1
|
Tang F, Zhao XL, Xu LY, Zhang JN, Ao H, Peng C. Endothelial dysfunction: Pathophysiology and therapeutic targets for sepsis-induced multiple organ dysfunction syndrome. Biomed Pharmacother 2024; 178:117180. [PMID: 39068853 DOI: 10.1016/j.biopha.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Sepsis and septic shock are critical medical conditions characterized by a systemic inflammatory response to infection, significantly contributing to global mortality rates. The progression to multiple organ dysfunction syndrome (MODS) represents the most severe complication of sepsis and markedly increases clinical mortality. Central to the pathophysiology of sepsis, endothelial cells play a crucial role in regulating microcirculation and maintaining barrier integrity across various organs and tissues. Recent studies have underscored the pivotal role of endothelial function in the development of sepsis-induced MODS. This review aims to provide a comprehensive overview of the pathophysiology of sepsis-induced MODS, with a specific focus on endothelial dysfunction. It also compiles compelling evidence regarding potential small molecules that could attenuate sepsis and subsequent multi-organ damage by modulating endothelial function. Thus, this review serves as an essential resource for clinical practitioners involved in the diagnosing, managing, and providing intensive care for sepsis and associated multi-organ injuries, emphasizing the importance of targeting endothelial cells to enhance outcomes of the patients.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Rho-Proteins and Downstream Pathways as Potential Targets in Sepsis and Septic Shock: What Have We Learned from Basic Research. Cells 2021; 10:cells10081844. [PMID: 34440613 PMCID: PMC8391638 DOI: 10.3390/cells10081844] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/19/2023] Open
Abstract
Sepsis and septic shock are associated with acute and sustained impairment in the function of the cardiovascular system, kidneys, lungs, liver, and brain, among others. Despite the significant advances in prevention and treatment, sepsis and septic shock sepsis remain global health problems with elevated mortality rates. Rho proteins can interact with a considerable number of targets, directly affecting cellular contractility, actin filament assembly and growing, cell motility and migration, cytoskeleton rearrangement, and actin polymerization, physiological functions that are intensively impaired during inflammatory conditions, such as the one that occurs in sepsis. In the last few decades, Rho proteins and their downstream pathways have been investigated in sepsis-associated experimental models. The most frequently used experimental design included the exposure to bacterial lipopolysaccharide (LPS), in both in vitro and in vivo approaches, but experiments using the cecal ligation and puncture (CLP) model of sepsis have also been performed. The findings described in this review indicate that Rho proteins, mainly RhoA and Rac1, are associated with the development of crucial sepsis-associated dysfunction in different systems and cells, including the endothelium, vessels, and heart. Notably, the data found in the literature suggest that either the inhibition or activation of Rho proteins and associated pathways might be desirable in sepsis and septic shock, accordingly with the cellular system evaluated. This review included the main findings, relevance, and limitations of the current knowledge connecting Rho proteins and sepsis-associated experimental models.
Collapse
|
3
|
Morsing SKH, Al-Mardini C, van Stalborch AMD, Schillemans M, Bierings R, Vlaar AP, van Buul JD. Double-Hit-Induced Leukocyte Extravasation Driven by Endothelial Adherens Junction Destabilization. THE JOURNAL OF IMMUNOLOGY 2020; 205:511-520. [PMID: 32532835 DOI: 10.4049/jimmunol.1900816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 05/09/2020] [Indexed: 12/31/2022]
Abstract
During inflammation, endothelial cells are bombarded with cytokines and other stimuli from surrounding cells. Leukocyte extravasation and vascular leakage are both prominent but believed to be uncoupled as they occur in separate spatiotemporal patterns. In this study, we investigated a "double-hit" approach on primary human endothelial cells primed with LPS followed by histamine. Using neutrophil transendothelial migration (TEM) under physiological flow assays, we found that an LPS-primed endothelium synergistically enhanced neutrophil TEM when additionally treated with histamine, whereas the effects on neutrophil TEM of the individual stimuli were moderate to undetectable. Interestingly, the double-hit-induced TEM increase was not due to decreased endothelial barrier, increased adhesion molecule expression, or Weibel-Palade body release. Instead, we found that it was directly correlated with junctional remodeling. Compounds that increased junctional "linearity" (i.e., stability) counteracted the double-hit effect on neutrophil TEM. We conclude that a compound, in this case histamine (which has a short primary effect on vascular permeability), can have severe secondary effects on neutrophil TEM in combination with an inflammatory stimulus. This effect is due to synergic modifications of the endothelial cytoskeleton and junctional remodeling. Therefore, we hypothesize that junctional linearity is a better and more predictive readout than endothelial resistance for compounds aiming to attenuate inflammation.
Collapse
Affiliation(s)
- Sofia K H Morsing
- Molecular Cell Biology Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Claudia Al-Mardini
- Molecular Cell Biology Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Anne-Marieke D van Stalborch
- Molecular Cell Biology Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Maaike Schillemans
- Plasma Proteins Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands
| | - Ruben Bierings
- Plasma Proteins Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands.,Department of Hematology, Erasmus Medical Center, 3015 GD Rotterdam, the Netherlands
| | - Alexander P Vlaar
- Department of Intensive Care, Amsterdam University Medical Center, 1081 HV Amsterdam, the Netherlands; and
| | - Jaap D van Buul
- Molecular Cell Biology Laboratory, Department of Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, Academic Medical Center at the University of Amsterdam, 1066 CX Amsterdam, the Netherlands; .,Leeuwenhoek Centre for Advanced Microscopy, Section of Molecular Cytology, Swammerdam Institute for Life Sciences at University of Amsterdam, 1098 HX Amsterdam, the Netherlands
| |
Collapse
|
4
|
Tripathi D, Biswas B, Manhas A, Singh A, Goyal D, Gaestel M, Jagavelu K. Proinflammatory Effect of Endothelial Microparticles Is Mitochondria Mediated and Modulated Through MAPKAPK2 (MAPK-Activated Protein Kinase 2) Leading to Attenuation of Cardiac Hypertrophy. Arterioscler Thromb Vasc Biol 2020; 39:1100-1112. [PMID: 31070456 DOI: 10.1161/atvbaha.119.312533] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective- This study investigates the functional significance of mitochondria present in endothelial microparticles (EMP) and how MK2 (MAPKAPK2 [MAPK-activated protein kinase 2]) governs EMP production and its physiological effect on cardiac hypertrophy. Approach and Results- Flow cytometric analysis, confocal imaging, oxygen consumption rate measurement through Seahorse were used to confirm the presence of functionally active mitochondria in nontreated EMP (EMP derived from untreated control cells), lipopolysaccharide, and oligomycin treatment increased mitochondrial reactive oxygen species activity in EMP (EMP derived from cells treated with lipopolysaccharide and EMP derived from cells treated with oligomycin, respectively). The dysfunctional mitochondria contained in EMP derived from cells treated with lipopolysaccharide and EMP derived from cells treated with oligomycin induced the expression of proinflammatory mediators in the target endothelial cells leading to the augmented adhesion of human monocytic cell line on EA.hy926 cells. Multiphoton real-time imaging detected the increased adherence of EMP derived from cells treated with oligomycin at the site of carotid artery injury as compared to EMP derived from untreated control cells. MK2 regulates EMP generation during inflammation by reducing E-selectin expression and regulating the cytoskeleton rearrangement through ROCK-2 (Rho-associated coiled-coil containing protein kinase 2) pathway. MK2-deficient EMP reduced the E-selectin and ICAM-1 (intracellular adhesion molecule-1) expression on target endothelial cells leading to reduced monocyte attachment and reduced cardiac hypertrophy in mice. Conclusions- MK2 promotes the proinflammatory effect of EMP mediated through dysfunctional mitochondria. MK2 modulates the inflammatory effect induced during cardiac hypertrophy through EMP.
Collapse
Affiliation(s)
- Dipti Tripathi
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.).,Academy of Council of Scientific and Industrial Research, CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India (D.T., A.M., A.S., K.J.)
| | - Bharti Biswas
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.)
| | - Amit Manhas
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.).,Academy of Council of Scientific and Industrial Research, CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India (D.T., A.M., A.S., K.J.)
| | - Abhinav Singh
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.).,Academy of Council of Scientific and Industrial Research, CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India (D.T., A.M., A.S., K.J.)
| | - Dipika Goyal
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.)
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Germany (M.G.)
| | - Kumaravelu Jagavelu
- From the Department of Pharmacology, Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India (D.T., B.B., A.M., A.S., D.G., K.J.).,Academy of Council of Scientific and Industrial Research, CSIR-Human Resource Development Centre (CSIR-HRDC), Ghaziabad, Uttar Pradesh, India (D.T., A.M., A.S., K.J.)
| |
Collapse
|
5
|
Chen J, Shi M, Wang N, Yi P, Sun L, Meng Q. TSH inhibits eNOS expression in HMEC-1 cells through the TSHR/PI3K/AKT signaling pathway. ANNALES D'ENDOCRINOLOGIE 2019; 80:273-279. [PMID: 31606200 DOI: 10.1016/j.ando.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effects of thyroid-stimulating hormone (TSH) on the expression of endothelial nitric oxide synthase (eNOS) in human microvascular endothelial cells (HMEC-1) and explore the potential mechanism. MATERIALS AND METHODS Expression of thyroid-stimulating hormone receptor (TSHR) in HMEC-1 cells was determined by immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting. Cell proliferation and the production of nitric oxide (NO) and superoxide anion (SA) were measured after TSH treatment. eNOS expression and AKT phosphorylation were detected by Western blotting. RESULTS TSHR was expressed in HMEC-1 cells. TSH promoted HMEC-1 cell proliferation and SA production, but inhibited NO generation by dose-dependent blocking of mRNA and protein expression of eNOS. Mechanism studies demonstrated that TSH promoted AKT phosphorylation (P<0.05), and that LY294002 inhibited the reduction of eNOS expression by TSH. Moreover, TSH activated the AKT signaling pathway through binding to TSHR on HMEC-1 cells. CONCLUSIONS TSH inhibits NO production via the TSHR/AKT signaling pathway.
Collapse
Affiliation(s)
- Jing Chen
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China
| | - Minmin Shi
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China
| | - Na Wang
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China
| | - Pengfei Yi
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China
| | - Lin Sun
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China
| | - Qiang Meng
- Department of Endocrinology 1, Affiliated Hospital of Jining Medical University, 272029 Jining, Shandong, China.
| |
Collapse
|
6
|
Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids Signaling in Lamellipodia Formation and Enhancement of Endothelial Barrier Function. CURRENT TOPICS IN MEMBRANES 2018; 82:1-31. [PMID: 30360778 DOI: 10.1016/bs.ctm.2018.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sphingolipids, first described in the brain in 1884, are important structural components of biological membranes of all eukaryotic cells. In recent years, several lines of evidence support the critical role of sphingolipids such as sphingosine, sphingosine-1-phosphate (S1P), and ceramide as anti- or pro-inflammatory bioactive lipid mediators in a variety of human pathologies including pulmonary and vascular disorders. Among the sphingolipids, S1P is a naturally occurring agonist that exhibits potent barrier enhancing property in the endothelium by signaling via G protein-coupled S1P1 receptor. S1P, S1P analogs, and other barrier enhancing agents such as HGF, oxidized phospholipids, and statins also utilize the S1P/S1P1 signaling pathway to generate membrane protrusions or lamellipodia, which have been implicated in resealing of endothelial gaps and maintenance of barrier integrity. A better understanding of sphingolipids mediated regulation of lamellipodia formation and barrier enhancement of the endothelium will be critical for the development of sphingolipid-based therapies to alleviate pulmonary disorders such as sepsis-, radiation-, and mechanical ventilation-induced acute lung injury.
Collapse
Affiliation(s)
- Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mark Shaaya
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrei Karginov
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States; Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
7
|
Barabutis N, Khangoora V, Marik PE, Catravas JD. Hydrocortisone and Ascorbic Acid Synergistically Prevent and Repair Lipopolysaccharide-Induced Pulmonary Endothelial Barrier Dysfunction. Chest 2017; 152:954-962. [PMID: 28739448 DOI: 10.1016/j.chest.2017.07.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sepsis refers to the dysregulated host immune response elicited by microbial infections resulting in life-threatening organ dysfunction. Sepsis represents a medical challenge, since it is associated with a rate of death as high as 60%. Septic shock is strongly associated with vascular dysfunction and elevated pulmonary capillary permeability. We recently reported that the combination of hydrocortisone (HC), ascorbic acid (vitC), and thiamine dramatically improves outcomes and reduces mortality in patients with sepsis. In the present study, we provide experimental evidence in support of the hypothesis that the combination of HC and vitC enhances endothelial barrier function. METHODS Human lung microvascular endothelial cells were exposed to lipopolysaccharide (LPS) in the absence or presence of HC and vitC. RESULTS LPS alone induced profound hyperpermeability, as reflected in decreased values of transendothelial electrical resistance. vitC alone did not exhibit barrier enhancement properties nor did it affect the LPS-induced hyperpermeability. Similarly, HC alone exhibited only a minor barrier-enhancing and protective effect. Conversely, the combination of HC and vitC, either as before or after treatment, dramatically reversed the LPS-induced barrier dysfunction. The barrier-protective effects of HC and vitC were associated with reversal of LPS-induced p53 and phosphorylated cofilin downregulation and LPS-induced RhoA activation and myosin light chain phosphorylation. CONCLUSIONS These data provide a novel mechanism of endothelial barrier protection and suggest one possible pathway that may contribute to the therapeutic effects of HC and vitC in patients with sepsis.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, College of Health Sciences, Old Dominion University, Norfolk, VA
| | - Vikramjit Khangoora
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA
| | - John D Catravas
- School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA; Departments of Medicine and Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA.
| |
Collapse
|
8
|
Schnoor M, García Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 2017; 74:1985-1997. [PMID: 28154894 PMCID: PMC11107778 DOI: 10.1007/s00018-016-2449-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.
Collapse
Affiliation(s)
- Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| | - Alexander García Ponce
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720, Mexico City, Mexico
| | - Jan Rossaint
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
9
|
Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G246-51. [PMID: 27288423 PMCID: PMC5007289 DOI: 10.1152/ajpgi.00118.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology is highlighted in liver regeneration and chronic liver diseases, where they coordinate paracrine cell behavior. During regeneration, liver sinusoidal endothelial cells induce hepatocyte proliferation and angiogenesis. During fibrogenesis, they undergo morphological and functional changes, which are reflected by their role in hepatic stellate cell activation, inflammation, and distorted sinusoidal structure. Therapeutic strategies to target angiocrine signaling are in progress but are in the early stages. Here, we offer a short synthesis of recent studies on angiocrine signaling in liver homeostasis, regeneration, and fibrogenesis.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, Zhang W, Wang P, Zuo J, Xu Z, Luan J. Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget 2016; 7:8625-39. [PMID: 26843619 PMCID: PMC4890992 DOI: 10.18632/oncotarget.7065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Circadian clock in mammals is determined by a core oscillator in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronized peripheral clocks in other tissues. The coherent timing systems could sustain robust output of circadian rhythms in response to the entrainment controlled environmentally. Disparate approaches have discovered that clock genes and clock-controlled genes (CCGs) exist in nearly all mammalian cell types and are essential for establishing the mechanisms and complexity of internal time-keeping systems. Accumulating evidence demonstrates that the control of homeostasis and pathology in the liver involves intricate loops of transcriptional and post-translational regulation of clock genes expression. This review will focus on the recent advances with great importance concerning clock rhythms linking liver homeostasis and diseases. We particularly highlight what is currently known of the evolving insights into the mechanisms underlying circadian clock . Eventually , findings during recent years in the field might prompt new circadian-related chronotherapeutic strategies for the diagnosis and treatment of liver diseases by coupling these processes.
Collapse
Affiliation(s)
- Dexi Zhou
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yaqin Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Lu Chen
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Leijuan Jia
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jie Yuan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Mei Sun
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen Zhang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Peipei Wang
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jian Zuo
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhenyu Xu
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jiajie Luan
- Laboratory of Clinical Pharmacy of Wannan Medical College, Wuhu, Anhui Province, China
- Department of Pharmacy in Yijishan Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
11
|
Soleimanpour H, Safari S, Rahmani F, Nejabatian A, Alavian SM. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article. HEPATITIS MONTHLY 2015; 15:e27063. [PMID: 26587034 PMCID: PMC4644574 DOI: 10.5812/hepatmon.27063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/19/2015] [Accepted: 08/04/2015] [Indexed: 12/11/2022]
Abstract
CONTEXT Liver as an important organ has a vital role in physiological processes in the body. Different causes can disrupt normal function of liver. Factors such as hypo-perfusion, hypoxemia, infections and some others can cause hepatic injury and hepatic shock. EVIDENCE ACQUISITION Published research resources from 2002 to May 2015 in some databases (PubMed, Scopus, Index Copernicus, DOAJ, EBSCO-CINAHL, Science direct, Cochrane library and Google scholar and Iranian search database like SID and Iranmedex) were investigated for the present study. RESULTS Different causes can lead to hepatic shock. Most of these causes can be prevented by early resuscitation and treatment of underlying factors. CONCLUSIONS Hepatic shock is detected in ill patients, especially those with hemodynamic disorders. It can be prevented by early treatment of underlying disease. There is no definite treatment for hepatic shock and should be managed conservatively. Hepatic shock in patients can increase the mortality rate.
Collapse
Affiliation(s)
- Hassan Soleimanpour
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Saeid Safari
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, IR Iran
| | - Farzad Rahmani
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Arezu Nejabatian
- Students’ Research Committee, Tabriz University of Medical Sciences, Tabriz, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Department of Molecular Hepatology, Middle East Liver Disease Center, Tehran, IR Iran
- Corresponding Author: Seyed Moayed Alavian, Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188945186, Fax: +98-2188945188, E-mail:
| |
Collapse
|
12
|
Ko AR, Hyun HW, Min SJ, Kim JE, Kang TC. Endothelin-1 induces LIMK2-mediated programmed necrotic neuronal death independent of NOS activity. Mol Brain 2015; 8:58. [PMID: 26438559 PMCID: PMC4595180 DOI: 10.1186/s13041-015-0149-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/18/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Recently, we have reported that LIM kinase 2 (LIMK2) involves programmed necrotic neuronal deaths induced by aberrant cyclin D1 expression following status epilepticus (SE). Up-regulation of LIMK2 expression induces neuronal necrosis by impairment of dynamin-related protein 1 (DRP1)-mediated mitochondrial fission. However, we could not elucidate the upstream effecter for LIMK2-mediated neuronal death. Thus, we investigated the role of endothelin-1 (ET-1) in LIMK2-mediated neuronal necrosis, since ET-1 involves neuronal death via various pathways. RESULTS Following SE, ET-1 concentration and its mRNA were significantly increased in the hippocampus with up-regulation of ETB receptor expression. BQ788 (an ETB receptor antagonist) effectively attenuated SE-induced neuronal damage as well as reduction in LIMK2 mRNA/protein expression. In addition, BQ788 alleviated up-regulation of Rho kinase 1 (ROCK1) expression and impairment of DRP1-mediated mitochondrial fission in CA1 neurons following SE. BQ788 also attenuated neuronal death and up-regulation of LIMK2 expression induced by exogenous ET-1 injection. CONCLUSION These findings suggest that ET-1 may be one of the upstream effectors for programmed neuronal necrosis through abnormal LIMK2 over-expression by ROCK1.
Collapse
Affiliation(s)
- Ah-Reum Ko
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Hye-Won Hyun
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Su-Ji Min
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea
| | - Ji-Eun Kim
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea.
| | - Tae-Cheon Kang
- Department of Anatomy & Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chunchon, Kangwon-Do, 200-702, South Korea.
| |
Collapse
|
13
|
What's new in Shock, December 2014? Shock 2015; 42:483-4. [PMID: 25397725 DOI: 10.1097/shk.0000000000000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Tissue inflammation and nitric oxide-mediated alterations in cardiovascular function are major determinants of endotoxin-induced insulin resistance. Cardiovasc Diabetol 2015; 14:56. [PMID: 25986700 PMCID: PMC4484635 DOI: 10.1186/s12933-015-0223-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/05/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Endotoxin (i.e. LPS) administration induces a robust inflammatory response with accompanying cardiovascular dysfunction and insulin resistance. Overabundance of nitric oxide (NO) contributes to the vascular dysfunction. However, inflammation itself also induces insulin resistance in skeletal muscle. We sought to investigate whether the cardiovascular dysfunction induced by increased NO availability without inflammatory stress can promote insulin resistance. Additionally, we examined the role of inducible nitric oxide synthase (iNOS or NOS2), the source of the increase in NO availability, in modulating LPS-induced decrease in insulin-stimulated muscle glucose uptake (MGU). METHODS The impact of NO donor infusion on insulin-stimulated whole-body and muscle glucose uptake (hyperinsulinemic-euglycemic clamps), and the cardiovascular system was assessed in chronically catheterized, conscious mice wild-type (WT) mice. The impact of LPS on insulin action and the cardiovascular system were assessed in WT and global iNOS knockout (KO) mice. Tissue blood flow and cardiac function were assessed using microspheres and echocardiography, respectively. Insulin signaling activity, and gene expression of pro-inflammatory markers were also measured. RESULTS NO donor infusion decreased mean arterial blood pressure, whole-body glucose requirements, and MGU in the absence of changes in skeletal muscle blood flow. LPS lowered mean arterial blood pressure and glucose requirements in WT mice, but not in iNOS KO mice. Lastly, despite an intact inflammatory response, iNOS KO mice were protected from LPS-mediated deficits in cardiac output. LPS impaired MGU in vivo, regardless of the presence of iNOS. However, ex vivo, insulin action in muscle obtained from LPS treated iNOS KO animals was protected. CONCLUSION Nitric oxide excess and LPS impairs glycemic control by diminishing MGU. LPS impairs MGU by both the direct effect of inflammation on the myocyte, as well as by the indirect NO-driven cardiovascular dysfunction.
Collapse
|