1
|
Wang Q, Wang L, Botchway BOA, Zhang Y, Huang M, Liu X. OTULIN Can Improve Spinal Cord Injury by the NF-κB and Wnt/β-Catenin Signaling Pathways. Mol Neurobiol 2024; 61:8820-8830. [PMID: 38561559 DOI: 10.1007/s12035-024-04134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Spinal cord injury (SCI) is a significant health concern, as it presently has no effective treatment in the clinical setting. Inflammation is a key player in the pathophysiological process of SCI, with a number of studies evidencing that the inhibition of the NF-κB signaling pathway may impede the inflammatory response and improve SCI. OTULIN, as a de-ubiquitination enzyme, the most notable is its anti-inflammatory effect. OTULIN can inhibit the NF-κB signaling pathway to suppress the inflammatory reaction via de-ubiquitination. In addition, OTULIN may promote vascular regeneration through the Wnt/β-catenin pathway in the wake of SCI. In this review, we analyze the structure and physiological function of OTULIN, along with both NF-κB and Wnt/β-catenin signaling pathways. Furthermore, we examine the significant role of OTULIN in SCI through its impairment of the NF-κB signaling pathway, which could open the possibility of it being a novel interventional target for the condition.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Benson O A Botchway
- Bupa Cromwell Hospital, London, SW5 0TU, UK
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
2
|
Wang Y, Han Q, Liu L, Wang S, Li Y, Qian Z, Jiang Y, Yu Y. Natural hydrogen gas and engineered microalgae prevent acute lung injury in sepsis. Mater Today Bio 2024; 28:101247. [PMID: 39328786 PMCID: PMC11426111 DOI: 10.1016/j.mtbio.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Background Hydrogen gas and microalgae both exist in the natural environment. We aimed to integrate hydrogen gas and biology nano microalgae together to expand the treatment options in sepsis. Methods Phosphoproteomics, metabolomics and proteomics data were obtained from mice undergoing cecum ligation and puncture (CLP) and inhalation of hydrogen gas. All omics analysis procedure were accordance with standards. Multi R packages were used in single cell and spatial transcriptomics analysis to identify primary cells expressing targeted genes, and the genes' co-expression relationships in sepsis related lung landscape. Then, network pharmacology method was used to identify candidate drugs. We used hydrophobic-force-driving self-assembly method to construct dihydroquercetin (DQ) nanoparticle. To cooperate with molecular hydrogen, ammonia borane (B) was added to DQ surface. Then, Chlorella vulgaris (C) was used as biological carrier to improve self-assembly nanoparticle. Vivo and vitro experiments were both conducted to evaluate anti-inflammation, anti-ferroptosis, anti-infection and organ protection capability. Results As a result, we identified Esam and Zo-1 were target phosphorylation proteins for molecular hydrogen treatment in lung. Ferroptosis and glutathione metabolism were two target pathways. Chlorella vulgaris improved the dispersion of DQB and reconstructed morphological features of DQB, formed DQB@C nano-system (size = 307.3 nm, zeta potential = -22mv), with well infection-responsive hydrogen release capability and biosafety. In addition, DQB@C was able to decrease oxidative stress and inflammation factors accumulation in lung cells. Through increasing expression level of Slc7a11/xCT and decreasing Cox2 level to participate with the regulation of ferroptosis. Also, DQB@C played lung and multi organ protection and anti-inflammation roles on CLP mice. Conclusion Our research proposed DQB@C as a novel biology nano-system with enormous potential on treatment for sepsis related acute lung injury to solve the limitation of hydrogen gas utilization in clinics.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
- The Graduate School, Tianjin Medical University, 300070, Tianjin, China
| | - Qingqing Han
- The Graduate School, Tianjin Medical University, 300070, Tianjin, China
| | - Lingling Liu
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
- Department of Anesthesiology, Tianjin Huanhu Hospital, Tianjin, 300350, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Shuai Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
- The Graduate School, Tianjin Medical University, 300070, Tianjin, China
| | - Yongfa Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
- The Graduate School, Tianjin Medical University, 300070, Tianjin, China
| | - Zhanying Qian
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| |
Collapse
|
3
|
Wang Y, Fan Y, Jiang Y, Wang E, Song Y, Chen H, Xu F, Xie K, Yu Y. APOA2: New Target for Molecular Hydrogen Therapy in Sepsis-Related Lung Injury Based on Proteomic and Genomic Analysis. Int J Mol Sci 2023; 24:11325. [PMID: 37511084 PMCID: PMC10379236 DOI: 10.3390/ijms241411325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Target biomarkers for H2 at both the protein and genome levels are still unclear. In this study, quantitative proteomics acquired from a mouse model were first analyzed. At the same time, functional pathway analysis helped identify functional pathways at the protein level. Then, bioinformatics on mRNA sequencing data were conducted between sepsis and normal mouse models. Differential expressional genes with the closest relationship to disease status and development were identified through module correlation analysis. Then, common biomarkers in proteomics and transcriptomics were extracted as target biomarkers. Through analyzing expression quantitative trait locus (eQTL) and genome-wide association studies (GWAS), colocalization analysis on Apoa2 and sepsis phenotype was conducted by summary-data-based Mendelian randomization (SMR). Then, two-sample and drug-target, syndrome Mendelian randomization (MR) analyses were all conducted using the Twosample R package. For protein level, protein quantitative trait loci (pQTLs) of the target biomarker were also included in MR. Animal experiments helped validate these results. As a result, Apoa2 protein or mRNA was identified as a target biomarker for H2 with a protective, causal relationship with sepsis. HDL and type 2 diabetes were proven to possess causal relationships with sepsis. The agitation and inhibition of Apoa2 were indicated to influence sepsis and related syndromes. In conclusion, we first proposed Apoa2 as a target for H2 treatment.
Collapse
Affiliation(s)
- Yuanlin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Fan
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Enquan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feier Xu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
4
|
Bai Y, Li L, Dong B, Ma W, Chen H, Yu Y. Phosphorylation‐mediated PI3K‐Art
signalling pathway as a therapeutic mechanism in the
hydrogen‐induced
alleviation of brain injury in septic mice. J Cell Mol Med 2022; 26:5713-5727. [DOI: 10.1111/jcmm.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yuanyuan Bai
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital Fudan University Shanghai China
| | - Beibei Dong
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Wanjie Ma
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Hongguang Chen
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| | - Yonghao Yu
- Department of Anesthesiology Tianjin Institute of Anesthesiology, General Hospital of Tianjin Medical University Tianjin China
- Tianjin Research Institute of Anesthesiology Tianjin China
| |
Collapse
|
5
|
Shang P, Zhang B, Li P, Ahmed Z, Hu X, Chamba Y, Zhang H. Plateau Adaptation Gene Analyses Reveal Transcriptomic, Proteomic, and Dual Omics Expression in the Lung Tissues of Tibetan and Yorkshire Pigs. Animals (Basel) 2022; 12:ani12151919. [PMID: 35953907 PMCID: PMC9367445 DOI: 10.3390/ani12151919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated environments such as plateaus are often classified as low oxygen environments. The hypoxic adaptation mechanisms utilized by organisms in these conditions are not well understood. To address this, the differentially expressed genes (DEGs) involved in hypoxia adaptation were assessed using two pig breeds (Tibetan pig [TP] and Yorkshire sow [YY]). Genes related to lung tissue responses to hypoxia were assessed using transcriptomic (using RNA-seq) and proteomic (using iTRAQ) analysis. A total of 1021 DEGs were screened out. In the iTRAQ omics data, a total of 22,100 peptides were obtained and 4518 proteins were found after filtering. A total of 271 differentially expressed proteins [DEPs] were screened using the conditions of p < 0.05; FC ≤ 0.833; and FC ≥ 1.2. A total of 14 DEGs at the mRNA and protein levels were identified and found to be associated with regulation of the inflammatory response; blood particles; and MAPK cascade response regulation. Among the DEGs, six were associated with hypoxia adaptation function (mitochondria and glycolysis) in pigs. The results of this study identify novel candidate genes involved in porcine hypoxia adaptation mechanisms.
Collapse
Affiliation(s)
- Peng Shang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
- Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
| | - Bo Zhang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Pan Li
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Xiaoxiang Hu
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
| | - Yangzom Chamba
- Department of animal husbandry, College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi 860000, China
- Correspondence: (Y.C.); (H.Z.)
| | - Hao Zhang
- Laboratory National Engineering for Animal Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China; (P.S.); (B.Z.); (P.L.); (X.H.)
- Correspondence: (Y.C.); (H.Z.)
| |
Collapse
|
6
|
Abstract
Molecular hydrogen exerts biological effects on nearly all organs. It has anti-oxidative, anti-inflammatory, and anti-aging effects and contributes to the regulation of autophagy and cell death. As the primary organ for gas exchange, the lungs are constantly exposed to various harmful environmental irritants. Short- or long-term exposure to these harmful substances often results in lung injury, causing respiratory and lung diseases. Acute and chronic respiratory diseases have high rates of morbidity and mortality and have become a major public health concern worldwide. For example, coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic. An increasing number of studies have revealed that hydrogen may protect the lungs from diverse diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma, lung cancer, pulmonary arterial hypertension, and pulmonary fibrosis. In this review, we highlight the multiple functions of hydrogen and the mechanisms underlying its protective effects in various lung diseases, with a focus on its roles in disease pathogenesis and clinical significance.
Collapse
Affiliation(s)
- Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Li M, Ren R, Yan M, Chen S, Chen C, Yan J. Identification of novel biomarkers for sepsis diagnosis via serum proteomic analysis using iTRAQ-2D-LC-MS/MS. J Clin Lab Anal 2021; 36:e24142. [PMID: 34825737 PMCID: PMC8761403 DOI: 10.1002/jcla.24142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 11/09/2022] Open
Abstract
Background Sepsis is a common cause of morbidity and mortality in the ICU patients. Early diagnosis and appropriate patient management is the key to improve the patient survival and to limit disabilities in sepsis patients. This study was aimed to find new diagnostic biomarkers of sepsis. Methods In this study, serum proteomic profiles in sepsis patients by iTRAQ2D‐LC‐MS/MS. Thirty seven differentially expressed proteins were identified in patients with sepsis, and six proteins including ApoC3, SERPINA1, VCAM1, B2M, GPX3, and ApoE were selected for further verification by ELISA and immunoturbidimetry in 53 patients of non‐sepsis, 37 patients of sepsis, and 35 patients of septic shock. Descriptive statistics, functional enrichment analysis, and ROC curve analysis were conducted. Results The level of ApoC3 was gradually decreased among non‐sepsis, sepsis, and septic shock groups (p = 0.049). The levels of VCAM1 (p = 0.010), B2M (p = 0.004), and ApoE (p = 0.039) were showing an increased tread in three groups, with the peak values of B2M and ApoE in the sepsis group. ROC curve analysis for septic diagnosis showed that the areas under ROC curve (AUC) of ApoC3, VCAM1, B2M, and ApoE were 0.625, 0.679, 0.581, and 0.619, respectively, which were lower than that of PCT (AUC 0.717) and CRP (AUC 0.706), but there were no significant differences between each index and PCT or CRP. The combination including four validated indexes and two classical infection indexes for septic diagnosis had the highest AUC‐ROC of 0.772. Conclusion Proteins of ApoC3, VCAM1, B2M, and ApoE provide a supplement to classical biomarkers for septic diagnosis.
Collapse
Affiliation(s)
- Meng Li
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Rongrong Ren
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Molei Yan
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Shangzhong Chen
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| | - Chen Chen
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Jing Yan
- Department of Intensive Care, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Miao H, Chen S, Ding R. Evaluation of the Molecular Mechanisms of Sepsis Using Proteomics. Front Immunol 2021; 12:733537. [PMID: 34745104 PMCID: PMC8566982 DOI: 10.3389/fimmu.2021.733537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex syndrome promoted by pathogenic and host factors; it is characterized by dysregulated host responses and multiple organ dysfunction, which can lead to death. However, its underlying molecular mechanisms remain unknown. Proteomics, as a biotechnology research area in the post-genomic era, paves the way for large-scale protein characterization. With the rapid development of proteomics technology, various approaches can be used to monitor proteome changes and identify differentially expressed proteins in sepsis, which may help to understand the pathophysiological process of sepsis. Although previous reports have summarized proteomics-related data on the diagnosis of sepsis and sepsis-related biomarkers, the present review aims to comprehensively summarize the available literature concerning “sepsis”, “proteomics”, “cecal ligation and puncture”, “lipopolysaccharide”, and “post-translational modifications” in relation to proteomics research to provide novel insights into the molecular mechanisms of sepsis.
Collapse
Affiliation(s)
- He Miao
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| | - Song Chen
- Department of Trauma Intensive Care Unit, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Renyu Ding
- Department of Intensive Care Unit, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li K, Feng T, Liu L, Liu H, Huang K, Zhou J. Hepatic Proteomic Analysis of Selenoprotein T Knockout Mice by TMT: Implications for the Role of Selenoprotein T in Glucose and Lipid Metabolism. Int J Mol Sci 2021; 22:ijms22168515. [PMID: 34445217 PMCID: PMC8395235 DOI: 10.3390/ijms22168515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Selenoprotein T (SELENOT, SelT), a thioredoxin-like enzyme, exerts an essential oxidoreductase activity in the endoplasmic reticulum. However, its precise function remains unknown. To gain more understanding of SELENOT function, a conventional global Selenot knockout (KO) mouse model was constructed for the first time using the CRISPR/Cas9 technique. Deletion of SELENOT caused male sterility, reduced size/body weight, lower fed and/or fasting blood glucose levels and lower fasting serum insulin levels, and improved blood lipid profile. Tandem mass tag (TMT) proteomics analysis was conducted to explore the differentially expressed proteins (DEPs) in the liver of male mice, revealing 60 up-regulated and 94 down-regulated DEPs in KO mice. The proteomic results were validated by western blot of three selected DEPs. The elevated expression of Glycogen [starch] synthase, liver (Gys2) is consistent with the hypoglycemic phenotype in KO mice. Furthermore, the bioinformatics analysis showed that Selenot-KO-induced DEPs were mainly related to lipid metabolism, cancer, peroxisome proliferator-activated receptor (PPAR) signaling pathway, complement and coagulation cascades, and protein digestion and absorption. Overall, these findings provide a holistic perspective into SELENOT function and novel insights into the role of SELENOT in glucose and lipid metabolism, and thus, enhance our understanding of SELENOT function.
Collapse
Affiliation(s)
- Ke Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
| | - Tiejun Feng
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
| | - Leyan Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
| | - Kaixun Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
| | - Jun Zhou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China; (K.L.); (T.F.); (L.L.); (H.L.); (K.H.)
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
10
|
Wen XP, Zhang YZ, Wan QQ. Non-targeted proteomics of acute respiratory distress syndrome: clinical and research applications. Proteome Sci 2021; 19:5. [PMID: 33743690 PMCID: PMC7980750 DOI: 10.1186/s12953-021-00174-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid with a high mortality rate, but the underlying mechanism is not yet fully understood, causing absent specific therapeutic drugs to treat with ARDS. In recent years, more and more studies have applied proteomics to ARDS. Non-targeted studies of proteomics in ARDS are just beginning and have the potential to identify novel drug targets and key pathways in this disease. This paper will provide a brief review of the recent advances in the application of non-targeted proteomics to ARDS.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yue-Zhong Zhang
- Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Qi-Quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Matsuura H, Matsumoto H, Okuzaki D, Shimizu K, Ogura H, Ebihara T, Matsubara T, Hirano SI, Shimazu T. Hydrogen Gas Therapy Attenuates Inflammatory Pathway Signaling in Septic Mice. J Surg Res 2021; 263:63-70. [PMID: 33639371 DOI: 10.1016/j.jss.2021.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/16/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Molecular hydrogen (H2) has been used in clinical cases. However, there are few studies of H2 therapy to treat sepsis, and anti-inflammatory mechanisms of H2 are mostly unknown. We aimed to confirm effects of H2 therapy on sepsis and reveal its therapeutic mechanism via RNA sequencing in multiple organs in septic mice. METHODS Nine-week-old C57BL/6 male mice underwent cecal ligation and puncture (CLP) or sham procedure. Subsequently, the CLP model received immediate ± continuous inhalation of 7% H2. Mice were observed for a week to assess survival rates. Serum inflammatory cytokines were evaluated at 24 h after CLP procedure. Liver, intestine, and lungs in CLP mice receiving 24-h ± H2 therapy were assessed by RNA sequencing. Data were analyzed with Ingenuity Pathways Analysis (QIAGEN Inc). RESULTS Seven-day survival rate in septic mice was significantly improved in the H2 inhalation group compared with that in the control group (75% versus 40%, P < 0.05). H2 treatment attenuated serum interleukin-6 and tumor necrosis factor-α levels at 24 h after CLP, and blood glucose levels were maintained in the H2-treated group. In RNA sequencing, canonical pathway analysis revealed inactivity of various inflammatory signaling pathways, for example, acute phase response signaling and STAT3 pathways, in the liver and intestine in the CLP model after 24-h H2 inhalation. We detected significantly decreased expressions of upstream regulator genes such as the CD14 antigen gene in the liver and various cytokine receptor genes in the intestine and lungs in the H2-treated group. CONCLUSIONS These findings may contribute to clarifying the mechanism of action of H2 therapy in sepsis.
Collapse
Affiliation(s)
- Hiroshi Matsuura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita city, Osaka, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsunehiro Matsubara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | - Takeshi Shimazu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
12
|
Jiang Y, Zhang K, Yu Y, Wang Y, Lian N, Xie K, Yu Y. Molecular hydrogen alleviates brain injury and cognitive impairment in a chronic sequelae model of murine polymicrobial sepsis. Exp Brain Res 2020; 238:2897-2908. [PMID: 33052428 DOI: 10.1007/s00221-020-05950-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 01/13/2023]
Abstract
Sepsis-related encephalopathy (SAE), which causes a series of brain injuries and long-term, potentially irreversible cognitive dysfunction, is closely associated with increased morbidity and mortality. Hydrogen (H2) is a new type of medical gas molecule that has been widely used in the treatment of various diseases in recent years. The aim of the present study was to explore the protective effects of H2 inhalation on brain injury and long-term cognitive impairment in an improved chronic septic mouse model. Male C57BL/6J mice were randomized into four groups: Control, Control + H2, SAE and SAE + H2. The SAE and Control models were established by intraperitoneal injection of human stool suspension or saline in mice. H2 (2%) was inhaled for 60 min at 1 h and 6 h after SAE or Control treatment. The survival rates were recorded for 14 days (days 1-14) and the Morris Water Maze was performed for 7 days (days 8-14). To assess the severity of the brain injury, hematoxylin and eosin staining, Nissl staining, Evans blue (EB) extravasation and the wet/dry weight ratio of brain tissue were detected 24 h after SAE or Control treatment. In addition, inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin 6 (IL-6), high-mobility group box 1 (HMGB1), as well as the protein levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), zonula occludens-1 (ZO-1) and Occludin, were measured 6, 12 and 24 h after SAE or Control treatment. The results showed that H2 treatment increased survival rates, mitigated cognitive impairment, reduced hippocampal histological damage, decreased EB and water content, and decreased the levels of TNF-α, IL-6, HMGB1, Nrf2, HO-1, ZO-1 and Occludin, as compared with the SAE group. These data revealed that 2% H2 could suppress brain damage and improve cognitive function in septic mice by inhibiting oxidative stress, inflammatory response and the sepsis-induced blood-brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Yang Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China.
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China.
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, People's Republic of China.
- Tianjin Institute of Anesthesiology, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
13
|
Jiang Y, Bian Y, Lian N, Wang Y, Xie K, Qin C, Yu Y. iTRAQ-Based Quantitative Proteomic Analysis of Intestines in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4885-4900. [PMID: 33209018 PMCID: PMC7670176 DOI: 10.2147/dddt.s271191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Objective Sepsis-associated intestinal injury has a higher morbidity and mortality in patients with sepsis, but there is still no effective treatment. Our research team has proven that inhaling 2% hydrogen gas (H2) can effectively improve sepsis and related organ damage, but the specific molecular mechanism of its role is not clear. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics analysis was used for studying the effect of H2 on intestinal injury in sepsis. Methods Male C57BL/6J mice were used to prepare a sepsis model by cecal ligation and puncture (CLP). The 7-day survival rates of mice were measured. 4-kd fluorescein isothiocyanate-conjugated Dextran (FITC-dextran) blood concentration measurement, combined with hematoxylin-eosinstain (HE) staining and Western blotting, was used to study the effect of H2 on sepsis-related intestinal damage. iTRAQ-based liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used for studying the proteomics associated with H2 for the treatment of intestinal injury. Results H2 can significantly improve the 7-day survival rates of sepsis mice. The load of blood and peritoneal lavage bacteria was increased, and H2 treatment can significantly reduce it. CLP mice had significant intestinal damage, and inhalation of 2% hydrogen could significantly reduce this damage. All 4194 proteins were quantified, of which 199 differentially expressed proteins were associated with the positive effect of H2 on sepsis. Functional enrichment analysis indicated that H2 may reduce intestinal injury in septic mice through the effects of thyroid hormone synthesis and nitrogen metabolism signaling pathway. Western blot showed that H2 was reduced by down-regulating the expressions of deleted in malignant brain tumors 1 protein (DMBT1), insulin receptor substrate 2 (IRS2), N-myc downregulated gene 1 (NDRG1) and serum amyloid A-1 protein (SAA1) intestinal damage in sepsis mice. Conclusion A total of 199 differential proteins were related with H2 in the intestinal protection of sepsis. H2-related differential proteins were notably enriched in the following signaling pathways, including thyroid hormone synthesis signaling pathway, nitrogen metabolism signaling pathways, digestion and absorption signaling pathways (vitamins, proteins and fats). H2 reduced intestinal injury in septic mice by down-regulating the expressions of SAA1, NDRG1, DMBT1 and IRS2.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yingxue Bian
- Department of Anesthesiology, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Naqi Lian
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yaoqi Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Chao Qin
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin Institute of Anesthesiology, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Xie K, Lian N, Kan Y, Yang M, Pan J, Yu Y, Yu Y. iTRAQ-based quantitative proteomic analysis of the therapeutic effects of 2% hydrogen gas inhalation on brain injury in septic mice. Brain Res 2020; 1746:147003. [PMID: 32603701 DOI: 10.1016/j.brainres.2020.147003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/24/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Sepsis encephalopathy (SAE) has a high incidence and mortality rate in patients with sepsis; however, there is currently no effective treatment. Our previous studies have reported that 2% hydrogen (H2) gas inhalation had a protective effect on sepsis and SAE; however, the specific mechanism have not been fully elucidated. In the current study, male Institute of Cancer Research mice were either used to create the cecal ligation and puncture (CLP) model or for sham surgery, followed by 2% H2 gas inhalation for 60 min beginning at 1 and 6 h following sham or CLP surgeries. The isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, hematoxylin and eosin (H&E) staining, Nissl staining, and western blot analysis were used to investigate the effects of H2 on brain injury in mice with sepsis. The results of the H&E, and Nissl staining indicated that the CLP mice had a significant brain injury, which was characterized by aggravated pathological damage and was alleviated by 2% H2 inhalation. Quantitative proteomics based on iTRAQ combined with LC-MS/MS analysis quantified a total of 5317 proteins, of which 39 were connected with the protective mechanism of H2. In addition, H2 could regulate the immune and the coagulation systems. Furthermore, western blot analysis revealed that H2 decreased SAE in septic mice by downregulating the protein expression levels of SMAD4, DPYS, PTGDS and upregulating the expression level of CUL4A. These results provide insights into the mechanism of the positive effect of H2 on SAE and contribute to the clinical application of H2 in patients with sepsis.
Collapse
Affiliation(s)
- Keliang Xie
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yufei Kan
- Department of Anesthesiology of Grade 2016, Tianjin Medical University, Tianjin, China
| | - Man Yang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Jiacheng Pan
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China
| | - Yang Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Institute of Anesthesiology, Tianjin, China.
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
15
|
Zhuang X, Yu Y, Jiang Y, Zhao S, Wang Y, Su L, Xie K, Yu Y, Lu Y, Lv G. Molecular hydrogen attenuates sepsis-induced neuroinflammation through regulation of microglia polarization through an mTOR-autophagy-dependent pathway. Int Immunopharmacol 2020; 81:106287. [DOI: 10.1016/j.intimp.2020.106287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 12/17/2022]
|
16
|
What's New in Shock, February 2018? Shock 2018; 49:117-119. [PMID: 29329170 DOI: 10.1097/shk.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|