1
|
Mehta CR, Naeem A, Patel Y. Cardiac Computed Tomography Angiography in CAD Risk Stratification and Revascularization Planning. Diagnostics (Basel) 2023; 13:2902. [PMID: 37761268 PMCID: PMC10530183 DOI: 10.3390/diagnostics13182902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE OF REVIEW Functional stress testing is frequently used to assess for coronary artery disease (CAD) in symptomatic, stable patients with low to intermediate pretest probability. However, patients with highly vulnerable plaque may have preserved luminal patency and, consequently, a falsely negative stress test. Cardiac computed tomography angiography (CCTA) has emerged at the forefront of primary prevention screening and has excellent agency in ruling out obstructive CAD with high negative predictive value while simultaneously characterizing nonobstructive plaque for high-risk features, which invariably alters risk-stratification and pre-procedural decision making. RECENT FINDINGS We review the literature detailing the utility of CCTA in its ability to risk-stratify patients with CAD based on calcium scoring as well as high-risk phenotypic features and to qualify the functional significance of stenotic lesions. SUMMARY Calcium scores ≥ 100 should prompt consideration of statin and aspirin therapy. Spotty calcifications < 3 mm, increased non-calcified plaque > 4 mm3 per mm of the vessel wall, low attenuation < 30 HU soft plaque and necrotic core with a rim of higher attenuation < 130 HU, and a positive remodeling index ratio > 1.1 all confer additive risk for acute plaque rupture when present. Elevations in the perivascular fat attenuation index > -70.1 HU are a strong predictor of all-cause mortality and can further the risk stratification of patients in the setting of a non-to-minimal plaque burden. Lastly, a CT-derived fractional flow reserve (FFRCT) < 0.75 or values from 0.76 to 0.80 in conjunction with additional risk factors is suggestive of flow-limiting disease that would benefit from invasive testing. The wealth of information available through CCTA can allow clinicians to risk-stratify patients at elevated risk for an acute ischemic event and engage in advanced revascularization planning.
Collapse
Affiliation(s)
- Chirag R. Mehta
- Department of Cardiology, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA (Y.P.)
| | | | | |
Collapse
|
2
|
Huangfu G, Jaltotage B, Pang J, Lan NSR, Abraham A, Otto J, Ihdayhid AR, Rankin JM, Chow BJW, Watts GF, Ayonrinde OT, Dwivedi G. Hepatic fat as a novel marker for high-risk coronary atherosclerotic plaque features in familial hypercholesterolaemia. Metabolism 2023; 139:155370. [PMID: 36464035 DOI: 10.1016/j.metabol.2022.155370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND & AIMS Hepatic steatosis has been associated with increased risk of coronary artery disease. Individuals with familial hypercholesterolaemia have accelerated but variable progression of coronary artery disease. We investigated whether hepatic steatosis is associated with novel coronary atherosclerosis biomarkers in adults with heterozygous familial hypercholesterolaemia, using comprehensive coronary computed tomographic angiography. METHODS We conducted a cross-sectional study of 213 asymptomatic patients with familial hypercholesterolaemia (median age 54.0 years, 59 % female) who underwent coronary computed tomographic angiography for cardiovascular risk assessment in an outpatient clinic. High-risk plaque features, plaque volume and pericoronary adipose tissue attenuation were assessed. From concurrently captured upper abdominal images, severity of hepatic steatosis was computed, as liver minus spleen computed tomography attenuation and stratified into quartiles. RESULTS Of 213 familial hypercholesterolaemia patients, 59 % had coronary artery calcium, 36 % obstructive coronary artery disease (≥50 % stenosis) and 77 % high-risk plaque features. Increasing hepatic steatosis was associated with higher calcium scores, more high-risk plaque features and presence of obstructive coronary artery disease. Hepatic steatosis was associated with the presence of high-risk plaque features (OR: 1.48; 95 % CI: 1.09-2.00; p = 0.01), particularly in the proximal coronary segments (OR: 1.52; 95 % CI: 1.18-1.96; p = 0.001). Associations persisted on multivariable logistic regression analysis adjusting for cardiometabolic factors, obstructive coronary artery disease and calcium score. Hepatic steatosis was associated with higher plaque volumes (Q4: 499 mm3 vs Q1: 414 mm3, p = 0.02), involving mainly low attenuation and noncalcified plaques (both p = 0.03). No differences in pericoronary adipose tissue attenuation were observed. CONCLUSIONS Hepatic steatosis is associated with multiple indices of advanced coronary atherosclerosis in familial hypercholesterolaemia patients, particularly high-risk plaque features, independent of conventional cardiovascular risk factors and markers. This may involve specific mechanisms related to hepatic steatosis. CLINICAL TRIAL NUMBER N/A.
Collapse
Affiliation(s)
- Gavin Huangfu
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia; Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - Biyanka Jaltotage
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Jing Pang
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nick S R Lan
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Arun Abraham
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Jacobus Otto
- Department of Radiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Abdul R Ihdayhid
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia; Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia
| | - James M Rankin
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Benjamin J W Chow
- Department of Medicine (Cardiology) and Radiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Gerald F Watts
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia; Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Oyekoya T Ayonrinde
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia; Department of Gastroenterology and Hepatology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Faculty of Health Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Girish Dwivedi
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia; Medical School, The University of Western Australia, Crawley, Western Australia, Australia; Harry Perkins Institute of Medical Research, Murdoch, Western Australia, Australia; Department of Medicine (Cardiology) and Radiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Rotzinger DC, Racine D, Becce F, Lahoud E, Erhard K, Si-Mohamed SA, Greffier J, Viry A, Boussel L, Meuli RA, Yagil Y, Monnin P, Douek PC. Performance of Spectral Photon-Counting Coronary CT Angiography and Comparison with Energy-Integrating-Detector CT: Objective Assessment with Model Observer. Diagnostics (Basel) 2021; 11:2376. [PMID: 34943611 PMCID: PMC8700425 DOI: 10.3390/diagnostics11122376] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
AIMS To evaluate spectral photon-counting CT's (SPCCT) objective image quality characteristics in vitro, compared with standard-of-care energy-integrating-detector (EID) CT. METHODS We scanned a thorax phantom with a coronary artery module at 10 mGy on a prototype SPCCT and a clinical dual-layer EID-CT under various conditions of simulated patient size (small, medium, and large). We used filtered back-projection with a soft-tissue kernel. We assessed noise and contrast-dependent spatial resolution with noise power spectra (NPS) and target transfer functions (TTF), respectively. Detectability indices (d') of simulated non-calcified and lipid-rich atherosclerotic plaques were computed using the non-pre-whitening with eye filter model observer. RESULTS SPCCT provided lower noise magnitude (9-38% lower NPS amplitude) and higher noise frequency peaks (sharper noise texture). Furthermore, SPCCT provided consistently higher spatial resolution (30-33% better TTF10). In the detectability analysis, SPCCT outperformed EID-CT in all investigated conditions, providing superior d'. SPCCT reached almost perfect detectability (AUC ≈ 95%) for simulated 0.5-mm-thick non-calcified plaques (for large-sized patients), whereas EID-CT had lower d' (AUC ≈ 75%). For lipid-rich atherosclerotic plaques, SPCCT achieved 85% AUC vs. 77.5% with EID-CT. CONCLUSIONS SPCCT outperformed EID-CT in detecting simulated coronary atherosclerosis and might enhance diagnostic accuracy by providing lower noise magnitude, markedly improved spatial resolution, and superior lipid core detectability.
Collapse
Affiliation(s)
- David C. Rotzinger
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH 1011 Lausanne, Switzerland; (F.B.); (R.A.M.)
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
| | - Damien Racine
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
- Institute of Radiation Physics, Lausanne University Hospital (CHUV), CH 1007 Lausanne, Switzerland
| | - Fabio Becce
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH 1011 Lausanne, Switzerland; (F.B.); (R.A.M.)
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
| | - Elias Lahoud
- CT/AMI Research and Development, Philips Medical Systems, Haifa 31004, Israel; (E.L.); (Y.Y.)
| | - Klaus Erhard
- Philips GmbH Innovative Technologies, Philips Research Laboratories, 22335 Hamburg, Germany;
| | - Salim A. Si-Mohamed
- Radiology Department, Hospices Civils de Lyon, 69500 Lyon, France; (S.A.S.-M.); (L.B.); (P.C.D.)
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, 69100 Lyon, France
| | - Joël Greffier
- Department of Medical Imaging, CHU Nimes, University of Montpellier, 30900 Nimes, France;
| | - Anaïs Viry
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
- Institute of Radiation Physics, Lausanne University Hospital (CHUV), CH 1007 Lausanne, Switzerland
| | - Loïc Boussel
- Radiology Department, Hospices Civils de Lyon, 69500 Lyon, France; (S.A.S.-M.); (L.B.); (P.C.D.)
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, 69100 Lyon, France
| | - Reto A. Meuli
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, CH 1011 Lausanne, Switzerland; (F.B.); (R.A.M.)
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
| | - Yoad Yagil
- CT/AMI Research and Development, Philips Medical Systems, Haifa 31004, Israel; (E.L.); (Y.Y.)
| | - Pascal Monnin
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), CH 1015 Lausanne, Switzerland; (D.R.); (A.V.); (P.M.)
- Institute of Radiation Physics, Lausanne University Hospital (CHUV), CH 1007 Lausanne, Switzerland
| | - Philippe C. Douek
- Radiology Department, Hospices Civils de Lyon, 69500 Lyon, France; (S.A.S.-M.); (L.B.); (P.C.D.)
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, 69100 Lyon, France
| |
Collapse
|
4
|
Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images. Eur Radiol 2021; 31:7132-7142. [PMID: 33740093 PMCID: PMC8379124 DOI: 10.1007/s00330-021-07809-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022]
Abstract
Objectives To quantitatively evaluate the impact of virtual monochromatic images (VMI) on reduced-iodine-dose dual-energy coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess the image quality in vivo, compared with conventional CT obtained with regular iodine dose. Materials and methods A phantom simulating regular and reduced iodine injection was used to determine the accuracy and precision of lumen area segmentation for various VMI energy levels. We retrospectively included 203 patients from December 2017 to August 2018 (mean age, 51.7 ± 16.8 years) who underwent CCTA using either standard (group A, n = 103) or reduced (group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV VMI (group B). We recorded the location of venous catheters. Results In vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm2, respectively (p < 0.001), and a precision of 0.982 vs. 1.229 mm2, respectively (p < 0.001), in simulated overweight adult subjects. In vivo, the rate of diagnostic CCTA in groups A and B was 88.4% (n = 91/103) vs. 89% (n = 89/100), respectively, and noninferiority of protocol B was inferred. Contrast-to-noise ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and comparable for lumen versus calcium (p = 0.423). Venous catheters were more often placed on the forearm or hand in group B (p < 0.001). Conclusion In vitro, low-keV VMI improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and injection rate reduction while maintaining diagnostic image quality and improves the CNR between lumen versus fat and muscle. Key Points • Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management. • Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochromatic image reconstructions performed better in phantom-based vessel cross-sectional segmentation and proved to be noninferior in vivo. • Patients receiving reduced-iodine-dose dual-energy coronary CT angiography often had the venous catheter placed on the forearm or wrist without compromising image quality. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-07809-w.
Collapse
|
5
|
Shaw LJ, Blankstein R, Bax JJ, Ferencik M, Bittencourt MS, Min JK, Berman DS, Leipsic J, Villines TC, Dey D, Al'Aref S, Williams MC, Lin F, Baskaran L, Litt H, Litmanovich D, Cury R, Gianni U, van den Hoogen I, R van Rosendael A, Budoff M, Chang HJ, E Hecht H, Feuchtner G, Ahmadi A, Ghoshajra BB, Newby D, Chandrashekhar YS, Narula J. Society of Cardiovascular Computed Tomography / North American Society of Cardiovascular Imaging - Expert Consensus Document on Coronary CT Imaging of Atherosclerotic Plaque. J Cardiovasc Comput Tomogr 2021; 15:93-109. [PMID: 33303383 DOI: 10.1016/j.jcct.2020.11.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coronary computed tomographic angiography (CCTA) provides a wealth of clinically meaningful information beyond anatomic stenosis alone, including the presence or absence of nonobstructive atherosclerosis and high-risk plaque features as precursors for incident coronary events. There is, however, no uniform agreement on how to identify and quantify these features or their use in evidence-based clinical decision-making. This statement from the Society of Cardiovascular Computed Tomography and North American Society of Cardiovascular Imaging addresses this gap and provides a comprehensive review of the available evidence on imaging of coronary atherosclerosis. In this statement, we provide standardized definitions for high-risk plaque (HRP) features and distill the evidence on the effectiveness of risk stratification into usable practice points. This statement outlines how this information should be communicated to referring physicians and patients by identifying critical elements to include in a structured CCTA report - the presence and severity of atherosclerotic plaque (descriptive statements, CAD-RADS™ categories), the segment involvement score, HRP features (e.g., low attenuation plaque, positive remodeling), and the coronary artery calcium score (when performed). Rigorous documentation of atherosclerosis on CCTA provides a vital opportunity to make recommendations for preventive care and to initiate and guide an effective care strategy for at-risk patients.
Collapse
Affiliation(s)
- Leslee J Shaw
- Weill Cornell School of Medicine, New York, NY, USA.
| | - Ron Blankstein
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - James K Min
- Weill Cornell School of Medicine; Cleerly, Inc. (started in 2020), New York, NY, USA
| | - Daniel S Berman
- Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Fay Lin
- Weill Cornell School of Medicine, New York, NY, USA
| | | | - Harold Litt
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Diana Litmanovich
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ricardo Cury
- Miami Cardiac and Vascular Institute and Baptist Health of South Florida, Miami, FL, USA
| | | | | | | | - Matthew Budoff
- David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | | | | | | | - Amir Ahmadi
- Mount Sinai School of Medicine, New York, NY, USA
| | | | - David Newby
- University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Jagat Narula
- Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
6
|
Dwivedi G, Jaltotage B. Topological Data Analysis of Coronary Plaques for Risk Prediction: False Dawn or Realistic Hope? JACC Cardiovasc Imaging 2021; 14:1422-1424. [PMID: 33454259 DOI: 10.1016/j.jcmg.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Girish Dwivedi
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia.
| | - Biyanka Jaltotage
- Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia; Department of Cardiology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Prognostic Value of Coronary Computed Tomography Angiography-derived Morphologic and Quantitative Plaque Markers Using Semiautomated Plaque Software. J Thorac Imaging 2020; 36:108-115. [PMID: 32251234 DOI: 10.1097/rti.0000000000000509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE In this study, we analyzed the prognostic value of coronary computed tomography angiography-derived morphologic and quantitative plaque markers and plaque scores for major adverse cardiovascular events (MACEs). MATERIALS AND METHODS We analyzed the data of patients with suspected coronary artery disease (CAD). Various plaque markers were obtained using a semiautomated software prototype or derived from the results of the software analysis. Several risk scores were calculated, and follow-up data concerning MACE were collected from all patients. RESULTS A total of 131 patients (65±12 y, 73% male) were included in our study. MACE occurred in 11 patients within the follow-up period of 34±25 months.CAD-Reporting and Data System score (odds ratio [OR]=11.62), SYNTAX score (SS) (OR=1.11), Leiden-risk score (OR=1.37), segment involvement score (OR=1.76), total plaque volume (OR=1.20), and percentage aggregated plaque volume (OR=1.32) were significant predictors for MACE (all P≤0.05). Moreover, the difference of the corrected coronary opacification (ΔCCO) correlated significantly with the occurrence of MACE (P<0.0001). The CAD-Reporting and Data System score, SS, and Leiden-risk score showed substantial sensitivity for predicting MACE (90.9%). The SS and Leiden-risk score displayed high specificities of 80.8% and 77.5%, respectively. These plaque markers and risk scores all provided high negative predictive value (>90%). CONCLUSION The coronary computed tomography angiography-derived plaque markers of segment involvement score, total plaque volume, percentage aggregated plaque volume, and ΔCCO, and the risk scores exhibited predictive value for the occurrence of MACE and can likely aid in identifying patients at risk for future cardiac events.
Collapse
|
8
|
Quantified coronary plaque characteristics between Caucasian and Morise score-matched South Asian populations. Int J Cardiovasc Imaging 2020; 36:2347-2355. [DOI: 10.1007/s10554-020-01802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/19/2020] [Indexed: 01/04/2023]
|
9
|
von Knebel Doeberitz PL, De Cecco CN, Schoepf UJ, Duguay TM, Albrecht MH, van Assen M, Bauer MJ, Savage RH, Pannell JT, De Santis D, Johnson AA, Varga-Szemes A, Bayer RR, Schönberg SO, Nance JW, Tesche C. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia. Eur Radiol 2018; 29:2378-2387. [PMID: 30523456 DOI: 10.1007/s00330-018-5834-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/29/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES We sought to investigate the diagnostic performance of coronary CT angiography (cCTA)-derived plaque markers combined with deep machine learning-based fractional flow reserve (CT-FFR) to identify lesion-specific ischemia using invasive FFR as the reference standard. METHODS Eighty-four patients (61 ± 10 years, 65% male) who had undergone cCTA followed by invasive FFR were included in this single-center retrospective, IRB-approved, HIPAA-compliant study. Various plaque markers were derived from cCTA using a semi-automatic software prototype and deep machine learning-based CT-FFR. The discriminatory value of plaque markers and CT-FFR to identify lesion-specific ischemia on a per-vessel basis was evaluated using invasive FFR as the reference standard. RESULTS One hundred three lesion-containing vessels were investigated. 32/103 lesions were hemodynamically significant by invasive FFR. In a multivariate analysis (adjusted for Framingham risk score), the following markers showed predictive value for lesion-specific ischemia (odds ratio [OR]): lesion length (OR 1.15, p = 0.037), non-calcified plaque volume (OR 1.02, p = 0.007), napkin-ring sign (OR 5.97, p = 0.014), and CT-FFR (OR 0.81, p < 0.0001). A receiver operating characteristics analysis showed the benefit of identifying plaque markers over cCTA stenosis grading alone, with AUCs increasing from 0.61 with ≥ 50% stenosis to 0.83 with addition of plaque markers to detect lesion-specific ischemia. Further incremental benefit was realized with the addition of CT-FFR (AUC 0.93). CONCLUSION Coronary CTA-derived plaque markers portend predictive value to identify lesion-specific ischemia when compared to cCTA stenosis grading alone. The addition of CT-FFR to plaque markers shows incremental discriminatory power. KEY POINTS • Coronary CT angiography (cCTA)-derived quantitative plaque markers of atherosclerosis portend high discriminatory power to identify lesion-specific ischemia. • Coronary CT angiography-derived fractional flow reserve (CT-FFR) shows superior diagnostic performance over cCTA alone in detecting lesion-specific ischemia. • A combination of plaque markers with CT-FFR provides incremental discriminatory value for detecting flow-limiting stenosis.
Collapse
Affiliation(s)
- Philipp L von Knebel Doeberitz
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim-Heidelberg University, Mannheim, Germany
| | - Carlo N De Cecco
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. .,Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Heart & Vascular Center, Ashley River Tower, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.
| | - Taylor M Duguay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Moritz H Albrecht
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Center for Medical Imaging North East Netherlands, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marly van Assen
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Maximilian J Bauer
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Rock H Savage
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - J Trent Pannell
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Domenico De Santis
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Rome, Italy
| | - Addison A Johnson
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Richard R Bayer
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Stefan O Schönberg
- Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim-Heidelberg University, Mannheim, Germany
| | - John W Nance
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Christian Tesche
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA.,Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Munich, Germany
| |
Collapse
|
10
|
Hamaoka T, Murai H, Kaneko S, Usui S, Inoue O, Sugimoto H, Mukai Y, Okabe Y, Tokuhisa H, Takashima S, Kato T, Furusho H, Kashiwaya S, Sugiyama Y, Nakatsumi Y, Takata S, Takamura M. Significant Association Between Coronary Artery Low-Attenuation Plaque Volume and Apnea-Hypopnea Index, But Not Muscle Sympathetic Nerve Activity, in Patients With Obstructive Sleep Apnea Syndrome. Circ J 2018; 82:2852-2860. [DOI: 10.1253/circj.cj-18-0237] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takuto Hamaoka
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Hisayoshi Murai
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Shuichi Kaneko
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Soichiro Usui
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Oto Inoue
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Hiroyuki Sugimoto
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Yusuke Mukai
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Yoshitaka Okabe
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Hideki Tokuhisa
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Shinichiro Takashima
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Takeshi Kato
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | - Hiroshi Furusho
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| | | | | | | | | | - Masayuki Takamura
- System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University
| |
Collapse
|
11
|
Foldyna B, Szilveszter B, Scholtz JE, Banerji D, Maurovich-Horvat P, Hoffmann U. CAD-RADS - a new clinical decision support tool for coronary computed tomography angiography. Eur Radiol 2018; 28:1365-1372. [PMID: 29116390 PMCID: PMC6438206 DOI: 10.1007/s00330-017-5105-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/14/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
Coronary computed tomography angiography (CTA) has been established as an accurate method to non-invasively assess coronary artery disease (CAD). The proposed 'Coronary Artery Disease Reporting and Data System' (CAD-RADS) may enable standardised reporting of the broad spectrum of coronary CTA findings related to the presence, extent and composition of coronary atherosclerosis. The CAD-RADS classification is a comprehensive tool for summarising findings on a per-patient-basis dependent on the highest-grade coronary artery lesion, ranging from CAD-RADS 0 (absence of CAD) to CAD-RADS 5 (total occlusion of a coronary artery). In addition, it provides suggestions for clinical management for each classification, including further testing and therapeutic options. Despite some limitations, CAD-RADS may facilitate improved communication between imagers and patient caregivers. As such, CAD-RADS may enable a more efficient use of coronary CTA leading to more accurate utilisation of invasive coronary angiograms. Furthermore, widespread use of CAD-RADS may facilitate registry-based research of diagnostic and prognostic aspects of CTA. KEY POINTS • CAD-RADS is a tool for standardising coronary CTA reports. • CAD-RADS includes clinical treatment recommendations based on CTA findings. • CAD-RADS has the potential to reduce variability of CTA reports.
Collapse
Affiliation(s)
- Borek Foldyna
- Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA, 02114, USA.
- Department of Diagnostic and Interventional Radiology, University of Leipzig - Heart Center, Leipzig, Germany.
| | - Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Jan-Erik Scholtz
- Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA, 02114, USA
| | - Dahlia Banerji
- Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA, 02114, USA
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Udo Hoffmann
- Cardiac MR PET CT Program, Massachusetts General Hospital, Harvard Medical School, 165 Cambridge Street, Suite 400, Boston, MA, 02114, USA
| |
Collapse
|
12
|
|
13
|
Coronary CT angiography characteristics of OCT-defined thin-cap fibroatheroma: a section-to-section comparison study. Eur Radiol 2017; 28:833-843. [DOI: 10.1007/s00330-017-4992-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022]
|
14
|
Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc 2017; 6:JAHA.117.005543. [PMID: 28314799 PMCID: PMC5524044 DOI: 10.1161/jaha.117.005543] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
| | | | - Dimitrios Tsiachris
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| | - Panagiota Pietri
- National and Kapodistrian University of Athens and Athens Heart Center, Athens, Greece
| |
Collapse
|