1
|
Kelly LS, Munley JA, Pons EE, Kannan KB, Whitley EM, Bible LE, Efron PA, Mohr AM. A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia. Animal Model Exp Med 2024; 7:367-376. [PMID: 38860566 PMCID: PMC11228100 DOI: 10.1002/ame2.12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe trauma is associated with systemic inflammation and organ dysfunction. Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma. The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury. METHODS Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock (LCHS), multicompartmental polytrauma (PT) (unilateral lung contusion, hemorrhagic shock, cecectomy, bifemoral pseudofracture), or naïve controls. Weight, plasma toll-like receptor 4 (TLR4), hemoglobin, spleen to body weight ratio, bone marrow (BM) erythroid progenitor (CFU-GEMM, BFU-E, and CFU-E) growth, plasma granulocyte colony-stimulating factor (G-CSF) and right lung histologic injury were assessed on day 7, with significance defined as p values <0.05 (*). RESULTS Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS (p = 0.0002) along with elevated plasma TLR4 (p < 0.0001), lower hemoglobin (p < 0.0001), and enlarged spleen to body weight ratios (p = 0.004). Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naïve (p < 0.03, p < 0.01). Plasma G-CSF was elevated in PT compared to both naïve and LCHS (p < 0.0001, p = 0.02). LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema. CONCLUSIONS Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia, splenic tissue enlargement, weight loss, and increased inflammatory activity compared to a less severe model. This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury.
Collapse
Affiliation(s)
- Lauren S. Kelly
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Jennifer A. Munley
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Erick E. Pons
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Kolenkode B. Kannan
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | | | - Letitia E. Bible
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Philip A. Efron
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Alicia M. Mohr
- Department of Surgery and Sepsis and Critical Illness Research CenterUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
2
|
Wu X, Cap AP, Bynum JA, Chance TC, Darlington DN, Meledeo MA. Prolyl hydroxylase domain inhibitor is an effective pre-hospital pharmaceutical intervention for trauma and hemorrhagic shock. Sci Rep 2024; 14:3874. [PMID: 38365865 PMCID: PMC10873291 DOI: 10.1038/s41598-024-53945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
Pre-hospital potentially preventable trauma related deaths are mainly due to hypoperfusion-induced tissue hypoxia leading to irreversible organ dysfunction at or near the point of injury or during transportation prior to receiving definitive therapy. The prolyl hydroxylase domain (PHD) is an oxygen sensor that regulates tissue adaptation to hypoxia by stabilizing hypoxia inducible factor (HIF). The benefit of PHD inhibitors (PHDi) in the treatment of anemia and lactatemia arises from HIF stabilization, which stimulates endogenous production of erythropoietin and activates lactate recycling through gluconeogenesis. The results of this study provide insight into the therapeutic roles of MK-8617, a pan-inhibitor of PHD-1, 2, and 3, in the mitigation of lactatemia in anesthetized rats with polytrauma and hemorrhagic shock. Additionally, in an anesthetized rat model of lethal decompensated hemorrhagic shock, acute administration of MK-8617 significantly improves one-hour survival and maintains survival at least until 4 h following limited resuscitation with whole blood (20% EBV) at one hour after hemorrhage. This study suggests that pharmaceutical interventions to inhibit prolyl hydroxylase activity can be used as a potential pre-hospital countermeasure for trauma and hemorrhage at or near the point of injury.
Collapse
Affiliation(s)
- Xiaowu Wu
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA.
| | - Andrew P Cap
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - James A Bynum
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Tiffani C Chance
- Department of Health and Human Services, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniel N Darlington
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| | - Michael A Meledeo
- Blood and Shock Resuscitation, USA Army Institute of Surgical Research, 3698 Chambers Pass, Bldg 3610, JBSA Fort Sam Houston, TX, 78234-7767, USA
| |
Collapse
|
3
|
Yracheta J, Muraoka W, Wu X, Burmeister D, Darlington D, Zhao D, Lai Z, Sayyadioskoie S, Cap AP, Bynum J, Nicholson SE. Whole blood resuscitation restores intestinal perfusion and influences gut microbiome diversity. J Trauma Acute Care Surg 2021; 91:1002-1009. [PMID: 34407003 DOI: 10.1097/ta.0000000000003381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Gut dysbiosis, an imbalance in the gut microbiome, occurs after trauma, which may be ameliorated with transfusion. We hypothesized that gut hypoperfusion following trauma causes dysbiosis and that whole blood (WB) resuscitation mitigates these effects. METHODS Anesthetized rats underwent sham (S; laparotomy only, n = 6); multiple injuries (T; laparotomy, liver and skeletal muscle crush injuries, and femur fracture, n = 5); multiple injuries and 40% hemorrhage (H; n = 7); and multiple injuries, hemorrhage, and WB resuscitation (R; n = 7), which was given as 20% estimated blood volume from donor rats 1 hour posttrauma. Baseline cecal mesenteric tissue oxygen (O2) concentration was measured following laparotomy and at 1 hour and 2 hours posttrauma. Fecal samples were collected preinjury and at euthanasia (2 hours). 16S rRNA sequencing was performed on purified DNA, and diversity and phylogeny were analyzed with QIIME (Knight Lab, La Jolla, CA; Caporaso Lab, Flagstaff, AZ) using the Greengenes 16S rRNA database (operational taxonomic units; 97% similarity). α and β diversities were estimated using observed species metrics. Permutational analysis of variance was performed for overall significance. RESULTS In H rats, an average decline of 36% ± 3.6% was seen in the mesenteric O2 concentration at 1 hour without improvement by 2 hours postinjury, which was reversed following resuscitation at 2 hours postinjury (4.1% ± 3.1% difference from baseline). There was no change in tissue O2 concentration in the S or T rats. β Diversity differed among groups for all measured indices except Bray-Curtis, with the spatial median of the S and R rats more similar compared with S and H rats (p < 0.05). While there was no difference in α diversity found among the groups, indices were significantly correlated with mesenteric O2 concentration. Members of the family Enterobacteriaceae were significantly enriched in only 2 hours. CONCLUSION Mesenteric perfusion after trauma and hemorrhage is restored with WB resuscitation, which influences β diversity of the gut microbiome. Whole blood resuscitation may also mitigate the effects of hemorrhage on intestinal dysbiosis, thereby influencing outcomes.
Collapse
Affiliation(s)
- Jaclyn Yracheta
- From the Department of Surgery (J.Y., S.S., S.E.N.), UT Health San Antonio, San Antonio; Coagulation and Blood Research, US Army Institute of Surgical Research (W.M., X.W., D.D., D.Z., A.P.C., J.B., S.E.N.), Fort Sam Houston, Texas; Department of Medicine, Uniformed Services University of the Health Sciences (D.B.), Bethesda, Maryland; and Department of Molecular Medicine (Z.L.), Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Edwards TH, Rizzo JA, Pusateri AE. Hemorrhagic shock and hemostatic resuscitation in canine trauma. Transfusion 2021; 61 Suppl 1:S264-S274. [PMID: 34269447 DOI: 10.1111/trf.16516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 11/27/2022]
Abstract
Hemorrhage is a significant cause of death among military working dogs and in civilian canine trauma. While research specifically aimed at canine trauma is limited, many principles from human trauma resuscitation apply. Trauma with significant hemorrhage results in shock and inadequate oxygen delivery to tissues. This leads to aberrations in cellular metabolism, including anaerobic metabolism, decreased energy production, acidosis, cell swelling, and eventual cell death. Considering blood and endothelium as a single organ system, blood failure is a syndrome of endotheliopathy, coagulopathy, and platelet dysfunction. In severe cases following injury, blood failure develops and is induced by inadequate oxygen delivery in the presence of hemorrhage, tissue injury, and acute stress from trauma. Severe hemorrhagic shock is best treated with hemostatic resuscitation, wherein blood products are used to restore effective circulating volume and increase oxygen delivery to tissues without exacerbating blood failure. The principles of hemostatic resuscitation have been demonstrated in severely injured people and the authors propose an algorithm for applying this to canine patients. The use of plasma and whole blood to resuscitate severely injured canines while minimizing the use of crystalloids and colloids could prove instrumental in improving both mortality and morbidity. More work is needed to understand the canine patient that would benefit from hemostatic resuscitation, as well as to determine the optimal resuscitation strategy for these patients.
Collapse
Affiliation(s)
- Thomas H Edwards
- U.S. Army Institute of Surgical Research, Joint Base San Antonio - Fort Sam Houston, Texas, USA
| | - Julie A Rizzo
- U.S. Army Institute of Surgical Research, Joint Base San Antonio - Fort Sam Houston, Texas, USA.,Uniformed Services University of Health Sciences, Bethesda, Maryland, USA
| | - Anthony E Pusateri
- Naval Medical Research Unit San Antonio, Joint Base San Antonio - Fort Sam Houston, Texas, USA
| |
Collapse
|
5
|
Leung J, Cau MF, Kastrup CJ. Emerging gene therapies for enhancing the hemostatic potential of platelets. Transfusion 2021; 61 Suppl 1:S275-S285. [PMID: 34269451 DOI: 10.1111/trf.16519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
Platelet transfusions are an integral component of balanced hemostatic resuscitation protocols used to manage severe hemorrhage following trauma. Enhancing the hemostatic potential of platelets could lead to further increases in the efficacy of transfusions, particularly for non-compressible torso hemorrhage or severe hemorrhage with coagulopathy, by decreasing blood loss and improving overall patient outcomes. Advances in gene therapies, including RNA therapies, are leading to new strategies to enhance platelets for better control of hemorrhage. This review will highlight three approaches for creating modified platelets using gene therapies: (i) direct transfection of transfusable platelets ex vivo, (ii) in vitro production of engineered platelets from platelet-precursor cells, and (iii) modifying the bone marrow for in vivo production of modified platelets. In summary, modifying platelets to enhance their hemostatic potential is an exciting new frontier in transfusion medicine, but more preclinical development as well as studies testing the safety and efficacy of these agents are needed.
Collapse
Affiliation(s)
- Jerry Leung
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Massimo F Cau
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Edwards TH, Darlington DN, Pusateri AE, Keesee JD, Ruiz DD, Little JS, Parker JS, Cap AP. Hemostatic capacity of canine chilled whole blood over time. J Vet Emerg Crit Care (San Antonio) 2021; 31:239-246. [PMID: 33709546 DOI: 10.1111/vec.13055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/10/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To determine the hemostatic potential of canine chilled whole blood maintained at clinically relevant storage conditions. DESIGN In vitro experimental study. SETTING Government blood and coagulation research laboratory and government referral veterinary hospital. ANIMALS Ten healthy Department of Defense military working dogs. INTERVENTIONS One unit of fresh whole blood was collected from each of 10 military working dogs using aseptic technique. Blood was maintained in a medical-grade refrigerator for 28 days at 4°C (39°F) and analyzed before refrigeration (day 0) and after (days 2, 4, 7, 9, 11, 14, 21, and 28). MEASUREMENTS AND MAIN RESULTS Ten units of canine blood were analyzed with whole blood platelet aggregation, thromboelastography, CBC, biochemical analysis, blood gas, and prothrombin/activated partial thromboplastin/fibrinogen assay. Clotting strength of chilled blood was maintained up to 21 days despite significant decreases in platelet aggregation to ADP, collagen, or γ-thrombin, significant prolongation of prothrombin and activated partial thromboplastin times, and reduced speed of clot formation (K time, alpha angle). Fibrinogen concentration, WBC, RBC, and platelet counts did not change over time. CONCLUSIONS Chilled canine whole blood loses a small percentage of clot strength through 21 days of refrigerated storage. Further research is needed to determine if this hemostatic potential is clinically relevant in hemorrhaging dogs who require surgical intervention or are exposed to traumatic events.
Collapse
Affiliation(s)
- Thomas H Edwards
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Daniel N Darlington
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Anthony E Pusateri
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Jeffrey D Keesee
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Daikor D Ruiz
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Joshua S Little
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| | - Jacquelyn S Parker
- Department of Defense Military Working Dog Veterinary Service, Joint Base San Antonio-Lackland, Texas, USA
| | - Andrew P Cap
- US Army Institute of Surgical Research, Joint Base San Antonio, Fort Sam Houston, Texas, USA
| |
Collapse
|
7
|
Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J Trauma Acute Care Surg 2020; 86:250-259. [PMID: 30531331 DOI: 10.1097/ta.0000000000002140] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Trauma-induced coagulopathy occurs in about 25% of injured patients and accounts for about 10% of deaths worldwide. Upon injury, hemostatic function may decline due to vascular dysfunction, clotting factor deficiencies, hyperfibrinolysis, and/or platelet dysfunction. We investigated agonist-induced calcium signaling in platelets obtained over time from trauma patients. METHODS Platelets from trauma patients and healthy donors were monitored via intracellular calcium mobilization and flow cytometry markers (α2bβ3 activation, P-selectin display, and phosphatidylserine exposure) following stimulation with a panel of agonists (adenosine 5'-diphosphate sodium salt, U46619, convulxin, PAR-1/4 activating peptides, iloprost) used in isolation or in pairwise tests. Furthermore, healthy donor platelets were tested in heterologous plasma isolated from healthy subjects and trauma patients. RESULTS When exposed to agonists over the first 24 hours postinjury, trauma patient platelets mobilized less calcium in comparison to healthy platelets. Partial recovery of platelet activity was observed in about a third of patients after 120 hours, although not fully obtaining healthy baseline function. Flow cytometry markers of trauma platelets were similar to healthy platelets prior to stimulation, but were depressed in trauma platelets stimulated with adenosine 5'-diphosphate sodium salt or convulxin. Also, washed healthy platelets showed a significant reduction in calcium mobilization when reconstituted in plasma from trauma patients, relative to healthy plasma, at all plasma doses tested. CONCLUSION Platelet dysfunction in trauma patients included poor response to multiple agonists relevant to hemostatic function. Furthermore, the inhibitor effect of patient plasma on healthy platelets suggests that soluble plasma species may downregulate endogenous or transfused platelets during trauma.
Collapse
|
8
|
Wu X, Benov A, Darlington DN, Keesee JD, Liu B, Cap AP. Effect of tranexamic acid administration on acute traumatic coagulopathy in rats with polytrauma and hemorrhage. PLoS One 2019; 14:e0223406. [PMID: 31581265 PMCID: PMC6776384 DOI: 10.1371/journal.pone.0223406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/21/2019] [Indexed: 12/18/2022] Open
Abstract
Trauma and hemorrhagic shock can lead to acute traumatic coagulopathy (ATC) that is not fully reversed by prehospital resuscitation as simulated with a limited volume of fresh whole blood (FWB) in a rat model. Tranexamic Acid (TXA) is used as an anti-fibrinolytic agent to reduce surgical bleeding if administered prior to or during surgery, and to improve survival in trauma if given early after trauma. It is not clear from the existing clinical literature whether TXA has the same mechanism of action in both settings. This study sought to explore the molecular mechanisms of TXA activity in trauma and determine whether administration of TXA as a supplement to FWB resuscitation could attenuate the established ATC in a rat model simulating prehospital resuscitation of polytrauma and hemorrhagic shock. In a parallel in-vitro study, the effects on clotting assays of adding plasmin at varying doses along with either simultaneous addition of TXA or pre-incubation with TXA were measured, and the results suggested that maximum anti-fibrinolytic effect of TXA on plasmin-induced fibrinolysis required pre-incubation of TXA and plasmin prior to clot initiation. In the rat model, ATC was induced by polytrauma followed by 40% hemorrhage. One hour after trauma, the rats were resuscitated with FWB collected from donor rats. Vehicle or TXA (10mg/kg) was given as bolus either before trauma (TXA-BT), or 45min after trauma prior to resuscitation (TXA-AT). The TXA-BT group was included to contrast the coagulation effects of TXA when used as it is in elective surgery vs. what is actually feasible in real trauma patients (TXA-AT group). A single dose of TXA prior to trauma significantly delayed the onset of ATC from 30min to 120min after trauma as measured by a rise in prothrombin time (PT). The plasma d-dimer as well as plasminogen/fibrinogen ratio in traumatized liver of TXA-BT were significantly lower as compared to vehicle and TXA-AT. Wet/dry weight ratio and leukocytes infiltration of lungs were significantly decreased only if TXA was administrated later, prior to resuscitation (TXA-AT). In conclusion: Limited prehospital trauma resuscitation that includes FWB and TXA may not correct established systemic ATC, but rather may improve overall outcomes of resuscitation by attenuation of acute lung injury. By contrast, TXA given prior to trauma reduced levels of fibrinolysis at the site of tissue injury and circulatory d-dimer, and delayed development of coagulopathy independent of reduction of fibrinogen levels following trauma. These findings highlight the importance of early administration of TXA in trauma, and suggest that further optimization of dosing protocols in trauma to exploit TXA’s various sites and modes of action may further improve patient outcomes.
Collapse
Affiliation(s)
- Xiaowu Wu
- Coagulation and Blood Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
- * E-mail:
| | - Avi Benov
- Department of Surgery “A”, Meir Medical Center, Kfar Saba and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Daniel N. Darlington
- Coagulation and Blood Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Jeffrey D. Keesee
- Coagulation and Blood Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Bin Liu
- Coagulation and Blood Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| | - Andrew P. Cap
- Coagulation and Blood Research Program, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, United States of America
| |
Collapse
|
9
|
Blockade of Stellate Ganglion Remediates Hemorrhagic Shock-Induced Intestinal Barrier Dysfunction. J Surg Res 2019; 244:69-76. [PMID: 31279996 DOI: 10.1016/j.jss.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/13/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acute hemorrhage-induced excessive excitation of sympathetic-adrenal-medullary system (SAS) leads to gut hypoperfusion and barrier dysfunction, which is a critical event during hemorrhagic shock-induced multiple organ injury. Stellate ganglion blockade (SGB) has been widely used for suppression of sympathetic-adrenal-medullary system in the clinical practice. However, whether SGB improves intestinal barrier function after hemorrhagic shock remains unclear. Here, we hypothesized that the implementation of SGB restores intestinal barrier function and reduces gut injury. MATERIALS AND METHODS Male rats received the SGB pretreatment and underwent hemorrhagic shock followed by resuscitation. The 96-h survival rate, intestinal permeability and morphology, D-lactic acid concentration and diamine oxidase activity in plasma, and expressions of F-actin, Claudin-1, and E-cadherin in intestinal tissues were observed. RESULTS Pretreatment with SGB significantly enhances the 96-h survival rate in rats subjected to hemorrhagic shock (from 8.3% to 66.7%). Hemorrhagic shock reduced the coverage scale of intestinal mucus and intestinal villus width and height, enhanced the intestinal permeability to fluorescein isothiocyanate-dextran 4 and D-lactic acid concentration in plasma, and decreased the expressions of F-actin, Claudin-1, and E-Cadherin in intestinal tissue. These hemorrhagic shock-induced adverse effects were abolished by SGB treatment. CONCLUSIONS SGB treatment has a beneficial effect during hemorrhagic shock, which is associated with the improvement of intestine barrier function. SGB may be considered as a new therapeutic strategy for treatment of hemorrhagic shock.
Collapse
|
10
|
Fernandez-Moure J, Maisha N, Lavik EB, Cannon JW. The Chemistry of Lyophilized Blood Products. Bioconjug Chem 2018; 29:2150-2160. [PMID: 29791137 DOI: 10.1021/acs.bioconjchem.8b00271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the development of new biologics and bioconjugates, storage and preservation have become more critical than ever before. Lyophilization is a method of cell and protein preservation by removing a solvent such as water from a substance followed by freezing. This technique has been used in the past and still holds promise for overcoming logistic challenges in safety net hospitals with limited blood banking resources, austere environments such as combat, and mass casualty situations where existing resources may be outstripped. This method allows for long-term storage and transport but requires the bioconjugation of preservatives to prevent cell destabilization. Trehalose is utilized as a bioconjugate in platelet and red blood cell preservation to maintain protein thermodynamics and stabilizing protein formulations in liquid and freeze-dried states. Biomimetic approaches have been explored as alternatives to cryo- and lyopreservation of blood components. Intravascular hemostats such as PLGA nanoparticles functionalized with PEG motifs, topical hemostats utilizing fibrinogen or chitosan, and liposomal encapsulated hemoglobin with surface modifications are effectively stored long-term through bioconjugation. In thinking about the best methods for storage and transport, we are focusing this topical review on blood products that have the longest track record of preservation and looking at how these methods can be applied to synthetic systems.
Collapse
Affiliation(s)
- Joseph Fernandez-Moure
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Nuzhat Maisha
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Erin B Lavik
- Department of Chemical, Biochemical & Environmental Engineering , University of Maryland, Baltimore County , Baltimore , Maryland 21250 , United States
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care & Emergency Surgery , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States.,Department of Surgery , Uniformed Services University of the Health Sciences , Bethesda , Maryland 20814 , United States
| |
Collapse
|
11
|
Walsh M, Shreve J, Thomas S. The value of cold storage whole blood platelets in trauma resuscitation is like real estate: a function of 'location, location, location'. Br J Haematol 2017; 179:699-702. [PMID: 29168168 DOI: 10.1111/bjh.14998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Mark Walsh
- Department of Emergency Medicine, Memorial Hospital of South Bend, South Bend, IN, USA.,Indiana University School of Medicine, South Bend at the Notre Dame Campus, South Bend, IN, USA
| | - Jacob Shreve
- Indiana University School of Medicine, South Bend at the Notre Dame Campus, South Bend, IN, USA
| | - Scott Thomas
- Department of Surgery, Memorial Hospital of South Bend, South Bend, IN, USA
| |
Collapse
|
12
|
Wu X, Darlington DN, Montgomery RK, Liu B, Keesee JD, Scherer MR, Benov A, Chen J, Cap AP. Platelets derived from fresh and cold‐stored whole blood participate in clot formation in rats with acute traumatic coagulopathy. Br J Haematol 2017; 179:802-810. [DOI: 10.1111/bjh.14999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/11/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Xiaowu Wu
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Daniel N. Darlington
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Robbie K. Montgomery
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Bin Liu
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Jeffrey D. Keesee
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Michael R. Scherer
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| | - Avi Benov
- Israel Defence Forces Tel Aviv Israel
| | | | - Andrew P. Cap
- Coagulation and Blood Research Program United States Army Institute of Surgical Research Fort Sam Houston TX USA
| |
Collapse
|
13
|
What's New in Shock, February 2017? Shock 2017; 47:125-127. [DOI: 10.1097/shk.0000000000000781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Ravi PR, Puri B. Fluid resuscitation in haemorrhagic shock in combat casualties. DISASTER AND MILITARY MEDICINE 2017; 3:2. [PMID: 28265454 PMCID: PMC5330140 DOI: 10.1186/s40696-017-0030-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022]
Abstract
This brief update reviews the recent literature available on fluid resuscitation from hemorrhagic shock and considers the applicability of this evidence for use in resuscitation of combat casualties in the combat casualty care (CCC) environment. A number of changes need to be incorporated in the CCC guidelines: (1) dried plasma (DP) is added as an option when other blood components or whole blood are not available; (2) the wording is clarified to emphasize that Hetastarch is a less desirable option than whole blood, blood components, or DP and should be used only when these preferred options are not available; (3) the use of blood products in certain tactical field care settings where this option might be feasible (FSC, GH) is discussed; (4) 1:1:1 damage control resuscitation (DCR) with plasma: packed red blood cells (PRBC): platelets is preferred to 1:1 DCR with plasma: PRBC when platelets are available; and (5) the 30-min wait between increments of resuscitation fluid administered to achieve clinical improvement or target blood pressure has been eliminated. Also included is an order of precedence for resuscitation fluid options. There should be an emphasis on hypotensive resuscitation in order to minimize (1) interference with the body’s hemostatic response and (2) the risk of complications of over resuscitation. Hetastarch is retained as the preferred option over crystalloids when blood products are not available because of its smaller volume and the potential for long evacuations in the military setting.
Collapse
Affiliation(s)
| | - Bipin Puri
- Office of DGAFMS, M Block, New Delhi, 110001 India
| |
Collapse
|