1
|
Banimohamad-Shotorbani B, Karkan SF, Rahbarghazi R, Mehdipour A, Jarolmasjed S, Saghati S, Shafaei H. Application of mesenchymal stem cell sheet for regeneration of craniomaxillofacial bone defects. Stem Cell Res Ther 2023; 14:68. [PMID: 37024981 PMCID: PMC10080954 DOI: 10.1186/s13287-023-03309-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
Bone defects are among the most common damages in human medicine. Due to limitations and challenges in the area of bone healing, the research field has turned into a hot topic discipline with direct clinical outcomes. Among several available modalities, scaffold-free cell sheet technology has opened novel avenues to yield efficient osteogenesis. It is suggested that the intact matrix secreted from cells can provide a unique microenvironment for the acceleration of osteoangiogenesis. To the best of our knowledge, cell sheet technology (CST) has been investigated in terms of several skeletal defects with promising outcomes. Here, we highlighted some recent advances associated with the application of CST for the recovery of craniomaxillofacial (CMF) in various preclinical settings. The regenerative properties of both single-layer and multilayer CST were assessed regarding fabrication methods and applications. It has been indicated that different forms of cell sheets are available for CMF engineering like those used for other hard tissues. By tackling current challenges, CST is touted as an effective and alternative therapeutic option for CMF bone regeneration.
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sonia Fathi Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Tu X, Guo L, Li Y, Tan G, Chen R, Wu J, Miao G, Guo L, Zhang C, Zou T, Zhang Y, Jiang Q. 3D-printed gelatin/sodium alginate/58S bioactive glass scaffolds promote osteogenesis in vitro and in vivo. J Biomater Appl 2023; 37:1758-1766. [DOI: 10.1177/08853282231152128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Three-dimensional (3D)-printed scaffolds are a new strategy to fabricate biomaterials for treating bone defects. Here, using a 3D-printing technique, we fabricated scaffolds consisting of gelatin (Gel), sodium alginate (SA), and 58S bioactive glass (58S BG). To evaluate mechanical properties and biocompatibility of Gel/SA/58S BG scaffolds, the degradation test, compressive strength test, and cytotoxicity test were performed. The effect of the scaffolds on cell proliferation in vitro was determined by 4′,6-diamidino-2-phenylindole (DAPI) staining. To evaluate osteoinductive properties, rBMSCs were cultured on the scaffolds for 7, 14, and 21 days and the expression of osteogenesis-related genes was analyzed using qRT-PCR. To examine the bone healing properties of Gel/SA/58S BG scaffolds in vivo, we used a rat mandibular critical-size defect bone model. The scaffolds were implanted into the defect area of rat mandible and bone regeneration and new tissue formation were assessed using microcomputed tomography (microCT) and hematoxylin and eosin (H&E) staining. The results showed that Gel/SA/58S BG scaffolds had appropriate mechanical strength as a filling material for bone defects. Furthermore, the scaffolds could be compressed within certain limits and then could recover their shape. The extract of the Gel/SA/58S BG scaffold showed no cytotoxicity. In vitro, the expression levels of Bmp2, Runx2, and OCN were increased in rBMSCs cultured on the scaffolds. In vivo, microCT and H&E staining demonstrated that scaffolds induced the formation of new bone at the mandibular defect area. These results indicated that Gel/SA/58S BG scaffolds have excellent mechanical characteristics, biocompatibility, and osteoinductive properties, suggesting that it could be a promising biomaterial for the repair of bone defects.
Collapse
|
3
|
The Potential of Cell Sheet Technology for Beta Cell Replacement Therapy. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose of Review
Here, we review the use of cell sheet technology using different cell types and its potential for restoring the extracellular matrix microenvironment, perfusion, and immunomodulatory action on islets and beta cells.
Recent Findings
Cell sheets can be produced with different fabrication techniques ranging from the widely used temperature responsive system to the magnetic system. A variety of cells have been used to produce cell sheets including skin fibroblasts, smooth muscle cells, human umbilical vein endothelial cells, and mesenchymal stem cells.
Summary
CST would allow to recreate the ECM of islets which would provide cues to support islet survival and improvement of islet function. Depending on the used cell type, different additional supporting properties like immunoprotection or cues for better revascularization could be provided. Furthermore, CST offers the possibility to use other implantation sites than inside the liver. Further research should focus on cell sheet thickness and size to generate a potential translational therapy.
Collapse
|
4
|
Wang Y, Zhao Z, Liu S, Luo W, Wang G, Zhu Z, Ma Q, Liu Y, Wang L, Lu S, Zhang Y, Qian J, Zhang Y. Application of vancomycin-impregnated calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan injectable hydrogels combined with BMSC sheets for the treatment of infected bone defects in a rabbit model. BMC Musculoskelet Disord 2022; 23:557. [PMID: 35681160 PMCID: PMC9185966 DOI: 10.1186/s12891-022-05499-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The choice of bone substitutes for the treatment of infected bone defects (IBDs) has attracted the attention of surgeons for years. However, single-stage bioabsorbable materials that are used as carriers for antibiotic release, as well as scaffolds for BMSC sheets, need further exploration. Our study was designed to investigate the effect of vancomycin-loaded calcium sulfate hemihydrate/nanohydroxyapatite/carboxymethyl chitosan (CSH/n-HA/CMCS) hydrogels combined with BMSC sheets as bone substitutes for the treatment of IBDs. METHODS BMSCs were harvested and cultured into cell sheets. After the successful establishment of an animal model with chronic osteomyelitis, 48 New Zealand white rabbits were randomly divided into 4 groups. Animals in Group A were treated with thorough debridement as a control. Group B was treated with BMSC sheets. CSH/n-HA/CMCS hydrogels were implanted in the treatment of Group C, and Group D was treated with CSH/n-HA/CMCS+BMSC sheets. Gross observation and micro-CT 3D reconstruction were performed to assess the osteogenic and infection elimination abilities of the treatment materials. Histological staining (haematoxylin and eosin and Van Gieson) was used to observe inflammatory cell infiltration and the formation of collagen fibres at 4, 8, and 12 weeks after implantation. RESULTS The bone defects of the control group were not repaired at 12 weeks, as chronic osteomyelitis was still observed. HE staining showed a large amount of inflammatory cell infiltration around the tissue, and VG staining showed no new collagen fibres formation. In the BMSC sheet group, although new bone formation was observed by gross observation and micro-CT scanning, infection was not effectively controlled due to unfilled cavities. Some neutrophils and only a small amount of collagen fibres could be observed. Both the hydrogel and hydrogel/BMSCs groups achieved satisfactory repair effects and infection control. Micro-CT 3D reconstruction at 4 weeks showed that the hydrogel/BMSC sheet group had higher reconstruction efficiency and better bone modelling with normal morphology. HE staining showed little aggregation of inflammatory cells, and VG staining showed a large number of new collagen fibres. CONCLUSIONS Our preliminary results suggested that compared to a single material, the novel antibiotic-impregnated hydrogels acted as superior scaffolds for BMSC sheets and excellent antibiotic vectors against infection, which provided a basis for applying tissue engineering technology to the treatment of chronic osteomyelitis.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Zihou Zhao
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Shiyu Liu
- Institute of Oral Tissue Engineering, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Wen Luo
- Department of Ultrasound, Xijing Hospital, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Guoliang Wang
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhenfeng Zhu
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Qiong Ma
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Yunyan Liu
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Linhu Wang
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Shuaikun Lu
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Yong Zhang
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| | - Jixian Qian
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| | - Yunfei Zhang
- Department of Orthopaedics, Second affiliated hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
5
|
Weng Y, Wang Z, Sun J, Han L, Li X, Wu B, Dong Q, Liu Y. Engineering of axially vascularized bone tissue using natural coral scaffold and osteogenic bone marrow mesenchymal stem cell sheets. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2021; 122:397-404. [PMID: 33529842 DOI: 10.1016/j.jormas.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Blood supply remains one of the obstacles to large bone tissue engineering. This study aimed to generate vascularized bone tissue by inducing axial vascularization into a construct combining natural coral scaffold and a bone marrow mesenchymal stem cells (BMSCs) sheet. MATERIAL AND METHODS Isolated BMSCs were cultured to form an osteogenic cell sheet using a continuous culture method. Natural coral scaffolds were prepared into customized shape with a cylinder of 20 mm length, 8 mm in outer diameter and 5 mm in inner diameter. Then, the freed superficial inferior epigastric vessel of rabbits was first wrapped with a cell sheet, and then inserted into the central passage of the scaffold, after being wrapped with another cell sheet, the complexes were implanted subcutaneously into a rabbit groin area. In contrast, the sheet-scaffold construct that implanted into groin subcutaneous area of the other side of the same rabbit with the distal end of the blood vessel was ligated, which was considered as control. New bone and vascularization formation were evaluated at 12 weeks postoperatively. RESULTS The volume of new bone formation and amount of capillary infiltration in the vascular circulation group were significantly greater than that in the vascular ligation group, which suggested that insertion of axial vessels could significantly promote angiogenesis and osteogenesis of the tissue-engineered bone. CONCLUSIONS These findings indicate that inserting an arteriovenous bundle into the constructs of mesenchymal stem cell sheet and coral has great potential for clinical applications to repair large bone defects.
Collapse
Affiliation(s)
- Yanming Weng
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Zhifa Wang
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Jianwei Sun
- School of Stomatology, Guangzhou Special Service Recuperation Center of PLA Rocket Force, Guangzhou 510010, China
| | - Leng Han
- Department of Pathology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Xiao Li
- Department of Stomatology, General Hospital of Southern Theater of PLA, Guangzhou 510010, China
| | - Buling Wu
- School of Stomatology, Southern Medical University, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qingshan Dong
- Department of Stomatology, General Hospital of Central Theater of PLA, Wuhan 430070, China
| | - Yanpu Liu
- State Key Laboratory of Military Stomatology, Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
6
|
Zeng JH, Qiu P, Xiong L, Liu SW, Ding LH, Xiong SL, Li JT, Xiao ZB, Zhang T. Bone repair scaffold coated with bone morphogenetic protein-2 for bone regeneration in murine calvarial defect model: Systematic review and quality evaluation. Int J Artif Organs 2019; 42:325-337. [PMID: 30905250 DOI: 10.1177/0391398819834944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To systematically assess the effects of hydroxyapatite bone repair scaffold coated with bone morphogenetic protein-2 on murine calvarial defect models and to determine the quality of studies according to the Animal Research Reporting in In Vivo Experiments guidelines. Internet search was performed in duplicate using PubMed, MEDLINE, Ovid and Embase databases (without restrictions on publication date). The Animal Research Reporting in In Vivo Experiments guidelines were used to evaluate the quality of selected studies. Following screening, 12 studies were eligible for the review. Studies with average quality coefficients predominated (66.67%), followed by poor (25%) and excellent (8.33%) quality coefficients. Minimum quality scores were assigned to the Animal Research Reporting in In Vivo Experiments guideline items: housing and husbandry (9), allocation (11), outcomes (12), interpretation (18) and generalizability (19). Sprague–Dawley rats were the most frequently used (50%) species, and most studies had a sample size of more than 30 (58.33%). A defect dimension of 5 mm was the most common (33.33%). The biological hydroxyapatite composite scaffold was common (50%), and the bioactive factors were bone morphogenetic protein-2 (50%) and recombinant human bone morphogenetic protein-2 (50%). Histomorphometric results showed that bone morphogenetic protein-2 enhanced the capacity to regenerate bone considerably. In addition, scaffolds with bone morphogenetic protein-2 resulted in a significant increase in the blood vessel in the new bone. The findings suggested that data on animal experiments of hydroxyapatite scaffold coated with bone morphogenetic protein-2 in murine calvarial defect models lack homogeneity. Animal experiment should follow the Animal Research Reporting in In Vivo Experiments guidelines to promote the high quality, integrity and reproducibility. This systematic review suggested that bone morphogenetic protein-2 enhanced the capacity to regenerate bone and the angiogenesis in the new bone.
Collapse
Affiliation(s)
- Jian-Hua Zeng
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Peng Qiu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Long Xiong
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Shi-Wei Liu
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ling-Hua Ding
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | | | - Jing-Tang Li
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Ze-Bu Xiao
- Department of Rehabilitation Medicine, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| | - Tao Zhang
- Department of Orthopaedics, Jiangxi Provincial People’s Hospital Affiliated to Nanchang University, Nanchang, P.R. China
| |
Collapse
|
7
|
Wu J, Miao G, Zheng Z, Li Z, Ren W, Wu C, Li Y, Huang Z, Yang L, Guo L. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair. J Biomater Appl 2018; 33:755-765. [DOI: 10.1177/0885328218810269] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Drug delivery and release are a major challenge fabricating bone tissue engineering. In this study, we fabricated new sustained release hydrogel scaffolds composited of mesoporous bioactive glass, sodium alginate and gelatin by a three-dimensional printing technique. Naringin and calcitonin gene-related peptide were used as drugs to prepare drug-loaded scaffolds by direct printing or surface absorption. The physicochemical properties of the scaffolds and the drug release profiles of the two drug-loading models were investigated. We also examined the biocompatibility of the scaffolds, as well as the effect of the released medium on the proliferation and osteogenic differentiation of human osteoblast-like MG-63 cell. The results showed that the scaffolds had a high porosity (approximately 80%) with an interconnected cubic pore structure, rough surface morphology, bioactivity and strong biocompatibility. Furthermore, the naringin or calcitonin gene-related peptide co-printed into the scaffold displayed a steady sustained release behaviour for up to 21 days without an initial burst release, while both naringin and calcitonin gene-related peptide absorbed onto the surface of the scaffold were completely released within two days. MG-63 cells cultured with the extraction containing released drugs displayed promoted cell proliferation and the expression of osteogenesis-related genes more effectively compared with the drug-free extractions. Therefore, these results demonstrate that the developed mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds provide a potential application for bone tissue engineering.
Collapse
|
8
|
Zamani Mazdeh D, Mirshokraei P, Emami M, Mirshahi A, Karimi I. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model. Res Vet Sci 2017; 118:11-18. [PMID: 29334646 DOI: 10.1016/j.rvsc.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/14/2017] [Accepted: 12/27/2017] [Indexed: 12/11/2022]
Abstract
Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more qualified approach that yields in a shorter time appears to be promising for the future cell-based clinical treatments of the non-union bone fractures. Exploiting mesenchymal stem cells (MSCs) appears to be an appealing alternative to the traditional clinical approach in the treatment of non-union bone defects. It has been shown that 17β-estradiol improves the osteogenesis and proliferation potential of the MSCs via estrogen receptors. We investigated the effect of 17β-estradiol on exploiting autologous BMSCs (bone marrow-derived MSCs) for the purpose of healing of radial non-union segmental defect in rabbit. Twenty rabbits were divided into 4 experimental groups: 1. Control group; 2. MSC treatment group; 3. 17β-estradiol (E2) treatment group; and 4. E2+MSC treatment group. Isolated BMSCs were seeded in a critical-sized defect on the radial mid-diaphysis that was filled with autologous fibrin clot differently in 4 groups: 1. intact fibrin clot (control); 2. Fibrin clot containing MSCs; 3. Estradiol; and 4. E2 and MSCs. Defect healing was assessed by radiological (week 0, 2, 4, 6, 8 and 10) and histopathological evaluation (week 10). Radiological evaluation data demonstrated that quantities for the E2+MSC group were significantly the greatest in comparison with the other groups at week 4 to 10 inclusive. Moreover, Histopathological evaluation indicated that the E2+MSC group had the highest score which was significantly greater than the E2 group and the control group (P<0.05). In-vivo application of in situ 17β-estradiol provides the seeded BMSCs with improved osteogenic capacity in tandem with an accelerated rate of bone healing. This obviously more efficient approach that yields in a shorter time appears to be promising for future cell-based clinical treatments of the non-union bone fractures.
Collapse
Affiliation(s)
- Delaram Zamani Mazdeh
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Pezhman Mirshokraei
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Center of Excellence in Ruminant Abortion and Neonatal Mortality, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammadreza Emami
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Mirshahi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Iraj Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Kesireddy V, Kasper FK. Approaches for building bioactive elements into synthetic scaffolds for bone tissue engineering. J Mater Chem B 2016; 4:6773-6786. [PMID: 28133536 PMCID: PMC5267491 DOI: 10.1039/c6tb00783j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bone tissue engineering (BTE) is emerging as a possible solution for regeneration of bone in a number of applications. For effective utilization, BTE scaffolds often need modifications to impart biological cues that drive diverse cellular functions such as adhesion, migration, survival, proliferation, differentiation, and biomineralization. This review provides an outline of various approaches for building bioactive elements into synthetic scaffolds for BTE and classifies them broadly under two distinct schemes; namely, the top-down approach and the bottom-up approach. Synthetic and natural routes for top-down approaches to production of bioactive constructs for BTE, such as generation of scaffold-extracellular matrix (ECM) hybrid constructs or decellularized and demineralized scaffolds, are provided. Similarly, traditional scaffold-based bottom-up approaches, including growth factor immobilization or peptide-tethered scaffolds, are provided. Finally, a brief overview of emerging bottom-up approaches for generating biologically active constructs for BTE is given. A discussion of the key areas for further investigation, challenges, and opportunities is also presented.
Collapse
Affiliation(s)
- Venu Kesireddy
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| | - F. Kurtis Kasper
- Department of Orthodontics, The University of Texas Health Science Center at Houston, School of Dentistry
| |
Collapse
|
10
|
Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation. Biomaterials 2016; 89:67-78. [PMID: 26950166 DOI: 10.1016/j.biomaterials.2016.02.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/16/2022]
Abstract
Current strategies for skeletal regeneration often require co-delivery of scaffold technologies, growth factors, and cellular material. However, isolation and expansion of stem cells can be time consuming, costly, and requires an additional procedure for harvest. Further, the introduction of supraphysiologic doses of growth factors may result in untoward clinical side effects, warranting pursuit of alternative methods for stimulating osteogenesis. In this work, we describe a nanoparticulate mineralized collagen glycosaminoglycan scaffold that induces healing of critical-sized rabbit cranial defects without addition of expanded stem cells or exogenous growth factors. We demonstrate that the mechanism of osteogenic induction corresponds to an increase in canonical BMP receptor signalling secondary to autogenous production of BMP-2 and -9 early and BMP-4 later during differentiation. Thus, nanoparticulate mineralized collagen glycosaminoglycan scaffolds may provide a novel growth factor-free and ex vivo progenitor cell culture-free implantable method for bone regeneration.
Collapse
|
11
|
Chen G, Qi Y, Niu L, DI T, Zhong J, Fang T, Yan W. Application of the cell sheet technique in tissue engineering. Biomed Rep 2015; 3:749-757. [PMID: 26623011 DOI: 10.3892/br.2015.522] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lie Niu
- Department of Orthopedic Surgery, Dongping County People's Hospital, Taian, Shandong 271500, P.R. China
| | - Tuoyu DI
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Tingting Fang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Xuhui, Shanghai 200032, P.R. China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
12
|
Delgado-Ruiz RA, Calvo Guirado JL, Romanos GE. Bone grafting materials in critical defects in rabbit calvariae. A systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res 2015; 29:620-634. [DOI: 10.1111/clr.12614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - José Luis Calvo Guirado
- International Dentistry Research Cathedra; San Antonio Catholic University of Murcia (UCAM); Murcia Spain
| | | |
Collapse
|
13
|
Kang Y, Ren L, Yang Y. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS APPLIED MATERIALS & INTERFACES 2014; 6:9622-9633. [PMID: 24858072 PMCID: PMC4075998 DOI: 10.1021/am502056q] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/23/2014] [Indexed: 05/29/2023]
Abstract
Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.
Collapse
Affiliation(s)
- Yunqing Kang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
| | - Liling Ren
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- School
of Stomatology, Lanzhou University 199 Donggang West Road, Lanzhou, Gansu 730000, China
| | - Yunzhi Yang
- Department
of Orthopedic Surgery, Stanford University 300 Pasteur Drive, Stanford, California 94305, United States
- Department
of Materials Science and Engineering, Stanford
University, 300 Pasteur
Drive, Stanford, California 94305, United States
| |
Collapse
|
14
|
Jin H, Zhang K, Qiao C, Yuan A, Li D, Zhao L, Shi C, Xu X, Ni S, Zheng C, Liu X, Yang B, Sun H. Efficiently engineered cell sheet using a complex of polyethylenimine-alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation. Int J Nanomedicine 2014; 9:2179-90. [PMID: 24855355 PMCID: PMC4019610 DOI: 10.2147/ijn.s60937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine-alginate (PEI-al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI-al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI-al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration.
Collapse
Affiliation(s)
- Han Jin
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Chunyan Qiao
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Anliang Yuan
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Daowei Li
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Liang Zhao
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Ce Shi
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Xiaowei Xu
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Shilei Ni
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USA
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Hongchen Sun
- Department of Pathology, School of Stomatology, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
15
|
Delgado-Ruiz RA, Calvo-Guirado JL, Romanos GE. Critical size defects for bone regeneration experiments in rabbit calvariae: systematic review and quality evaluation using ARRIVE guidelines. Clin Oral Implants Res 2014; 26:915-930. [PMID: 24766503 DOI: 10.1111/clr.12406] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVES To perform a systematic review of studies that report the healing of critical size defects (CSDs) in rabbit calvaria and to determine the quality of the studies according to ARRIVE guidelines. MATERIALS AND METHODS An Internet search was made in duplicate between December 2011 and August 2013 using MEDLINE, PubMed and Google Scholar (without restrictions on date of publication) for rabbit studies reporting the healing of CSD in the calvaria. Animal Research Reporting in Vivo Experiment (ARRIVE) guidelines (a list of 20 aspects to score and to ensure comparison between different experimental studies in animals) were used to evaluate the quality of the selected works. RESULTS Twenty-five manuscripts were evaluated. Case-control studies predominated (92.59%). Animal age was not stated in 70.37% of the studies; weight was not reported in 29.62%; most animals weighed 3.5 kg (26.31%). A CSD dimension of 15 mm was common (51.61%), generally located centrally (51.85%), followed by bilateral locations (48.14%). Circular (66.66%), rectangular (14.81%), square (14.81%) and ovoid (1.48%) geometries were used. Histomorphometric data showed incomplete healing in all CSDs and higher percentages of healing in smaller defects (<10 mm). The longer the healing time allowed, the more bone healing took place, for both smaller and larger defects (>15 mm). Minimum quality grades were assigned to ARRIVE items study design (6), experimental animals (8), housing and husbandry (9), sample size (10), allocation (11), statistics (13), results-baseline data (14), numbers analyzed (15), adverse events (17) and funding (20). CONCLUSIONS Data on CSDs in rabbit calvariae lack homogeneity. Smaller defects can be considered critical depending on the time of sacrifice. When new diagnostic technologies are used in addition to histomorphometry, these should be applied with caution to facilitate future comparison with other research. The ARRIVE guidelines should be followed in any animal research protocol to improve the homogeneity, comparison and reproducibility between studies.
Collapse
|
16
|
Tovar N, Jimbo R, Gangolli R, Perez L, Manne L, Yoo D, Lorenzoni F, Witek L, Coelho PG. Evaluation of bone response to various anorganic bovine bone xenografts: an experimental calvaria defect study. Int J Oral Maxillofac Surg 2013; 43:251-60. [PMID: 23948358 DOI: 10.1016/j.ijom.2013.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 01/04/2023]
Abstract
This in vivo study investigated the in vivo performance of two newly developed synthetic bone substitutes and compared them to commercially available xenografts (Bio-Oss, Geistlich Pharma AG, Switzerland; OsteoGraf, Dentsply, USA). The materials were tested in a rabbit calvaria model, and the bone forming properties were observed at 4 and 8 weeks after implantation by means of histomorphometry and micro computed tomography (micro-CT). Defects without any graft material were used as negative controls. Micro-CT showed that all materials tested presented new bone formation that filled the defects at both time points, whereas the negative control presented less bone formation, with soft tissue infiltration into the defects. Comparable bone fill percentages were observed for histomorphometric and micro-CT results. Even though no statistically significant difference was found quantitatively between all of the bone graft substitute groups, a higher mean decrease in graft material filling the defects, along with higher remodelling activity, was evident for the experimental materials compared to the commercially available xenografts at 8 weeks. The results indicate that the experimental materials possess high degradability, along with osteoconduction comparable to commercially available xenografts.
Collapse
Affiliation(s)
- N Tovar
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - R Jimbo
- Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden.
| | - R Gangolli
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - L Perez
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - L Manne
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - D Yoo
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| | - F Lorenzoni
- Department of Prosthodontics, University of Sao Paulo - Bauru School of Dentistry, Bauru, Brazil
| | - L Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA; School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - P G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA; Department of Periodontology and Implant Dentistry, New York University College of Dentistry, New York, USA
| |
Collapse
|
17
|
Li D, Wang W, Guo R, Qi Y, Gou Z, Gao C. Restoration of rat calvarial defects by poly(lactide-co-glycolide)/hydroxyapatite scaffolds loaded with bone mesenchymal stem cells and DNA complexes. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11434-011-4914-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Petrochenko P, Narayan RJ. Novel approaches to bone grafting: porosity, bone morphogenetic proteins, stem cells, and the periosteum. J Long Term Eff Med Implants 2011; 20:303-15. [PMID: 21488823 DOI: 10.1615/jlongtermeffmedimplants.v20.i4.50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The disadvantages involving the use of a patient's own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders.
Collapse
Affiliation(s)
- Peter Petrochenko
- Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, NC, USA.
| | | |
Collapse
|
19
|
Ma D, Zhong C, Yao H, Liu Y, Chen F, Li J, Zhao J, Mao T, Ren L. Engineering injectable bone using bone marrow stromal cell aggregates. Stem Cells Dev 2010; 20:989-99. [PMID: 21091305 DOI: 10.1089/scd.2010.0348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
With the increasing popularity of minimally invasive surgery, to develop an injectable bone would be highly preferable for the repair of bone nonunions and defects. However, the use of dissociated cells and exogenous carriers to construct injectable bone faces several drawbacks. To circumvent these limitations, we first harvested a cell sheet from rabbit bone marrow stromal cells using a continuous culture method and a scraping technique. The obtained sheet was then cut into fragments of multicellular aggregates, each of which was composed of a certain number of cells, extracellular matrix, and intercellular connections. The aggregates showed apparent mineralization properties, high alkaline phosphatase activity, increased osteocalcin content, and upregulated bone markers, implying their in vitro osteogenic potential. Then, serum-free medium (the control group), dissociated cell suspension (the cell group), and suspension of multicellular aggregates (the aggregate group) were injected subcutaneously on the back of the nude mice to evaluate ectopic bone formation. The results revealed that the aggregate group showed significantly larger and denser bone at the injection sites than the cell group, whereas bone formation did not occur in the control group. Additionally, when injecting them locally into the mandibular fracture gap of delayed healing in a rabbit model, we observed the most improved bone healing in the aggregate group. More cells survive and retain at the injection sites in the aggregate group than that in the cell group postoperatively. Our study indicates that the multicellular aggregates might be considered a promising strategy to generate injectable bone tissue and improve the efficacy of cell therapy.
Collapse
Affiliation(s)
- Dongyang Ma
- Department of Oral and Maxillofacial Surgery, Lanzhou General Hospital, Lanzhou Command of PLA, Lanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|