1
|
Manzanera Esteve IV, Pollins AC, Nussenbaum ME, Chaker S, Yan L, Dortch R, Thayer WP. Longitudinal traumatic peripheral nerve injury recovery: quantitative description, classification and prediction. Regen Med 2023; 18:389-397. [PMID: 37158365 DOI: 10.2217/rme-2023-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Aim: Repair of peripheral nerves is recommended following transection. Systematic evaluation of longitudinal recovery in injury models is needed to improve patient management. Gompertz function provided straightforward interpretation and prediction of recovery outcomes. Materials & methods: Behavioural sciatic function index, measured 3 days post injury, and weekly for 12 weeks following full nerve transection and repair (n = 6) as well as crush injuries (n = 6). Results: Gompertz parametrization provided early classification between types of traumatic peripheral nerve injuries following surgical repair. Results distinguished injury nerves (A: p < 0.01; Ti: p < 0.05; Ic: p < 0.05 and outcome: p < 0.01). Early prognostication of outcomes (crush: 5.5 ± 0.3 and cut/repair: 8 ± 1 weeks) preceded current methods. Conclusion: Our findings identify injury type, state of recovery and early prognostication of outcome.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Marlieke E Nussenbaum
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Sara Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Ling Yan
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Richard Dortch
- Translational Neuroscience, Barrow Neurological institute, Phoenix; AZ 85013, USA
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, TN 37235, USA
| |
Collapse
|
2
|
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kahn H, Does MD, Dortch RD, Thayer WP. Noninvasive diffusion MRI to determine the severity of peripheral nerve injury. Magn Reson Imaging 2021; 83:96-106. [PMID: 34403759 DOI: 10.1016/j.mri.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Primary repair of peripheral nerves is recommended following transection; however, patient management following repair is challenged by a lack of biomarkers to nerve regeneration. Previous studies have demonstrated that diffusion magnetic resonance imaging (MRI) may provide viable biomarkers of nerve regeneration in injury models; though, these methods have not been systematically evaluated in graded partial transections and repairs. METHODS Ex vivo diffusion MRI was performed in fixed rat sciatic nerve samples 4 or 12 weeks following partial nerve transection and repair (25% cut = 12, 50% cut = 12 and 75% cut = 11), crush injuries (n = 12), and sham surgeries (n = 9). Behavioral testing and histologic evaluation were performed in the same animals and nerve samples for comparison. RESULTS Diffusion tractography provided visual characterizations of nerve damage and recovery consistent with the expected degree of injury within each cohort. In addition, quantitative indices from diffusion MRI correlated with both histological and behavioral evaluations, the latter of indicated full recovery for sham and crush nerves and limited recovery in all partially transected/repaired nerves. Nerve recovery between 4 and 12 weeks was statistically significant in partial transections 50% and 75% depth cuts (p = 0.043 and p = 0.022) but not for 25% transections. INTERPRETATION Our findings suggest that DTI can i) distinguish different degrees of partial nerve transection following surgical repair and ii) map spatially heterogeneous nerve recovery (e.g., due to collateral sprouting) from 4 to 12 weeks in partially transected nerves.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America.
| | - Angel F Farinas
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Alonda C Pollins
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Marlieke E Nussenbaum
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Nancy L Cardwell
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America
| | - Hakmook Kahn
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America
| | - Richard D Dortch
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America; Barrow Neurological Institute, Division of Neuroimaging Research, Phoenix, AZ, United States of America
| | - Wesley P Thayer
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America
| |
Collapse
|
3
|
Pokrywczynska M, Jundzill A, Tworkiewicz J, Buhl M, Balcerczyk D, Adamowicz J, Kloskowski T, Rasmus M, Mecinska-Jundzill K, Kasinski D, Frontczak-Baniewicz M, Holysz M, Skopinska-Wisniewska J, Bodnar M, Marszalek A, Antosik P, Grzanka D, Drewa T. Urinary bladder augmentation with acellular biologic scaffold-A preclinical study in a large animal model. J Biomed Mater Res B Appl Biomater 2021; 110:438-449. [PMID: 34323358 DOI: 10.1002/jbm.b.34920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022]
Abstract
Current strategies in urinary bladder augmentation include use of gastrointestinal segments, however, the technique is associated with inevitable complications. An acellular biologic scaffold seems to be a promising option for urinary bladder augmentation. The aim of this study was to evaluate the utility of bladder acellular matrix (BAM) for reconstruction of clinically significant large urinary bladder wall defects in a long-term porcine model. Urinary bladders were harvested from 10 pig donors. Biological scaffolds were prepared by chemically removing all cellular components from urinary bladder tissue. A total of 10 female pigs underwent hemicystectomy and subsequent bladder reconstruction with BAM. The follow-up study was 6 months. Reconstructed bladders were subjected to radiological, macroscopic, histological, immunohistochemical, and molecular evaluations. Six out of ten animals survived the 6-month follow-up period. Four pigs died during observation due to mechanical failure of the scaffold, anastomotic dehiscence between the scaffold and native bladder tissue, or occluded catheter. Tissue engineered bladder function was normal without any signs of postvoid residual urine in the bladder or upper urinary tracts. Macroscopically, graft shrinkage was observed. Urothelium completely covered the luminal surface of the graft. Smooth muscle regeneration was observed mainly in the peripheral graft region and gradually decreased toward the center of the graft. Expression of urothelial, smooth muscle, blood vessel, and nerve markers were lower in the reconstructed bladder wall compared to the native bladder. BAM seems to be a promising biomaterial for reconstruction of large urinary bladder wall defects. Further research on cell-seeded BAM to enhance urinary bladder regeneration is required.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jakub Tworkiewicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Monika Buhl
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Daria Balcerczyk
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Adamowicz
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Kaja Mecinska-Jundzill
- Department of Dermatology, Sexually Transmitted Diseases and Immunodermatology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Damian Kasinski
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | | | - Marcin Holysz
- Department of Biochemistry and Molecular Biology, K. Marcinkowski University of Medical Sciences, Poznan, Poland
| | | | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Tumor Pathology, Center of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology and Andrology, Department of Regenerative Medicine, Cell and Tissue Bank, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
4
|
Diffusion Magnetic Resonance Imaging Predicts Peripheral Nerve Recovery in a Rat Sciatic Nerve Injury Model. Plast Reconstr Surg 2020; 145:949-956. [PMID: 32221212 DOI: 10.1097/prs.0000000000006638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nerve regeneration after an injury should occur in a timely fashion for function to be restored. Current methods cannot monitor regeneration prior to muscle reinnervation. Diffusion tensor imaging has been previously shown to provide quantitative indices after nerve recovery. The goal of this study was to validate the use of this technology following nerve injury via a series of rat sciatic nerve injury/repair studies. METHODS Sprague-Dawley rats were prospectively divided by procedure (sham, crush, or cut/repair) and time points (1, 2, 4, and 12 weeks after surgery). At the appropriate time point, each animal was euthanized and the sciatic nerve was harvested and fixed. Data were obtained using a 7-Tesla magnetic resonance imaging system. For validation, findings were compared to behavioral testing (foot fault asymmetry and sciatic function index) and cross-sectional axonal counting of toluidine blue-stained sections examined under light microscopy. RESULTS Sixty-three rats were divided into three treatment groups (sham, n = 21; crush, n = 23; and cut/repair, n = 19). Fractional anisotropy was able to differentiate between recovery following sham, crush, and cut/repair injuries as early as 2 weeks (p < 0.05), with more accurate differentiation thereafter. More importantly, the difference in anisotropy between distal and proximal regions recognized animals with successful and failed recoveries according to behavioral analysis, especially at 12 weeks. In addition, diffusion tension imaging-based tractography provided a visual representation of nerve continuity in all treatment groups. CONCLUSIONS Diffuse tensor imaging is an objective and noninvasive tool for monitoring nerve regeneration. Its use could facilitate earlier detection of failed repairs to potentially help improve outcomes.
Collapse
|
5
|
Farinas AF, Manzanera Esteve IV, Pollins AC, Cardwell NL, Does MD, Dortch RD, Thayer WP. Diffusion Tensor Tractrography Visualizes Partial Nerve Laceration Severity as Early as 1 Week After Surgical Repair in a Rat Model Ex Vivo. Mil Med 2020; 185:35-41. [PMID: 32074298 PMCID: PMC7029835 DOI: 10.1093/milmed/usz360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Previous studies in our laboratory have demonstrated that a magnetic resonance imaging method called diffusion tensor imaging (DTI) can differentiate between crush and complete transection peripheral nerve injuries in a rat model ex vivo. DTI measures the directionally dependent effect of tissue barriers on the random diffusion of water molecules. In ordered tissues such as nerves, this information can be used to reconstruct the primary direction of diffusion along fiber tracts, which may provide information on fiber tract continuity after nerve injury and surgical repair. METHODS Sprague-Dawley rats were treated with different degrees of partial transection of the sciatic nerve followed by immediate repair and euthanized after 1 week of recovery. Nerves were then harvested, fixed, and scanned with a 7 Tesla magnetic resonance imaging to obtain DTIand fiber tractography in each sample. Additional behavioral (sciatic function index, foot fault asymmetry) and histological (Toluidine blue staining) assessments were performed for validation. RESULTS Tractography yielded a visual representation of the degree of injury that correlated with behavioral and histological evaluations. CONCLUSIONS DTI tractography is a noninvasive tool that can yield a visual representation of a partial nerve transection as early as 1 week after surgical repair.
Collapse
Affiliation(s)
- Angel F Farinas
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, MCN D4207, Nashville, TN 37232-2345
| | - Isaac V Manzanera Esteve
- Department Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave S, MCN CC-1121, Nashville, TN 37232-2345
- The Department is the Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave S, MCN AA-1105, Nashville, TN 37232-2345
| | - Alonda C Pollins
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, MCN D4207, Nashville, TN 37232-2345
| | - Nancy L Cardwell
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, MCN D4207, Nashville, TN 37232-2345
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 351631, Nashville, TN 37235-1631
- Department Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave S, MCN CC-1121, Nashville, TN 37232-2345
- The Department is the Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave S, MCN AA-1105, Nashville, TN 37232-2345
| | - Richard D Dortch
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 351631, Nashville, TN 37235-1631
- Department Radiology and Radiological Sciences, Vanderbilt University Medical Center, 1161 21st Ave S, MCN CC-1121, Nashville, TN 37232-2345
- The Department is the Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Vanderbilt University, Institute of Imaging Science, 1161 21st Ave S, MCN AA-1105, Nashville, TN 37232-2345
| | - Wesley P Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1161 21st Ave S, MCN D4207, Nashville, TN 37232-2345
- Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place PMB 351631, Nashville, TN 37235-1631
| |
Collapse
|
6
|
Manzanera Esteve IV, Farinas AF, Pollins AC, Nussenbaum ME, Cardwell NL, Kang H, Does MD, Thayer WP, Dortch RD. Probabilistic Assessment of Nerve Regeneration with Diffusion MRI in Rat Models of Peripheral Nerve Trauma. Sci Rep 2019; 9:19686. [PMID: 31873165 PMCID: PMC6928159 DOI: 10.1038/s41598-019-56215-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/05/2019] [Indexed: 11/22/2022] Open
Abstract
Nerve regeneration after injury must occur in a timely fashion to restore function. Unfortunately, current methods (e.g., electrophysiology) provide limited information following trauma, resulting in delayed management and suboptimal outcomes. Herein, we evaluated the ability of diffusion MRI to monitor nerve regeneration after injury/repair. Sprague-Dawley rats were divided into three treatment groups (sham = 21, crush = 23, cut/repair = 19) and ex vivo diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) was performed 1-12 weeks post-surgery. Behavioral data showed a distinction between crush and cut/repair nerves at 4 weeks. This was consistent with DTI, which found that thresholds based on the ratio of radial and axial diffusivities (RD/AD = 0.40 ± 0.02) and fractional anisotropy (FA = 0.53 ± 0.01) differentiated crush from cut/repair injuries. By the 12th week, cut/repair nerves whose behavioral data indicated a partial recovery were below the RD/AD threshold (and above the FA threshold), while nerves that did not recover were on the opposite side of each threshold. Additional morphometric analysis indicated that DTI-derived normalized scalar indices report on axon density (RD/AD: r = -0.54, p < 1e-3; FA: r = 0.56, p < 1e-3). Interestingly, higher-order DKI analyses did not improve our ability classify recovery. These findings suggest that DTI may provide promising biomarkers for distinguishing successful/unsuccessful nerve repairs and potentially identify cases that require reoperation.
Collapse
Affiliation(s)
- Isaac V Manzanera Esteve
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA
| | - Angel F Farinas
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Alonda C Pollins
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Marlieke E Nussenbaum
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Nancy L Cardwell
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
| | - Hakmook Kang
- Vanderbilt University Medical Center, Department of Biostatistics, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA
| | - Wesley P Thayer
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, USA
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA
| | - Richard D Dortch
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, USA.
- Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, USA.
- Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, USA.
| |
Collapse
|