presentation varies depending on the type and severity of the underlying lesion. Screening of these vascular anomalies can be straightforward in some cases because of significant associated consequences that are detected easily on ultrasound, while other anomalies have considerably less obvious features. There may be an associated genetic syndrome. The aim of this review was to define anomalies of the main pulmonary artery and its branches and to propose, through the identification of suspicious findings during routine antenatal heart examination, an optimal screening method for the pulmonary artery pathway. We propose that pulmonary artery anomalies can be classified antenatally into four types of disorder. Herein we describe 14 cases subgrouped accordingly as: anomalies of the pulmonary valvular region, with stenosis or atresia of the valve (n = 4); conotruncal abnormalities (n = 4); anomalies associated with abnormal origin or course of the pulmonary artery (n = 4); and anomalies associated with abnormal growth of the pulmonary artery and its branches (n = 2). We highlight the need to differentiate the three-vessel view from the three-vessel-and-trachea view when assessing a fetus with a congenital pulmonary artery anomaly. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- E Lesieur
- Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, Timone Hospital, Aix-Marseille University, Marseille, France
- UMR 7268 ADES, Aix-Marseille University, CNRS, EFS, Marseille, France
| | - S Zaffran
- Aix-Marseille University, INSERM, MMG, U1251, Marseille, France
| | - R Chaoui
- Center for Prenatal Diagnosis and Human Genetics, Berlin, Germany
| | - E Quarello
- Screening and Diagnosis Unit, Department of Obstetrics and Gynecology, Saint Joseph Hospital, Marseille, France
- IMAGE2 Center, Marseille, France
| |
Collapse
|
23
|
Vollbrecht TM, Hart C, Zhang S, Katemann C, Isaak A, Pieper CC, Kuetting D, Faridi B, Strizek B, Attenberger U, Kipfmueller F, Herberg U, Geipel A, Luetkens JA. Fetal Cardiac Cine MRI with Doppler US Gating in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220129. [PMID: 36860838 PMCID: PMC9969216 DOI: 10.1148/ryct.220129] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/23/2022] [Accepted: 12/16/2022] [Indexed: 02/25/2023]
Abstract
Purpose To apply Doppler US (DUS)-gated fetal cardiac cine MRI in clinical routine and investigate diagnostic performance in complex congenital heart disease (CHD) compared with that of fetal echocardiography. Materials and Methods In this prospective study (May 2021 to March 2022), women with fetuses with CHD underwent fetal echocardiography and DUS-gated fetal cardiac MRI on the same day. For MRI, balanced steady-state free precession cine images were acquired in the axial and optional sagittal and/or coronal orientations. Overall image quality was assessed on a four-point Likert scale (from 1 = nondiagnostic to 4 = good image quality). The presence of abnormalities in 20 fetal cardiovascular features was independently assessed by using both modalities. The reference standard was postnatal examination results. Differences in sensitivities and specificities were determined by using a random-effects model. Results The study included 23 participants (mean age, 32 years ± 5 [SD]; mean gestational age, 36 weeks ± 1). Fetal cardiac MRI was completed in all participants. The median overall image quality of DUS-gated cine images was 3 (IQR, 2.5-4). In 21 of 23 participants (91%), underlying CHD was correctly assessed by using fetal cardiac MRI. In one case, the correct diagnosis was made by using MRI only (situs inversus and congenitally corrected transposition of the great arteries). Sensitivities (91.8% [95% CI: 85.7, 95.1] vs 93.6% [95% CI: 88.8, 96.2]; P = .53) and specificities (99.9% [95% CI: 99.2, 100] vs 99.9% [95% CI: 99.5, 100]; P > .99) for the detection of abnormal cardiovascular features were comparable between MRI and echocardiography, respectively. Conclusion Using DUS-gated fetal cine cardiac MRI resulted in performance comparable with that of using fetal echocardiography for diagnosing complex fetal CHD.Keywords: Pediatrics, MR-Fetal (Fetal MRI), Cardiac, Heart, Congenital, Fetal Imaging, Cardiac MRI, Prenatal, Congenital Heart DiseaseClinical trial registration no. NCT05066399 Supplemental material is available for this article. © RSNA, 2023See also the commentary by Biko and Fogel in this issue.
Collapse
|
24
|
K Rahmath MR, Durward A. Pulmonary artery sling: An overview. Pediatr Pulmonol 2023; 58:1299-1309. [PMID: 36790334 DOI: 10.1002/ppul.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Pulmonary artery sling is a rare childhood vascular tracheobronchial compression syndrome that is frequently associated with tracheal stenosis. Consequently, neonates or infants may present with critical airway obstruction if there is long segment airway narrowing and complete rings. Rapid diagnosis of this cardiac vascular malformation and evaluation of the extent and severity of airway involvement is essential to plan surgery, typically a slide tracheoplasty to relieve critical airway obstruction. Long term outcome can be excellent following surgical repair of the stenosed airway and reimplantation of the left pulmonary artery. In this review we focus on the embryology, diagnostic workup, airway investigations and management for this rare but challenging congenital condition.
Collapse
Affiliation(s)
| | - Andrew Durward
- Pediatric cardiac intensive care, Sidra hospital, Doha, Qatar
| |
Collapse
|
25
|
Piek M, Ryd D, Töger J, Testud F, Hedström E, Aletras AH. Fetal 3D cardiovascular cine image acquisition using radial sampling and compressed sensing. Magn Reson Med 2023; 89:594-604. [PMID: 36156292 PMCID: PMC10087603 DOI: 10.1002/mrm.29467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/09/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE To explore a fetal 3D cardiovascular cine acquisition using a radial image acquisition and compressed-sensing reconstruction and compare image quality and scan time with conventional multislice 2D imaging. METHODS Volumetric fetal cardiac data were acquired in 26 volunteers using a radial 3D balanced SSFP pulse sequence. Cardiac gating was performed using a Doppler ultrasound device. Images were reconstructed using a parallel-imaging and compressed-sensing algorithm. Multiplanar reformatting to standard cardiac views was performed before image analysis. Clinical 2D images were used for comparison. Qualitative and quantitative image evaluation were performed by two experienced observers (scale: 1-4). Volumes, mass, and function were assessed. RESULTS Average scan time for the 3D imaging was 6 min, including one localizer. A 2D imaging stack covering the entire heart including localizer sequences took at least 6.5 min, depending on planning complexity. The 3D acquisition was successful in 7 of 26 subjects (27%). Overall image contrast and perceived resolution were lower in the 3D images. Nonetheless, the 3D images had, on average, a moderate cardiac diagnostic quality (median [range]: 3 [1-4]). Standard clinical 2D acquisitions had a high cardiac diagnostic quality (median [range]: 4 [3, 4]). Cardiac measurements were not different between 2D and 3D images (all p > 0.16). CONCLUSION The presented free-breathing whole-heart fetal 3D radial cine MRI acquisition and reconstruction method enables retrospective visualization of all cardiac views while keeping examination times short. This proof-of-concept work produced images with diagnostic quality, while at the same time reducing the planning complexity to a single localizer.
Collapse
Affiliation(s)
- Marjolein Piek
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johannes Töger
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | | | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anthony H Aletras
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden.,Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Biko DM, Fogel MA. Fetal Cardiac MRI: Doppler US-gated Cine Imaging in Complex Congenital Heart Disease. Radiol Cardiothorac Imaging 2023; 5:e220314. [PMID: 36860832 PMCID: PMC9969212 DOI: 10.1148/ryct.220314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Affiliation(s)
- David M. Biko
- From the Department of Radiology (D.M.B.) and Division of Cardiology
(M.A.F.), The Children’s Hospital of Philadelphia & University of
Pennsylvania, 34th and Civic Center Blvd, Philadelphia, PA 19104
| | - Mark A. Fogel
- From the Department of Radiology (D.M.B.) and Division of Cardiology
(M.A.F.), The Children’s Hospital of Philadelphia & University of
Pennsylvania, 34th and Civic Center Blvd, Philadelphia, PA 19104
| |
Collapse
|
27
|
Beer M, Schönnagel B, Herrmann J, Klömpken S, Schaal M, Kaestner M, Apitz C, Brunner H. Non-invasive pediatric cardiac imaging-current status and further perspectives. Mol Cell Pediatr 2022; 9:21. [PMID: 36575291 PMCID: PMC9794482 DOI: 10.1186/s40348-022-00153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Non-invasive cardiac imaging has a growing role in diagnosis, differential diagnosis, therapy planning, and follow-up in children and adolescents with congenital and acquired cardiac diseases. This review is based on a systematic analysis of international peer-reviewed articles and additionally presents own clinical experiences. It provides an overview of technical advances, emerging clinical applications, and the aspect of artificial intelligence. MAIN BODY The main imaging modalities are echocardiography, CT, and MRI. For echocardiography, strain imaging allows a novel non-invasive assessment of tissue integrity, 3D imaging rapid holistic overviews of anatomy. Fast cardiac CT imaging new techniques-especially for coronary assessment as the main clinical indication-have significantly improved spatial and temporal resolution in adjunct with a major reduction in ionizing dose. For cardiac MRI, assessment of tissue integrity even without contrast agent application by mapping sequences is a major technical breakthrough. Fetal cardiac MRI is an emerging technology, which allows structural and functional assessment of fetal hearts including even 4D flow analyses. Last but not least, artificial intelligence will play an important role for improvements of data acquisition and interpretation in the near future. CONCLUSION Non-invasive cardiac imaging plays an integral part in the workup of children with heart disease. In recent years, its main application congenital heart disease has been widened for acquired cardiac diseases.
Collapse
Affiliation(s)
- Meinrad Beer
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Björn Schönnagel
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Jochen Herrmann
- grid.13648.380000 0001 2180 3484Division of Pediatric Radiology, Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Steffen Klömpken
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Matthias Schaal
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Michael Kaestner
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Christian Apitz
- grid.410712.10000 0004 0473 882XDivision of Pediatric Cardiology, Department of Pediatrics and Adolescent Medicine, University Hospital Ulm, Ulm, Germany
| | - Horst Brunner
- grid.410712.10000 0004 0473 882XDepartment of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
28
|
Uus AU, van Poppel MPM, Steinweg JK, Grigorescu I, Ramirez Gilliland P, Roberts TA, Egloff Collado A, Rutherford MA, Hajnal JV, Lloyd DFA, Pushparajah K, Deprez M. 3D black blood cardiovascular magnetic resonance atlases of congenital aortic arch anomalies and the normal fetal heart: application to automated multi-label segmentation. J Cardiovasc Magn Reson 2022; 24:71. [PMID: 36517850 PMCID: PMC9753334 DOI: 10.1186/s12968-022-00902-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Image-domain motion correction of black-blood contrast T2-weighted fetal cardiovascular magnetic resonance imaging (CMR) using slice-to-volume registration (SVR) provides high-resolution three-dimensional (3D) images of the fetal heart providing excellent 3D visualisation of vascular anomalies [1]. However, 3D segmentation of these datasets, important for both clinical reporting and the application of advanced analysis techniques is currently a time-consuming process requiring manual input with potential for inter-user variability. METHODS In this work, we present novel 3D fetal CMR population-averaged atlases of normal and abnormal fetal cardiovascular anatomy. The atlases are created using motion-corrected 3D reconstructed volumes of 86 third trimester fetuses (gestational age range 29-34 weeks) including: 28 healthy controls, 20 cases with postnatally confirmed neonatal coarctation of the aorta (CoA) and 38 vascular rings (21 right aortic arch (RAA), 17 double aortic arch (DAA)). We used only high image quality datasets with isolated anomalies and without any other deviations in the cardiovascular anatomy.In addition, we implemented and evaluated atlas-guided registration and deep learning (UNETR) methods for automated 3D multi-label segmentation of fetal cardiac vessels. We used images from CoA, RAA and DAA cohorts including: 42 cases for training (14 from each cohort), 3 for validation and 6 for testing. In addition, the potential limitations of the network were investigated on unseen datasets including 3 early gestational age (22 weeks) and 3 low SNR cases. RESULTS We created four atlases representing the average anatomy of the normal fetal heart, postnatally confirmed neonatal CoA, RAA and DAA. Visual inspection was undertaken to verify expected anatomy per subgroup. The results of the multi-label cardiac vessel UNETR segmentation showed 100[Formula: see text] per-vessel detection rate for both normal and abnormal aortic arch anatomy. CONCLUSIONS This work introduces the first set of 3D black-blood T2-weighted CMR atlases of normal and abnormal fetal cardiovascular anatomy including detailed segmentation of the major cardiovascular structures. Additionally, we demonstrated the general feasibility of using deep learning for multi-label vessel segmentation of 3D fetal CMR images.
Collapse
Affiliation(s)
- Alena U Uus
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Milou P M van Poppel
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Johannes K Steinweg
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - Irina Grigorescu
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | | | - Thomas A Roberts
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | - Joseph V Hajnal
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Centre for the Developing Brain, King's College London, London, UK
| | - David F A Lloyd
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Kuberan Pushparajah
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, London, UK
| | - Maria Deprez
- School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
29
|
Grgat D, Dilber D, Hrabak Paar M. Common benign primary pediatric cardiac tumors: a primer for radiologists. Jpn J Radiol 2022; 41:477-487. [PMID: 36495370 DOI: 10.1007/s11604-022-01371-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Cardiac tumors are neoplasms arising from or located in the heart or the pericardium. Although rare, primary cardiac tumors in children require an accurate and timely diagnosis. Most pediatric primary cardiac tumors are benign (around 90%). Echocardiography is the first imaging modality used due to its availability, noninvasiveness, inexpensiveness, and absence of ionizing radiation. Computed tomography (CT) and magnetic resonance imaging (MRI) offer better soft tissue visualization as well as better visualization of extracardiac structures. A great advantage of MRI is the possibility of measuring cardiac function and blood flow, which can be important for obstructing cardiac tumors. In this article, we will offer a brief review of clinical, echocardiographic, CT, and MRI features of cardiac rhabdomyomas, fibromas, teratomas, and lipomas providing their differential diagnosis.
Collapse
Affiliation(s)
- Dora Grgat
- Institute for Emergency Medicine of Zagreb County, Velika Gorica, Croatia
| | - Daniel Dilber
- School of Medicine, Department of Pediatrics, University of Zagreb, University Hospital Center Zagreb, Zagreb, Croatia
| | - Maja Hrabak Paar
- School of Medicine, Department of Diagnostic and Interventional Radiology, University of Zagreb, University Hospital Center Zagreb, Kišpatićeva 12, 10000, Zagreb, Croatia.
| |
Collapse
|
30
|
Costantini P, Perone F, Siani A, Groenhoff L, Muscogiuri G, Sironi S, Marra P, Carriero S, Pavon AG, Guglielmo M. Multimodality Imaging of the Neglected Valve: Role of Echocardiography, Cardiac Magnetic Resonance and Cardiac Computed Tomography in Pulmonary Stenosis and Regurgitation. J Imaging 2022; 8:278. [PMID: 36286372 PMCID: PMC9605303 DOI: 10.3390/jimaging8100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/25/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pulmonary valve (PV) is the least imaged among the heart valves. However, pulmonary regurgitation (PR) and pulmonary stenosis (PS) can occur in a variety of patients ranging from fetuses, newborns (e.g., tetralogy of Fallot) to adults (e.g., endocarditis, carcinoid syndrome, complications of operated tetralogy of Fallot). Due to their complexity, PR and PS are studied using multimodality imaging to assess their mechanism, severity, and hemodynamic consequences. Multimodality imaging is crucial to plan the correct management and to follow up patients with pulmonary valvulopathy. Echocardiography remains the first line methodology to assess patients with PR and PS, but the information obtained with this technique are often integrated with cardiac magnetic resonance (CMR) and computed tomography (CT). This state-of-the-art review aims to provide an updated overview of the usefulness, strengths, and limits of multimodality imaging in patients with PR and PS.
Collapse
Affiliation(s)
- Pietro Costantini
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Francesco Perone
- Cardiac Rehabilitation Unit, Rehabilitation Clinic “Villa delle Magnolie”, 81020 Castel Morrone, Italy
| | - Agnese Siani
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Léon Groenhoff
- Radiology Department, Ospedale Maggiore della Carità University Hospital, 28100 Novara, Italy
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, Istituto Auxologico Italiano, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), San Luca Hospital, 20149 Milan, Italy
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24129 Bergamo, Italy
| | - Paolo Marra
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24129 Bergamo, Italy
| | - Serena Carriero
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, 20133 Milan, Italy
| | - Anna Giulia Pavon
- Cardiocentro Ticino Institute, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University Medical Center, Utrecht University, 3584CX Utrecht, The Netherlands
| |
Collapse
|
31
|
Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. ROFO-FORTSCHR RONTG 2022; 194:841-851. [PMID: 35905903 DOI: 10.1055/a-1761-3500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) has become a valuable adjunct to ultrasound in the prenatal diagnosis of congenital pathologies of the central nervous system, thorax, and abdomen. Fetal cardiovascular magnetic resonance (CMR) was limited, mainly by the lack of cardiac gating, and has only recently evolved due to technical developments. METHOD A literature search was performed on PubMed, focusing on technical advancements to perform fetal CMR. In total, 20 publications on cardiac gating techniques in the human fetus were analyzed. RESULTS Fetal MRI is a safe imaging method with no developmental impairments found to be associated with in utero exposure to MRI. Fetal CMR is challenging due to general drawbacks (e. g., fetal motion) and specific limitations such as the difficulty to generate a cardiac gating signal to achieve high spatiotemporal resolution. Promising technical advancements include new methods for fetal cardiac gating, based on novel post-processing approaches and an external hardware device, as well as motion compensation and acceleration techniques. CONCLUSION Newly developed direct and indirect gating approaches were successfully applied to achieve high-quality morphologic and functional imaging as well as quantitative assessment of fetal hemodynamics in research settings. In cases when prenatal echocardiography is limited, e. g., by an unfavorable fetal position in utero, or when its results are inconclusive, fetal CMR could potentially serve as a valuable adjunct in the prenatal assessment of congenital cardiovascular malformations. However, sufficient data on the diagnostic performance and clinical benefit of new fetal CMR techniques is still lacking. KEY POINTS · New fetal cardiac gating methods allow high-quality fetal CMR.. · Motion compensation and acceleration techniques allow for improvement of image quality.. · Fetal CMR could potentially serve as an adjunct to fetal echocardiography in the future.. CITATION FORMAT · Knapp J, Tavares de Sousa M, Schönnagel BP. Fetal Cardiovascular MRI - A Systemic Review of the Literature: Challenges, New Technical Developments, and Perspectives. Fortschr Röntgenstr 2022; 194: 841 - 851.
Collapse
Affiliation(s)
- Janine Knapp
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Björn P Schönnagel
- Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Recommendations for cardiovascular magnetic resonance and computed tomography in congenital heart disease: a consensus paper from the CMR/CCT working group of the Italian Society of Pediatric Cardiology (SICP) and the Italian College of Cardiac Radiology endorsed by the Italian Society of Medical and Interventional Radiology (SIRM) Part I. Radiol Med 2022; 127:788-802. [PMID: 35608758 PMCID: PMC9308607 DOI: 10.1007/s11547-022-01490-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular magnetic resonance (CMR) and computed tomography (CCT) are advanced imaging modalities that recently revolutionized the conventional diagnostic approach to congenital heart diseases (CHD), supporting echocardiography and often replacing cardiac catheterization. Nevertheless, correct execution and interpretation require in-depth knowledge of all technical and clinical aspects of CHD, a careful assessment of risks and benefits before each exam, proper imaging protocols to maximize diagnostic information, minimizing harm. This position paper, written by experts from the Working Group of the Italian Society of Pediatric Cardiology and from the Italian College of Cardiac Radiology of the Italian Society of Medical and Interventional Radiology, is intended as a practical guide for applying CCT and CMR in children and adults with CHD, wishing to support Radiologists, Pediatricians, Cardiologists and Cardiac Surgeons in the multimodality diagnostic approach to these patients. The first part provides a review of the most relevant literature in the field, describes each modality's advantage and drawback, making considerations on the main applications, image quality, and safety issues. The second part focuses on clinical indications and appropriateness criteria for CMR and CCT, considering the level of CHD complexity, the clinical and logistic setting and the operator expertise.
Collapse
|
33
|
Nayak KS, Lim Y, Campbell-Washburn AE, Steeden J. Real-Time Magnetic Resonance Imaging. J Magn Reson Imaging 2022; 55:81-99. [PMID: 33295674 PMCID: PMC8435094 DOI: 10.1002/jmri.27411] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023] Open
Abstract
Real-time magnetic resonance imaging (RT-MRI) allows for imaging dynamic processes as they occur, without relying on any repetition or synchronization. This is made possible by modern MRI technology such as fast-switching gradients and parallel imaging. It is compatible with many (but not all) MRI sequences, including spoiled gradient echo, balanced steady-state free precession, and single-shot rapid acquisition with relaxation enhancement. RT-MRI has earned an important role in both diagnostic imaging and image guidance of invasive procedures. Its unique diagnostic value is prominent in areas of the body that undergo substantial and often irregular motion, such as the heart, gastrointestinal system, upper airway vocal tract, and joints. Its value in interventional procedure guidance is prominent for procedures that require multiple forms of soft-tissue contrast, as well as flow information. In this review, we discuss the history of RT-MRI, fundamental tradeoffs, enabling technology, established applications, and current trends. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Krishna S. Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA,Address reprint requests to: K.S.N., 3740 McClintock Ave, EEB 400C, Los Angeles, CA 90089-2564, USA.
| | - Yongwan Lim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Adrienne E. Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jennifer Steeden
- Institute of Cardiovascular Science, Centre for Cardiovascular Imaging, University College London, London, UK
| |
Collapse
|
34
|
Patel N, Massolo AC, Kraemer US, Kipfmueller F. The heart in congenital diaphragmatic hernia: Knowns, unknowns, and future priorities. Front Pediatr 2022; 10:890422. [PMID: 36052357 PMCID: PMC9424541 DOI: 10.3389/fped.2022.890422] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
There is growing recognition that the heart is a key contributor to the pathophysiology of congenital diaphragmatic hernia (CDH), in conjunction with developmental abnormalities of the lung and pulmonary vasculature. Investigations to date have demonstrated altered fetal cardiac morphology, notably relative hypoplasia of the fetal left heart, as well as early postnatal right and left ventricular dysfunction which appears to be independently associated with adverse outcomes. However, many more unknowns remain, not least an understanding of the genetic and cellular basis for cardiac dysplasia and dysfunction in CDH, the relationship between fetal, postnatal and long-term cardiac function, and the impact on other parts of the body especially the developing brain. Consensus on how to measure and classify cardiac function and pulmonary hypertension in CDH is also required, potentially using both non-invasive imaging and biomarkers. This may allow routine assessment of the relative contribution of cardiac dysfunction to individual patient pathophysiological phenotype and enable better, individualized therapeutic strategies incorporating targeted use of fetal therapies, cardiac pharmacotherapies, and extra-corporeal membrane oxygenation (ECMO). Collaborative, multi-model approaches are now required to explore these unknowns and fully appreciate the role of the heart in CDH.
Collapse
Affiliation(s)
- Neil Patel
- Department of Neonatology, Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Ulrike S Kraemer
- Intensive Care Unit, Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Duan J, Wang JC, Li HX, Guo L, Ma LK. 1.5T magnetic resonance imaging in evaluating fetal head and abdomen malformations: a preliminary study. Am J Transl Res 2021; 13:9063-9069. [PMID: 34540019 PMCID: PMC8430194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Magnetic resonance imaging (MRI) is increasingly used in the diagnosis of fetal malformations. The purpose of this study was to determine the diagnostic value of 1.5T MRI in fetal head and abdominal malformations. METHODS A total of 132 pregnant women admitted to Shijiazhuang NO.4 Hospital were included and divided into a control group (CG; n=63) and a research group (RG; n=69) according to different prenatal examination methods. Patients in CG were given ultrasound, while those in RG underwent 1.5T MRI examination. The image quality of 1.5T MRI in different amniotic fluid, different gestational weeks with normal amniotic fluid and different fetal positions with normal amniotic fluid were compared. The detection rate and diagnostic value of the two methods were also compared, with the histological and pathological results as the gold standard. RESULTS The image quality of 1.5T MRI was not affected by different gestational age with normal amniotic fluid, different fetal positions with normal amniotic fluid, or different amniotic fluid, indicating the feasibility of 1.5T MRI in fetal malformation examination. Histopathological diagnosis revealed 39 cases of head and abdominal deformities in CG and 50 cases in RG. Based on the results of ultrasound examination, there were 32 cases of deformities and 31 of non-deformities in CG. In RG, 1.5T MRI revealed 48 malformations and 21 non-malformations. The sensitivity, specificity, accuracy, missed diagnosis and misdiagnosis rates were 82.05%, 75.00%, 79.37%, 17.95% and 25.00% respectively in CG where ultrasonography was performed, and were 96.00%, 94.74%, 95.65%, 4.00% and 5.26% respectively in RG where 1.5T MRI was performed. The data identified significant differences in sensitivity, accuracy and missed diagnosis between RG and CG. CONCLUSION 1.5T MRI is effective in diagnosing fetal head and abdominal malformations.
Collapse
Affiliation(s)
- Jun Duan
- Radiology Department, Shijiazhuang NO. 4 Hospital (The Obstetrics and Gynecology Hospital Affiliated to Hebei Medical University)Shijiazhuang 050000, Hebei, China
| | - Jin-Cai Wang
- Radiology Department, Shijiazhuang NO. 4 Hospital (The Obstetrics and Gynecology Hospital Affiliated to Hebei Medical University)Shijiazhuang 050000, Hebei, China
| | - Hui-Xian Li
- Thoracic Surgery, Shijiazhuang People’s HospitalShijiazhuang 050000, Hebei, China
| | - Ling Guo
- Radiology Department, Shijiazhuang NO. 4 Hospital (The Obstetrics and Gynecology Hospital Affiliated to Hebei Medical University)Shijiazhuang 050000, Hebei, China
| | - Li-Ke Ma
- Internal Medicine-Cardiovascular Department, Shijiazhuang No. 3 HospitalShijiazhuang 050000, Hebei, China
| |
Collapse
|
36
|
Corno AF. Introduction to the series: pre-natal diagnosis in congenital heart defects. Transl Pediatr 2021; 10:2144-2147. [PMID: 34584886 PMCID: PMC8429873 DOI: 10.21037/tp-20-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 11/06/2022] Open
Affiliation(s)
- Antonio F Corno
- Research Professor, Houston Children's Heart Institute, Memorial Hermann Children's Hospital, University Texas Health, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
37
|
Zhang S, Yuan X, Peng Z, Jian N, Tian M, Feng X, Lin X, Wang X. Normal fetal development of the cervical, thoracic, and lumbar spine: A postmortem study based on magnetic resonance imaging. Prenat Diagn 2021; 41:989-997. [PMID: 34128545 DOI: 10.1002/pd.5984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/19/2021] [Accepted: 05/30/2021] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Before evaluating spinal pathology, it is essential to have knowledge of the normal spinal development at different gestational ages. This study aims to characterize normal spinal growth in human fetuses during the second and third trimesters. METHODS Postmortem 3.0 T magnetic resonance imaging (MRI) was performed on 55 fetuses at 17-42 gestational weeks by using three-dimensional T2-weighted sequences. Morphological changes and quantitative measurements of the fetal spine were assessed. The correlation between centrum ossification center volume (COCV) and gestational age was investigated. RESULTS The cervical, thoracic, and lumbar COCVs showed a positive relationship with gestational age (p < 0.05). No gender differences were found in the volumetric development of the cervical, thoracic, and lumbar centrum ossification centers (COCs). The average volumetric growth rate per COC was larger in the lumbar spine than in the cervical and thoracic spine. The L1-L5 COCVs also showed a linear positive relationship with gestational age. CONSULTS Postmortem 3.0 T MRI clearly demonstrated spinal changes in external contour and internal structure with gestational age. These findings expand our understanding of the early growth pattern of the human spine and could be further used to assess the developmental conditions of the fetal spine.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Medicine, Shandong First Medical University, Jinan, Shandong, China
| | - Xianshun Yuan
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhao Peng
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Jian
- CT Department, Heze Municipal Hospital, Heze, Shandong, China
| | - Mimi Tian
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiang Feng
- MR Scientific Marketing, Diagnosis Imaging, Siemens Healthcare Ltd, Chaoyang, Beijing, China
| | - Xiangtao Lin
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ximing Wang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
38
|
Clarke GD, Li J, Kuo AH, Moody AJ, Nathanielsz PW. Cardiac magnetic resonance imaging: insights into developmental programming and its consequences for aging. J Dev Orig Health Dis 2021; 12:203-219. [PMID: 33349289 PMCID: PMC7987688 DOI: 10.1017/s2040174420001233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVD) are important consequences of adverse perinatal conditions such as fetal hypoxia and maternal malnutrition. Cardiac magnetic resonance imaging (CMR) can produce a wealth of physiological information related to the development of the heart. This review outlines the current state of CMR technologies and describes the physiological biomarkers that can be measured. These phenotypes include impaired ventricular and atrial function, maladaptive ventricular remodeling, and the proliferation of myocardial steatosis and fibrosis. The discussion outlines the applications of CMR to understanding the developmental pathways leading to impaired cardiac function. The use of CMR, both in animal models of developmental programming and in human studies, is described. Specific examples are given in a baboon model of intrauterine growth restriction (IUGR). CMR offers great potential as a tool for understanding the sequence of dysfunctional adaptations of developmental origin that can affect the human cardiovascular system.
Collapse
Affiliation(s)
- G D Clarke
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Li
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A H Kuo
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - A J Moody
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
39
|
Sun L, Lee FT, van Amerom JFP, Freud L, Jaeggi E, Macgowan CK, Seed M. Update on fetal cardiovascular magnetic resonance and utility in congenital heart disease. JOURNAL OF CONGENITAL CARDIOLOGY 2021. [DOI: 10.1186/s40949-021-00059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Congenital heart disease (CHD) is the most common birth defect, affecting approximately eight per thousand newborns. Between one and two neonates per thousand have congenital cardiac lesions that require immediate post-natal treatment to stabilize the circulation, and the management of these patients in particular has been greatly enhanced by prenatal detection. The antenatal diagnosis of CHD has been made possible through the development of fetal echocardiography, which provides excellent visualization of cardiac anatomy and physiology and is widely available. However, late gestational fetal echocardiographic imaging can be hampered by suboptimal sonographic windows, particularly in the setting of oligohydramnios or adverse maternal body habitus.
Main body
Recent advances in fetal cardiovascular magnetic resonance (CMR) technology now provide a feasible alternative that could be helpful when echocardiography is inconclusive or limited. Fetal CMR has also been used to study fetal circulatory physiology in human fetuses with CHD, providing new insights into how these common anatomical abnormalities impact the distribution of blood flow and oxygen across the fetal circulation. In combination with conventional fetal and neonatal magnetic resonance imaging (MRI) techniques, fetal CMR can be used to explore the relationship between abnormal cardiovascular physiology and fetal development. Similarly, fetal CMR has been successfully applied in large animal models of the human fetal circulation, aiding in the evaluation of experimental interventions aimed at improving in utero development. With the advent of accelerated image acquisition techniques, post-processing approaches to correcting motion artifacts and commercial MRI compatible cardiotocography units for acquiring gated fetal cardiac imaging, an increasing number of CMR methods including angiography, ventricular volumetry, and the quantification of vessel blood flow and oxygen content are now possible.
Conclusion
Fetal CMR has reached an exciting stage whereby it may now be used to enhance the assessment of cardiac morphology and fetal hemodynamics in the setting of prenatal CHD.
Collapse
|
40
|
Salehi D, Fricke K, Bhat M, Arheden H, Liuba P, Hedström E. Utility of Fetal Cardiovascular Magnetic Resonance for Prenatal Diagnosis of Complex Congenital Heart Defects. JAMA Netw Open 2021; 4:e213538. [PMID: 33779747 PMCID: PMC8008290 DOI: 10.1001/jamanetworkopen.2021.3538] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
Importance Prenatal diagnosis of complex congenital heart defects reduces mortality and morbidity in affected infants. However, fetal echocardiography can be limited by poor acoustic windows, and there is a need for improved diagnostic methods. Objective To assess the clinical utility of fetal cardiovascular magnetic resonance imaging in cases in which fetal echocardiography could not visualize all relevant anatomy. Design, Setting, and Participants This cohort study was conducted between January 20, 2017, and June 29, 2020, at Skåne University Hospital (Lund, Sweden), a tertiary center for pediatric cardiology and thoracic surgery. Participants were fetuses referred for fetal cardiovascular magnetic resonance examination by a pediatric cardiologist after an inconclusive echocardiograph. Exposures Fetal cardiovascular magnetic resonance examination requested by the patient's pediatric cardiologist. Main Outcomes and Measures Any change in patient management because of diagnostic information gained from fetal cardiovascular magnetic resonance imaging. Results A total of 31 fetuses underwent cardiovascular magnetic resonance examination at a median gestational age of 36 weeks (range, 31-39 weeks). Overall, fetal cardiovascular magnetic resonance imaging had clinical utility, affecting patient management and/or parental counseling in 26 cases (84%). For aortic arch anatomy including signs of coarctation (20 fetuses), fetal cardiovascular magnetic resonance imaging added diagnostic information in 16 cases (80%). For assessment of univentricular vs biventricular outcome in borderline left ventricle, unbalanced atrioventricular septal defect, and pulmonary atresia with intact ventricular septum (15 fetuses), fetal cardiovascular magnetic resonance imaging visualized intracardiac anatomy and ventricular function, allowing assessment of outcome in 13 cases (87%). In 4 fetuses with hypoplastic left heart syndrome, fetal cardiovascular magnetic resonance imaging helped delivery planning in 3 cases (75%). Finally, fetal cardiovascular magnetic resonance imaging provided valuable information for parental counseling in 21 cases (68%). Conclusions and Relevance In this cohort study, fetal cardiovascular magnetic resonance imaging added clinically useful information to what was available from echocardiography. These findings suggest that fetal CMR has the potential to affect clinical decision-making in challenging cases of congenital heart defects with inconclusive data from echocardiography. Fetal cardiovascular magnetic resonance imaging showed an association with clinical decision-making, including mode of delivery and early postnatal care, as well as with parental counseling.
Collapse
Affiliation(s)
- Daniel Salehi
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Katrin Fricke
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Misha Bhat
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Håkan Arheden
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Petru Liuba
- Pediatric Cardiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
41
|
Affiliation(s)
- Bhawna Arya
- Seattle Children's Hospital, Seattle, Washington
- University of Washington School of Medicine, Seattle
| |
Collapse
|
42
|
Li K, Zhang X, Yan G, Zheng W, Zou Y. Prenatal Diagnosis and Classification of Fetal Hypospadias: The Role and Value of Magnetic Resonance Imaging. J Magn Reson Imaging 2021; 53:1862-1870. [PMID: 33608950 DOI: 10.1002/jmri.27519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Prenatal diagnosis and classification of hypospadias are difficult and of value for management during perinatal and neonatal periods. The conventional approach for prenatal diagnosis of hypospadias is ultrasound; however, this technique may be inconclusive in certain cases, which prompts for further exploration with magnetic resonance imaging (MRI). PURPOSE To investigate the role of MRI in the prenatal diagnosis and classification of fetuses with hypospadias. STUDY TYPE Retrospective. POPULATION Thirty-five fetuses (median gestational age = 37, range 24-39 weeks) with possible hypospadias. FIELD STRENGTH/SEQUENCE Single-shot fast spin echo T2-weighted imaging, fast imaging employing steady-state acquisition (FIESTA), and three-dimensional FIESTA acquired at 1.5 T. ASSESSMENT Diagnosis and classification of hypospadias using MRI were performed by three experienced radiologists based on MRI features, including a short penile shaft, abnormal penile tip, penile curvature, bifid scrotum, "tulip sign," and penoscrotal transposition. The accuracy of MRI in the diagnosis and classification of hypospadias was assessed in comparison to postnatal clinical diagnosis. The interobserver agreement between radiologists was also assessed. STATISTICAL TESTS Kendall's W test was applied to assess the interobserver agreement between radiologists. Taking postnatal clinical diagnosis as the reference standard, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were calculated. RESULTS Of the 35 fetuses, 24 cases were confirmed as hypospadias through postnatal clinical diagnosis. The interobserver agreement between radiologists was substantial (Kendall's W = 0.781, P < 0.001). Of the 24 confirmed cases (13 cases of severe hypospadias and 11 cases of mild hypospadias), 22 cases were correctly diagnosed by MRI. The accuracy of MRI in the diagnosis of hypospadias, severe hypospadias, and mild hypospadias was 85.71%, 82.86%, and 80.00%, respectively. DATA CONCLUSION MRI has good performance in the diagnosis of fetal hypospadias. In addition, MRI could help evaluate the severity of fetal hypospadias. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kui Li
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodan Zhang
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guohui Yan
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weizeng Zheng
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zou
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Leon RL, Ortigoza EB, Ali N, Angelis D, Wolovits JS, Chalak LF. Cerebral Blood Flow Monitoring in High-Risk Fetal and Neonatal Populations. Front Pediatr 2021; 9:748345. [PMID: 35087771 PMCID: PMC8787287 DOI: 10.3389/fped.2021.748345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF) across a range of arterial blood pressures. Cerebral autoregulation (CA) is a developmental process that reaches maturity around term gestation and can be monitored prenatally with both Doppler ultrasound and magnetic resonance imaging (MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF monitoring techniques as well as their application to both fetal and neonatal populations at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm and those with hypoxic-ischemic encephalopathy. We conclude the review with insights into the future directions in this field with an emphasis on collaborative science and precision medicine approaches.
Collapse
Affiliation(s)
- Rachel L Leon
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eric B Ortigoza
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Noorjahan Ali
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Dimitrios Angelis
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Joshua S Wolovits
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lina F Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
44
|
The application of in utero magnetic resonance imaging in the study of the metabolic and cardiovascular consequences of the developmental origins of health and disease. J Dev Orig Health Dis 2020; 12:193-202. [PMID: 33308364 PMCID: PMC8162788 DOI: 10.1017/s2040174420001154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Observing fetal development in utero is vital to further the understanding of later-life diseases. Magnetic resonance imaging (MRI) offers a tool for obtaining a wealth of information about fetal growth, development, and programming not previously available using other methods. This review provides an overview of MRI techniques used to investigate the metabolic and cardiovascular consequences of the developmental origins of health and disease (DOHaD) hypothesis. These methods add to the understanding of the developing fetus by examining fetal growth and organ development, adipose tissue and body composition, fetal oximetry, placental microstructure, diffusion, perfusion, flow, and metabolism. MRI assessment of fetal growth, organ development, metabolism, and the amount of fetal adipose tissue could give early indicators of abnormal fetal development. Noninvasive fetal oximetry can accurately measure placental and fetal oxygenation, which improves current knowledge on placental function. Additionally, measuring deficiencies in the placenta’s transport of nutrients and oxygen is critical for optimizing treatment. Overall, the detailed structural and functional information provided by MRI is valuable in guiding future investigations of DOHaD.
Collapse
|
45
|
Coblentz AC, Teixeira SR, Mirsky DM, Johnson AM, Feygin T, Victoria T. How to read a fetal magnetic resonance image 101. Pediatr Radiol 2020; 50:1810-1829. [PMID: 33252751 DOI: 10.1007/s00247-020-04768-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Accurate antenatal diagnosis is essential for planning appropriate pregnancy management and improving perinatal outcomes. The provision of information vital for prognostication is a crucial component of prenatal imaging, and this can be enhanced by the use of fetal MRI. Image acquisition, interpretation and reporting of a fetal MR study can be daunting to the individual who has encountered few or none of these examinations. This article provides the radiology trainee with a general approach to interpreting a fetal MRI. The authors review the added value of prenatal MRI in the overall assessment of fetal wellbeing, discuss MRI protocols and techniques, and review the normal appearance of maternal and fetal anatomy. The paper concludes with a sample template for structured reporting, to serve as a checklist and guideline for reporting radiologists.
Collapse
Affiliation(s)
- Ailish C Coblentz
- Radiology Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 10104, USA
| | - Sara R Teixeira
- Radiology Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 10104, USA
| | - David M Mirsky
- Neuroradiology Department, Children's Hospital of Colorado, Aurora, CO, USA
| | - Ann M Johnson
- Radiology Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 10104, USA
| | - Tamara Feygin
- Radiology Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 10104, USA
| | - Teresa Victoria
- Radiology Department, The Children's Hospital of Philadelphia, 34th Street and Civic Center Boulevard, Philadelphia, PA, 10104, USA.
| |
Collapse
|
46
|
Henningsson M, Malik S, Botnar R, Castellanos D, Hussain T, Leiner T. Black-Blood Contrast in Cardiovascular MRI. J Magn Reson Imaging 2020; 55:61-80. [PMID: 33078512 PMCID: PMC9292502 DOI: 10.1002/jmri.27399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so‐called black‐blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black‐blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow‐dependent and flow‐independent techniques. We emphasize the technical challenges of black‐blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1, T2, etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black‐blood contrast for different vascular beds.
Collapse
Affiliation(s)
- Markus Henningsson
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shaihan Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rene Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel Castellanos
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tarique Hussain
- Division of Pediatric Cardiology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Division of Pediatric Radiology, Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tim Leiner
- Department of Radiology, Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|