1
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
2
|
Xia C, Xu H, Fang L, Chen J, Yuan W, Fu D, Wang X, He B, Xiao L, Wu C, Tong P, Chen D, Wang P, Jin H. β-catenin inhibition disrupts the homeostasis of osteogenic/adipogenic differentiation leading to the development of glucocorticoid-induced osteonecrosis of the femoral head. eLife 2024; 12:RP92469. [PMID: 38376133 PMCID: PMC10942600 DOI: 10.7554/elife.92469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GONFH) is a common refractory joint disease characterized by bone damage and the collapse of femoral head structure. However, the exact pathological mechanisms of GONFH remain unknown. Here, we observed abnormal osteogenesis and adipogenesis associated with decreased β-catenin in the necrotic femoral head of GONFH patients. In vivo and in vitro studies further revealed that glucocorticoid exposure disrupted osteogenic/adipogenic differentiation of bone marrow mesenchymal cells (BMSCs) by inhibiting β-catenin signaling in glucocorticoid-induced GONFH rats. Col2+ lineage largely contributes to BMSCs and was found an osteogenic commitment in the femoral head through 9 mo of lineage trace. Specific deletion of β-catenin gene (Ctnnb1) in Col2+ cells shifted their commitment from osteoblasts to adipocytes, leading to a full spectrum of disease phenotype of GONFH in adult mice. Overall, we uncover that β-catenin inhibition disrupting the homeostasis of osteogenic/adipogenic differentiation contributes to the development of GONFH and identify an ideal genetic-modified mouse model of GONFH.
Collapse
Affiliation(s)
- Chenjie Xia
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- Department of Orthopedic Surgery, the Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Huihui Xu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Fang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Jiali Chen
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Wenhua Yuan
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Danqing Fu
- School of Basic Medical Sciences, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xucheng Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Bangjian He
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Luwei Xiao
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Chengliang Wu
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
| | - Peijian Tong
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced TechnologyShenzhenChina
| | - Pinger Wang
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hongting Jin
- Institute of Orthopedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese MedicineHangzhouChina
- The First College of Clinical Medicine, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
3
|
Kim C, Kwak W, Won DH, Kim J, Hwang DB, Kim N, Kang M, Jeon Y, Park YI, Park JW, Yun JW. Loss of Dact2 alleviates cisplatin-induced nephrotoxicity through regulation of the Igfl-MAPK pathway axis. Cell Biol Toxicol 2023; 39:3197-3217. [PMID: 37603122 DOI: 10.1007/s10565-023-09827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
Wnt signaling is a principal pathway regulating the essential activities of cell proliferation. Here, we investigated the effect of Wnt/β-catenin signaling on in vivo drug-induced renal injury through the deletion of Dact2, a Wnt antagonist, and deciphered the underlying mechanism. Wild-type (WT) and Dact2 knockout (KO) mice were administered a single intraperitoneal injection of cisplatin to induce renal injury. The injury was alleviated in Dact2 KO mice, which showed lower levels of blood urea nitrogen and creatinine. RNA sequencing revealed 194 differentially expressed genes (DEGs) between WT and Dact2 KO mouse kidney before cisplatin treatment. Among them, higher levels of Igf1, one of the Wnt target genes responsible for "Positive regulation of cell proliferation" in KO mice, were confirmed along with the induction of Ki67 expression. In RNA-seq analysis comparing WT and Dact2 KO mice after cisplatin treatment, genes related to "Apoptosis" and "Activation of mitogen-activated protein kinase (MAPK) activity" were among the downregulated DEGs in KO mice. These results were corroborated in western blotting of proteins related to apoptosis and proapoptotic MAPK pathway; the expression of which was found to be lower in cisplatin-treated KO mice. Importantly, β-catenin was found to directly bind to and regulate the transcription of Igf1, leading to the alleviation of cisplatin-induced cytotoxicity by the Wnt agonist, CHIR-99021. In addition, Igf1 knockdown accelerated cisplatin-induced cytotoxicity, accompanied by the MAPK upregulation. Our findings suggest that Dact2 knockout could protect cisplatin-induced nephrotoxicity by inhibiting apoptosis, possibly through the regulation of the Igf1-MAPK axis associated with Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Woori Kwak
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Jina Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Nahyun Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Minhwa Kang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Habib R, Fahim S, Wahid M, Ainuddin J. Optimisation of a Method for the Differentiation of Human Umbilical Cord-derived Mesenchymal Stem Cells Toward Renal Epithelial-like Cells. Altern Lab Anim 2023; 51:363-375. [PMID: 37831588 DOI: 10.1177/02611929231207774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Human umbilical cord-derived mesenchymal stem cells (hucMSCs) can differentiate into multiple cell lineages, but few methods have been developed to generate kidney lineage cells. Due to their human origin, pluripotent nature and immunomodulatory properties, these stem cells are attractive candidates for clinical applications such as the repair or regeneration of damaged organs. This study evaluated the renal differentiation potential of hucMSCs, when exposed for 10 days to optimised concentrations of retinoic acid, activin-A and bone morphogenetic protein-7 (BMP-7) in various combinations, with and without the priming of the cells with a Wnt signalling pathway activator (CHIR99021). The hucMSCs were isolated and characterised according to surface marker expression (CD73, CD90, CD44, CD146 and CD8) and tri-lineage differentiation potential. The expression of key marker genes (OSR1, TBXT, HOXA13, SIX2, PAX2, KRT18 and ZO1) was examined by qRT-PCR. Specific marker protein expression (E-cadherin, cytokeratin-8 and cytokeratin-19) was analysed by immunocytochemistry. CHIR99021-primed cells treated with the retinoic acid, activin-A and BMP-7 cocktail showed epithelial cell-like differentiation - i.e. distinct phenotypic changes, as well as upregulated gene and protein expression, were observed that were consistent with an epithelial cell phenotype. Thus, our results showed that hucMSCs can efficiently differentiate into renal epithelial-like cells. This work may help in the development of focused therapeutic strategies, in which lineage-defined human stem cells can be used for renal regeneration.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Shumaila Fahim
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Mohsin Wahid
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences (Ojha campus), Karachi, Pakistan
| | - Jahanara Ainuddin
- Department of Gynaecology and Obstetrics, Dow University Hospital, Karachi, Pakistan
| |
Collapse
|
5
|
Xu Y, Jiang W, Zhong L, Li H, Bai L, Chen X, Lin Y, Zheng D. circ-AKT3 aggravates renal ischaemia-reperfusion injury via regulating miR-144-5p /Wnt/β-catenin pathway and oxidative stress. J Cell Mol Med 2022; 26:1766-1775. [PMID: 33200535 PMCID: PMC8918412 DOI: 10.1111/jcmm.16072] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/03/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
Renal ischaemia-reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR-144-5p acts as a molecular trigger in various diseases. We presumed that miR-144-5p might be involved RI/R injury progression. We found that RI/R injury decreased miR-144-5p expression in rat models. MiR-144-5p downregulation promoted cell apoptosis rate and activated Wnt/β-catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull-down, luciferase reporter experiments, we found that circ-AKT3 sponged to miR-144-5p and decreased its expression in RI/R injury rats. Moreover, we found that circ-AKT3 promoted cell apoptosis rate and activated Wnt/β-catenin signal, and miR-144-5p mimic reversed the promotive effect of circ-AKT3 in rat models. We also found that circ-AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR-144-5p/Wnt/β-catenin pathway and oxidative stress.
Collapse
Affiliation(s)
- Yong Xu
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
- Department of NephrologySiyang Hospital of Traditional Chinese MedicineSuqian, JiangsuChina
| | - Wei Jiang
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Lili Zhong
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Hailun Li
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Lin Bai
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Xiaoling Chen
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Yongtao Lin
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| | - Donghui Zheng
- Department of NephrologyAffiliated Huai’an Hospital of Xuzhou Medical UniversityHuai’an, JiangsuChina
| |
Collapse
|
6
|
Geraniol protects against cyclosporine A-induced renal injury in rats: Role of Wnt/β-catenin and PPARγ signaling pathways. Life Sci 2021; 291:120259. [PMID: 34968469 DOI: 10.1016/j.lfs.2021.120259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022]
Abstract
AIMS The nephrotoxicity of cyclosporine A (CsA) limits its use as an immunosuppressant. Wnt/β-catenin signaling is involved in the pathogenesis of both acute and chronic kidney disease, and it is inhibited by peroxisome proliferator-activated receptor gamma (PPARγ). We aimed to evaluate if geraniol, which can modulate both PPARγ and Wnt signaling, could protect against CsA-induced nephrotoxicity. MATERIALS AND METHODS Rats (6 groups) received the vehicle or a combination of CsA (30 mg/kg) with the vehicle, geraniol (50, 100, or 200 mg/kg), or the PPARγ agonist pioglitazone for 4 weeks. Blood pressure (BP), markers of renal injury (serum urea, serum creatinine, blood urea nitrogen, and urinary NAG), oxidative stress (glutathione peroxidase), inflammation (ICAM-1, IL-18, and NF-κB), apoptosis (caspase-3), extracellular matrix remodeling [matrix metalloproteinase-9 (MMP-9)], and fibrosis (TGF-β1, Smad3, and Smad7) were assessed. Renal histological analysis, Wnt signaling components (Wnt-4/β-catenin and E-cadherin), and PPARγ expression were evaluated. KEY FINDINGS CsA group had renal injury, as well as increased BP, renal oxidative stress, inflammation, and fibrosis. The latter changes were associated with altered renal architecture, active Wnt signaling (higher Wnt-4 and β-catenin expression and E-cadherin down-regulation), and lower PPARγ levels. Geraniol protected against kidney damage and the associated biochemical and histomorphological changes in a dose-dependent manner. The latter effects were comparable or superior to those of pioglitazone. SIGNIFICANCE The down-regulation of Wnt/β-catenin and the increase in PPARγ by geraniol suggest that both pathways are involved in its renoprotective potential. The study highlights geraniol as a valuable protective asset against chemically induced nephrotoxicity.
Collapse
|
7
|
Kaucsár T, Róka B, Tod P, Do PT, Hegedűs Z, Szénási G, Hamar P. Divergent regulation of lncRNA expression by ischemia in adult and aging mice. GeroScience 2021; 44:429-445. [PMID: 34697716 PMCID: PMC8811094 DOI: 10.1007/s11357-021-00460-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022] Open
Abstract
Elderly patients have increased susceptibility to acute kidney injury (AKI). Long noncoding RNAs (lncRNA) are key regulators of cellular processes, and have been implicated in both aging and AKI. Our aim was to study the effects of aging and ischemia-reperfusion injury (IRI) on the renal expression of lncRNAs. Adult and old (10- and 26-30-month-old) C57BL/6 N mice were subjected to unilateral IRI followed by 7 days of reperfusion. Renal expression of 90 lncRNAs and mRNA expression of injury, regeneration, and fibrosis markers was measured by qPCR in the injured and contralateral control kidneys. Tubular injury, regeneration, and fibrosis were assessed by histology. Urinary lipocalin-2 excretion was increased in old mice prior to IRI, but plasma urea was similar. In the control kidneys of old mice tubular cell necrosis and apoptosis, mRNA expression of kidney injury molecule-1, fibronectin-1, p16, and p21 was elevated. IRI increased plasma urea concentration only in old mice, but injury, regeneration, and fibrosis scores and their mRNA markers were similar in both age groups. AK082072 and Y lncRNAs were upregulated, while H19 and RepA transcript were downregulated in the control kidneys of old mice. IRI upregulated Miat, Igf2as, SNHG5, SNHG6, RNCR3, Malat1, Air, Linc1633, and Neat1 v1, while downregulated Linc1242. LncRNAs H19, AK082072, RepA transcript, and Six3os were influenced by both aging and IRI. Our results indicate that both aging and IRI alter renal lncRNA expression suggesting that lncRNAs have a versatile and complex role in aging and kidney injury. An Ingenuity Pathway Analysis highlighted that the most downregulated H19 may be linked to aging/senescence through p53.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Beáta Róka
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Phuong Thanh Do
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán Hegedűs
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
8
|
Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front Cell Dev Biol 2021; 8:615131. [PMID: 33614624 PMCID: PMC7890028 DOI: 10.3389/fcell.2020.615131] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Wnt proteins comprise a large family of highly conserved glycoproteins known for their role in development, cell fate specification, tissue regeneration, and tissue homeostasis. Aberrant Wnt signaling is linked to developmental defects, malignant transformation, and carcinogenesis as well as to inflammation. Mounting evidence from recent research suggests that a dysregulated activation of Wnt signaling is involved in the pathogenesis of chronic inflammatory diseases, such as neuroinflammation, cancer-mediated inflammation, and metabolic inflammatory diseases. Recent findings highlight the role of Wnt in the modulation of inflammatory cytokine production, such as NF-kB signaling and in innate defense mechanisms as well as in the bridging of innate and adaptive immunity. This sparked the development of novel therapeutic treatments against inflammatory diseases based on Wnt modulation. Here, we summarize the role and function of the Wnt pathway in inflammatory diseases and focus on Wnt signaling as underlying master regulator of inflammation that can be therapeutically targeted.
Collapse
Affiliation(s)
- Imen Jridi
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Fang X, Hu J, Chen Y, Shen W, Ke B. Dickkopf-3: Current Knowledge in Kidney Diseases. Front Physiol 2020; 11:533344. [PMID: 33391006 PMCID: PMC7772396 DOI: 10.3389/fphys.2020.533344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Dickkopf-related protein 3 (DKK3) is a secreted glycoprotein that has been implicated in the pathogenesis of a variety of diseases. Recent evidence suggests that urinary DKK3 may serve as a potential biomarker for monitoring kidney disease progression and assessing the effects of interventions. We review the biological role of DKK3 as an agonist in chronic kidney disease (CKD) and autosomal dominant polycystic kidney disease (ADPKD) and as an antagonist in idiopathic membranous nephropathy (IMN). In addition, we present the clinical applications of DKK3 in acute kidney disease and tubulointerstitial fibrosis, suggesting that urine DKK3 may be a potential biomarker for acute kidney disease and CKD. Further research into the mechanism of DKK3 and its use as a diagnostic tool, alone or in combination with other biomarkers, could prove clinically useful for better understanding the pathology of kidney diseases and improving early detection and treatment.
Collapse
Affiliation(s)
- Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Hu
- The Third Hospital of Nanchang, Nanchang, China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Sun Z, Xu S, Cai Q, Zhou W, Jiao X, Bao M, Yu X. Wnt/β-catenin agonist BIO alleviates cisplatin-induced nephrotoxicity without compromising its efficacy of anti-proliferation in ovarian cancer. Life Sci 2020; 263:118672. [PMID: 33121990 DOI: 10.1016/j.lfs.2020.118672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
Abstract
AIMS Cisplatin is an anticancer agent marred by nephrotoxicity. Limiting this adverse effect may allow the use of higher doses to improve its efficacy. The Wnt/β-catenin signaling pathway plays a critical role in nephrogenesis and repair of renal diseases. BIO, a small molecule agonist of this pathway, exerted a protective effect in adriamycin nephropathy and promoted nephrogenesis. The aim of this study, therefore, was to investigate whether Wnt/β-catenin agonist BIO could protect against cisplatin-induced nephrotoxicity in vivo and in vitro, as well as its possible mechanism. MAIN METHODS Male mice and human renal proximal tubular cells (HK-2) were subjected to cisplatin to study reno-protective effect of BIO. Renal function, cell viability, tubular apoptosis, production of reactive oxygen species (ROS) and proliferative level were analyzed respectively. Additionally, xenograft model was induced to investigate if BIO would impair the antitumor effect of cisplatin. KEY FINDINGS Cisplatin increased serum creatinine levels and promoted histological renal injury as well as oxidative stress levels. Besides, renal apoptotic level and the expression of pro-apoptotic proteins, Bax/bcl-2 and cleaved-caspase3 included, in the kidney were increased. All these features were decreased by BIO, which also activated Wnt/β-catenin pathway in cisplatin-induced nephrotoxicity. Similarly, accompanied by the motivation of Wnt/β-catenin pathway, BIO exerted a positively protective effect on HK-2 challenged cisplatin. Last, the chemotherapeutic effects of cisplatin in xenograft mice of ovary tumor models and in lung cancer cells weren't compromised by BIO. SIGNIFICANCE Wnt/β-catenin agonist BIO has the potential to prevent cisplatin nephrotoxicity without compromising its anti-proliferation efficacy.
Collapse
Affiliation(s)
- Zhaoxing Sun
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Sujuan Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Qiaoting Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Weiran Zhou
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Xiaoyan Jiao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Manchen Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China
| | - Xiaofang Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, China; Shanghai Medical Center for Kidney, China; Shanghai Key Laboratory of Kidney and Blood Purifcation, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
11
|
Xia Z, Qi W, Xiaofeng G, Jiguang K, Hongfei H, Yuchen Z, Yihan Z, Yan W, Nannan L, Yiwei L, Hongsheng B, Xiaobai L. AMBMP activates WNT pathway and alleviates stress-induced behaviors in maternal separation and chronic stress models. Eur J Pharmacol 2020; 881:173192. [DOI: 10.1016/j.ejphar.2020.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
12
|
Liu Z, Tan RJ, Liu Y. The Many Faces of Matrix Metalloproteinase-7 in Kidney Diseases. Biomolecules 2020; 10:biom10060960. [PMID: 32630493 PMCID: PMC7356035 DOI: 10.3390/biom10060960] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted zinc-dependent endopeptidase that is implicated in regulating kidney homeostasis and diseases. MMP-7 is produced as an inactive zymogen, and proteolytic cleavage is required for its activation. MMP-7 is barely expressed in normal adult kidney but upregulated in acute kidney injury (AKI) and chronic kidney disease (CKD). The expression of MMP-7 is transcriptionally regulated by Wnt/β-catenin and other cues. As a secreted protein, MMP-7 is present and increased in the urine of patients, and its levels serve as a noninvasive biomarker for predicting AKI prognosis and monitoring CKD progression. Apart from degrading components of the extracellular matrix, MMP-7 also cleaves a wide range of substrates, such as E-cadherin, Fas ligand, and nephrin. As such, it plays an essential role in regulating many cellular processes, such as cell proliferation, apoptosis, epithelial-mesenchymal transition, and podocyte injury. The function of MMP-7 in kidney diseases is complex and context-dependent. It protects against AKI by priming tubular cells for survival and regeneration but promotes kidney fibrosis and CKD progression. MMP-7 also impairs podocyte integrity and induces proteinuria. In this review, we summarized recent advances in our understanding of the regulation, role, and mechanisms of MMP-7 in the pathogenesis of kidney diseases. We also discussed the potential of MMP-7 as a biomarker and therapeutic target in a clinical setting.
Collapse
Affiliation(s)
- Zhao Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
| | - Roderick J. Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
13
|
Molecular Pathways Underlying Adaptive Repair of the Injured Kidney: Novel Donation After Cardiac Death and Acute Kidney Injury Platforms. Ann Surg 2020; 271:383-390. [PMID: 30048305 DOI: 10.1097/sla.0000000000002946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To test the hypothesis that gene expression profiling in peripheral blood from patients who have undergone kidney transplantation (KT) will provide mechanistic insights regarding graft repair and regeneration. BACKGROUND Renal grafts obtained from living donors (LD) typically function immediately, whereas organs from donation after cardiac death (DCD) or acute kidney injury (AKI) donors may experience delayed function with eventual recovery. Thus, recipients of LD, DCD, and AKI kidneys were studied to provide a more complete understanding of the molecular basis for renal recovery. METHODS Peripheral blood was collected from LD and DCD/AKI recipients before transplant and throughout the first 30 days thereafter. Total RNA was isolated and assayed on whole genome microarrays. RESULTS Comparison of longitudinal gene expression between LD and AKI/DCD revealed 2 clusters, representing 141 differentially expressed transcripts. A subset of 11 transcripts was found to be differentially expressed in AKI/DCD versus LD. In all recipients, the most robust gene expression changes were observed in the first day after transplantation. After day 1, gene expression profiles differed depending upon the source of the graft. In patients receiving LD grafts, the expression of most genes did not remain markedly elevated beyond the first day post-KT. In the AKI/DCD groups, elevations in gene expression were maintained for at least 5 days post-KT. In all recipients, the pattern of coordinate gene overexpression subsided by 28 to 30 days. CONCLUSIONS Gene expression in peripheral blood of AKI/DCD recipients offers a novel platform to understand the potential mechanisms and timing of kidney repair and regeneration after transplantation.
Collapse
|
14
|
Tian XJ, Zhou D, Fu H, Zhang R, Wang X, Huang S, Liu Y, Xing J. Sequential Wnt Agonist Then Antagonist Treatment Accelerates Tissue Repair and Minimizes Fibrosis. iScience 2020; 23:101047. [PMID: 32339988 PMCID: PMC7186527 DOI: 10.1016/j.isci.2020.101047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/15/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue fibrosis compromises organ function and occurs as a potential long-term outcome in response to acute tissue injuries. Currently, lack of mechanistic understanding prevents effective prevention and treatment of the progression from acute injury to fibrosis. Here, we combined quantitative experimental studies with a mouse kidney injury model and a computational approach to determine how the physiological consequences are determined by the severity of ischemia injury and to identify how to manipulate Wnt signaling to accelerate repair of ischemic tissue damage while minimizing fibrosis. The study reveals that memory of prior injury contributes to fibrosis progression and ischemic preconditioning reduces the risk of death but increases the risk of fibrosis. Furthermore, we validated the prediction that sequential combination therapy of initial treatment with a Wnt agonist followed by treatment with a Wnt antagonist can reduce both the risk of death and fibrosis in response to acute injuries.
Collapse
Affiliation(s)
- Xiao-Jun Tian
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Dong Zhou
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Zhang
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Xiaojie Wang
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Youhua Liu
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Jianhua Xing
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA; Department of Physics, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA.
| |
Collapse
|
15
|
Ogbadu J, Singh G, Aggarwal D. Factors affecting the transition of acute kidney injury to chronic kidney disease: Potential mechanisms and future perspectives. Eur J Pharmacol 2019; 865:172711. [DOI: 10.1016/j.ejphar.2019.172711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
|
16
|
The Neglectable Impact of Delayed Graft Function on Long-term Graft Survival in Kidneys Donated After Circulatory Death Associates With Superior Organ Resilience. Ann Surg 2019; 270:877-883. [DOI: 10.1097/sla.0000000000003515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Shi W, Dong J, Liang Y, Liu K, Peng Y. NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice. Exp Mol Pathol 2019; 111:104303. [PMID: 31465766 DOI: 10.1016/j.yexmp.2019.104303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Renal ischemia-reperfusion injury (IRI), a major cause of acute kidney injury as well as a contributor to a rapid kidney dysfunction and high mortality rates, is a complex yet not fully understood process. Investigation on the underlying molecular mechanism including the inflammation initiation and progression can help to have a better understanding of the disease, and thereby lead to a potential therapeutic approach. We established renal IRI mouse model groups differing in their ages. These renal IRI mice were treated either only with si-nuclear receptor subfamily 4, group A, member 1 (NR4A1) or together with si-β-catenin by tail vein injection to analyze the role of NR4A1 and β-catenin in the development of renal IRI. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were examined for renal function analysis. Levels of the apoptosis markers B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), and cleaved caspase-3 were determined. NR4A1 gene was up-regulated in the renal tissues of all mice with IRI, which showed a much higher level in the old mice with IRI. si-NR4A1 treatment resulted in reduced SCr and BUN levels and a decrease of cell apoptosis, indicated by lower expression of Bax and cleaved Caspase-3, while in contrast increased levels of Bcl-2 were detected. Interestingly, also the β-catenin level was increased by knockdown of NR4A1. Furthermore, si-β-catenin reversed the effect of knockdown of NR4A1, leading to aggravated renal function damage, severe pathological injury and increased apoptosis. Thus, silencing NR4A1 ameliorates renal IRI via β-catenin signaling pathway activation. Down-regulated NR4A1 confirms renoprotective properties against renal IRI via the activation of β-catenin signaling pathway in old mice.
Collapse
Affiliation(s)
- Wenjian Shi
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China
| | - Jing Dong
- Intensive Care Unit, Hunan Cancer Hospital, Changsha 410006, PR China
| | - Yumei Liang
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Kanghan Liu
- Department of Nephrology, The Hunan Provincial People's Hospital, Changsha 410002, PR China
| | - Youming Peng
- Department of Nephrology, The Second Xiangya Hospital, Renal Research Institute of Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, Changsha 410011, PR China.
| |
Collapse
|
18
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
19
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019. [DOI: https://doi.org/10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Zhan L, Liu D, Wen H, Hu J, Pang T, Sun W, Xu E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 Inhibition and GSK-3β inactivation. FASEB J 2019; 33:9291-9307. [PMID: 31120770 DOI: 10.1096/fj.201802633r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Wingless/Int (Wnt)/β-catenin pathway plays an essential role in cell survival. Although postconditioning with 8% oxygen can alleviate transient global cerebral ischemia (tGCI)-induced neuronal damage in hippocampal CA1 subregion in adult rats as demonstrated by our previous studies, little is understood about the role of Wnt/β-catenin pathway in hypoxic postconditioning (HPC)-induced neuroprotection. This study tried to investigate the involvement of Wnt/β-catenin pathway in HPC-induced neuroprotection against tGCI and explore the underlying molecular mechanism thereof. We observed that HPC elevated nuclear β-catenin level as well as increased Wnt3a and decreased Dickkopf-1 (Dkk1) expression in CA1 after tGCI. Accordingly, HPC enhanced the expression of survivin and reduced the ratio of B-cell lymphoma/lewkmia-2 (Bcl-2)-associated X protein (Bax) to Bcl-2 following reperfusion. Moreover, our study has shown that these effects of HPC were abolished by lentivirus-mediated overexpression of Dkk1, and that the overexpression of Dkk1 completely reversed HPC-induced neuroprotection. Furthermore, HPC suppressed the activity of glycogen synthase kinase-3β (GSK-3β) in CA1 after tGCI, and the inhibition of GSK-3β activity with SB216763 increased the nuclear accumulation of β-catenin, up-regulated the expression of survivin, and reduced the ratio of Bax to Bcl-2, thus preventing the delayed neuronal death after tGCI. Finally, the administration of LY294002, an inhibitor of PI3K, increased GSK-3β activity and blocked nuclear β-catenin accumulation, thereby decreasing survivin expression and elevating the Bax-to-Bcl-2 ratio after HPC. These results suggest that activation of the Wnt/β-catenin pathway through Dkk1 inhibition and PI3K/protein kinase B pathway-mediated GSK-3β inactivation contributes to the neuroprotection of HPC against tGCI.-Zhan, L., Liu, D., Wen, H., Hu, J., Pang, T., Sun, W., Xu, E. Hypoxic postconditioning activates the Wnt/β-catenin pathway and protects against transient global cerebral ischemia through Dkk1 inhibition and GSK-3β inactivation.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dandan Liu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Haixia Wen
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Jiaoyue Hu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Taoyan Pang
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
21
|
Badawy AM, El-Naga RN, Gad AM, Tadros MG, Fawzy HM. Wogonin pre-treatment attenuates cisplatin-induced nephrotoxicity in rats: Impact on PPAR-γ, inflammation, apoptosis and Wnt/β-catenin pathway. Chem Biol Interact 2019; 308:137-146. [PMID: 31103702 DOI: 10.1016/j.cbi.2019.05.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Cisplatin, a platinum chemotherapeutic agent, is used in a diversity of malignancies; nevertheless, the excessive nephrotoxicity following cisplatin treatment is the dose-limiting devastating reaction. This study was designed to explore the possible nephroprotective impact of wogonin, a forceful anti-oxidant, anti-inflammatory, and anti-tumor agent, in a rat model of cisplatin-induced renal injury. The potential nephroprotective mechanisms were additionally investigated. Wogonin was given at a dose of 40 mg/kg. Acute nephrotoxicity was indicated by a significant rise in BUN, and serum creatinine levels in cisplatin-injected rats. Also, cisplatin enhanced the lipid peroxidation, diminished GSH, catalase, and PPAR-γ levels. Additionally, cisplatin-injected rats showed a significant rise in tissue levels of IL-1β, TNF-α, NF-kB, and caspase-3 enzymatic activity. Notably, the pre-treatment with wogonin ameliorated the nephrotoxicity indices, oxidative stress, inflammation, and apoptosis induced by cisplatin. Also, wogonin up-regulated PPAR-γ expression. The involvement of Wnt/β-catenin pathway was debatable; however, our findings showed that it was significantly induced by cisplatin. Wogonin pre-treatment markedly attenuated Wnt/β-catenin pathway. Collectively, these findings imply that wogonin is a promising nephroprotective agent that improves the therapeutic index of cisplatin via reducing oxidative stress, inflammation as well as inducing PPAR-γ. Also, Wnt/β-catenin pathway is partially involved in the pathogenesis of cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Alaa M Badawy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Amany M Gad
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hala M Fawzy
- Department of Pharmacology, The National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
22
|
Guo Q, Zhong W, Duan A, Sun G, Cui W, Zhuang X, Liu L. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res 2019; 144:151-157. [PMID: 30935943 DOI: 10.1016/j.phrs.2019.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022]
Abstract
In recent years, the Wnt/β-catenin signaling has gained tremendous attention due to its ability to modulate a number of diseases including diabetic nephropathy. Studies have shown that there is decrease in the secretion of Wnt proteins including Wnt4, 5a and Wnt 6 during high glucose concentration or diabetic conditions, which leads to decreased translocation of β-catenin to nucleus. The down-regulation of Wnt/β-catenin signaling leads to detrimental effects on kidney including increased apoptosis of mesangial cells and increased deposition of fibrous tissue in mesangium. The pharmacological modulators such as spironolactone, NO donor and antioxidant are shown to produce beneficial effects in diabetic nephropathy by up regulating the expression of Wnt proteins and activation of diabetes-induced suppressed Wnt/β-catenin signaling. On the other hand, it is documented that diabetes leads to overactivation of Wnt1/β-catenin signaling, which promotes podocyte injury, induce epithelial-mesenchymal transition of podocytes along with renal injury and fibrosis. Accordingly, different interventions aimed to suppress overactivated Wnt/β-catenin signaling are reported to improve the condition and symptoms associated with diabetic nephropathy. The present review discusses the dual role of Wnt/beta-catenin signaling in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Qiaoyan Guo
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Wei Zhong
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Aosong Duan
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, 130021,China.
| | - Guanggong Sun
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Xiaohua Zhuang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Lihua Liu
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
23
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
24
|
Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int 2018; 95:62-74. [PMID: 30409456 DOI: 10.1016/j.kint.2018.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 12/15/2022]
Abstract
The development of acute kidney injury (AKI) is a complex process involving tubular, inflammatory, and vascular components, but less is known about the role of the interstitial microenvironment. We have previously shown that the extracellular matrix glycoprotein tenascin-C (TNC) is induced in fibrotic kidneys. In mouse models of AKI induced by ischemia-reperfusion injury (IRI) or cisplatin, TNC was induced de novo in the injured sites and localized to the renal interstitium. The circulating level of TNC protein was also elevated in AKI patients after cardiac surgery. Knockdown of TNC by shRNA in vivo aggravated AKI after ischemic or toxic injury. This effect was associated with reduced renal β-catenin expression, suggesting an impact on Wnt signaling. In vitro, TNC protected tubular epithelial cells against apoptosis and augmented Wnt1-mediated β-catenin activation. Co-immunoprecipitation revealed that TNC physically interacts with Wnt ligands. Furthermore, a TNC-enriched kidney tissue scaffold prepared from IRI mice was able to recruit and concentrate Wnt ligands from the surrounding milieu ex vivo. The ability to recruit Wnt ligands in this ex vivo model diminished after TNC depletion. These studies indicate that TNC is specifically induced at sites of injury and recruits Wnt ligands, thereby creating a favorable microenvironment for tubular repair and regeneration after AKI.
Collapse
|
25
|
Zhu X, Li W, Li H. miR-214 ameliorates acute kidney injury via targeting DKK3 and activating of Wnt/β-catenin signaling pathway. Biol Res 2018; 51:31. [PMID: 30180910 PMCID: PMC6122444 DOI: 10.1186/s40659-018-0179-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background miR-214 was demonstrated to be upregulated in models of renal disease and promoted fibrosis in renal injury independent of TGF-β signaling in vivo. However, the detailed role of miR-214 in acute kidney injury (AKI) and its underlying mechanism are still largely unknown. Methods In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell model were used to study AKI. The concentrations of kidney injury markers serum creatinine, blood urea nitrogen, and kidney injury molecule-1 were measured. The expressions of miR-214, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, were detected by RT-qPCR. The protein levels of Bcl-2, Bax, Dickkopf-related protein 3, β-catenin, c-myc, and cyclinD1 were determined by western blot. Cell apoptosis and caspase 3 activity were evaluated by flow cytometry analysis and caspase 3 activity assay, respectively. Luciferase reporter assay was used to confirm the interaction between miR-214 and Dkk3. Results miR-214 expression was induced in ischemia–reperfusion (I/R)-induced AKI rat and hypoxic incubation of NRK-52E cells. Overexpression of miR-214 alleviated hypoxia-induced NRK-52E cell apoptosis while inhibition of miR-214 expression exerted the opposite effect. Dkk3 was identified as a target of miR-214. Anti-miR-214 abolished the inhibitory effects of DKK3 knockdown on hypoxia-induced NRK-52E cell apoptosis by inactivation of Wnt/β-catenin signaling. Moreover, miR-214 ameliorated AKI in vivo by inhibiting apoptosis and fibrosis through targeting Dkk3 and activating Wnt/β-catenin pathway. Conclusion miR-214 ameliorates AKI by inhibiting apoptosis through targeting Dkk3 and activating Wnt/β-catenin signaling pathway, offering the possibility of miR-214 in the therapy of ischemic AKI. Electronic supplementary material The online version of this article (10.1186/s40659-018-0179-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China.
| | - Wenwen Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| |
Collapse
|
26
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Gröne EF, Federico G, Nelson PJ, Arnold B, Gröne HJ. The hormetic functions of Wnt pathways in tubular injury. Pflugers Arch 2017; 469:899-906. [PMID: 28685176 PMCID: PMC5541077 DOI: 10.1007/s00424-017-2018-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Chronic tubulointerstitial damage with tubular epithelial atrophy and interstitial fibrosis is the hallmark of chronic kidney disease (CKD) and a predictor for progression of CKD.Several experiments have now provided evidence that the Wnt signaling pathways are significantly contributing to atrophy and fibrosis; in contrast, it also has been shown that the Wnt system fosters regenerative processes in acute tubular injury.We now have demonstrated that Dickkopf 3 (DKK3) is an agonist for canonical Wnt signaling in CKD and fosters chronic fibrosing inflammation of the tubulointerstitial compartment. Genetic- and antibody-mediated inhibition of DKK3 leads to a pronounced improvement of tubular differentiation and a reduction in fibrosis.In addition, the secreted glycoprotein DKK3 can be used as a non-invasive urinary marker for the extent of CKD in man.
Collapse
Affiliation(s)
- Elisabeth F Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Peter J Nelson
- Clinical Biochemistry, Ludwig Maximilian University, Munich, Bavaria, Germany
| | - Bernd Arnold
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. h.-
| |
Collapse
|
28
|
Zhao Y, Ding C, Xue W, Ding X, Zheng J, Gao Y, Xia X, Li S, Liu J, Han F, Zhu F, Tian P. Genome-wide DNA methylation analysis in renal ischemia reperfusion injury. Gene 2017; 610:32-43. [PMID: 28189760 DOI: 10.1016/j.gene.2017.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/19/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Renal ischemia reperfusion injury (IRI) is frequently encountered after kidney transplantation and is a leading cause of acute renal failure. Aberrant gene expression and epigenetic regulation occur during the pathophysiology of IRI. In this study, we used reduced representation bisulfite sequencing to identify the DNA methylome of renal tissues during IRI and the sham-operated tissues in C57BL/6. The methylation status of approximately 1.29 million CpGs located in an average of 11554 CpG islands and 17113 promoters in genome was determined. Compared with sham-operated kidney, both acute and chronic IRI significantly decreased the genome-wide methylation level (1.1-1.8%) and the CpG methylation level in the promoter (0.4-0.5%), CpG island (0.5-1.3%), exon (1.3-1.9%), and intron (0.8-1.1%; all P<10-153). The promoters of 200, 191, and 79 genes were differentially methylated in the renal tissues at 24h, 7days, and at both the time points after IRI, respectively. Among the 79 genes, which were consistently epigenetically regulated at two time points, 18 genes (22.8%) showed differential expression after IRI in a previous study of renal expression. We validated the promoter methylation status and expression of five out of the 18 genes, including 2700049A03Rik, Ccr9, Fgd2, Pfkfb3, and Sdc4 in an independent renal tissue cohort. We found that all the five genes exhibited altered methylation of promoter (P=0.009-0.0001) following renal injury. The promoter methylation of 2700049A03Rik and Ccr9 was negatively correlated with their mRNA expression in renal tissues (P<0.001 and P<0.0001, respectively). Our study not only demonstrated a genome-wide DNA methylation pattern in the IR-injured renal tissue for the first time, but also indicated that the regulation of promoter methylation is an important mechanism underlying persistent alteration of gene expression.
Collapse
Affiliation(s)
- Yanlong Zhao
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Chenguang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Wujun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Yi Gao
- Department of Nephrology, Affiliated Xi'an Central Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China
| | - Xinxin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Sutong Li
- Department of Nephrology, Affiliated Xi'an Central Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, PR China
| | - Jing Liu
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Feng Zhu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Puxun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
29
|
He X, Mo Y, Geng W, Shi Y, Zhuang X, Han K, Dai Q, Jin S, Wang J. Role of Wnt/β-catenin in the tolerance to focal cerebral ischemia induced by electroacupuncture pretreatment. Neurochem Int 2016; 97:124-32. [DOI: 10.1016/j.neuint.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023]
|
30
|
What's New in Shock? March 2015. Shock 2016; 43:209-11. [PMID: 26091022 DOI: 10.1097/shk.0000000000000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Wnt/β-catenin signaling in kidney injury and repair: a double-edged sword. J Transl Med 2016; 96:156-67. [PMID: 26692289 PMCID: PMC4731262 DOI: 10.1038/labinvest.2015.153] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The Wnt/β-catenin signaling cascade is an evolutionarily conserved, highly complex pathway that is known to be involved in kidney injury and repair after a wide variety of insults. Although the kidney displays an impressive ability to repair and recover after injury, these repair mechanisms can be overwhelmed, leading to maladaptive responses and eventual development of chronic kidney disease (CKD). Emerging evidence demonstrates that Wnt/β-catenin signaling possesses dual roles in promoting repair/regeneration or facilitating progression to CKD after acute kidney injury (AKI), depending on the magnitude and duration of its activation. In this review, we summarize the expression, intracellular modification, and secretion of Wnt family proteins and their regulation in a variety of kidney diseases. We also explore our current understanding of the potential mechanisms by which transient Wnt/β-catenin activation positively regulates adaptive responses of the kidney after AKI, and discuss how sustained activation of this signaling triggers maladaptive responses and causes destructive outcomes. A better understanding of these mechanisms may offer important opportunities for designing targeted therapy to promote adaptive kidney repair/recovery and prevent progression to CKD in patients.
Collapse
|