1
|
Zhang Y, Wu Z. LINC02605 involved in paediatric Mycoplasma pneumoniae pneumonia complicated with diarrhoea via miR-539-5p/CXCL1 axis. Eur J Clin Invest 2024; 54:e14234. [PMID: 38662581 DOI: 10.1111/eci.14234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND To investigate the involvement of LINC02605 in the progression of paediatric Mycoplasma pneumoniae pneumonia (MPP). METHODS One hundred and thirty-two children with MPP (90 simple MPP and 42 MPP + diarrhoea) were enrolled, and their plasma was collected for detection of LINC026505 expression. CCK-8 kit and commercial apoptosis kit were introduced to determine cell growth and apoptosis. In silico prediction analyses were conducted to predict the downstream miRNA for LINC02605, following verification by dual luciferase reporter assay. The lipid-associated membrane proteins (LAMPs) were used to treat A549 and Coca-2 cells. RESULTS LIN02605 was highly expressed in the MPP, especially in MPP complicated with diarrhoea. LINC02605 downregulation in A549 cells correlated with significant suppression of cell apoptosis rate and growth inhibition rate in vitro. Introduction of miR-539-5p inhibited luciferase activity in a reporter system containing the wild-type LINC02605 and CXCL1. After stimulation with LAMPs, overexpression of LINC02605 and CXCL1 and inhibition of miR-539-5p were found. miR-539-5p and CXCL1 knockdown resulted in a rescue effect on the LINC02605-inhibited cell apoptosis. LAMPs induced IL-1β in intestinal epithelial cells and IL-1β induced LINC02605 expression in A549 cells. CONCLUSIONS LINC02605 was upregulated in MPP and miR-539-5p was a target for LINC02605. LINC02605 may be involved in the crosstalk between the gastrointestinal tract and the respiratory tract.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pediatrics, Yancheng City Dafeng People's Hospital, Yancheng, Jiangsu, China
| | - Zeming Wu
- Department of Pediatrics, Yancheng City Dafeng People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Mondal J, Pillarisetti S, Junnuthula V, Saha M, Hwang SR, Park IK, Lee YK. Hybrid exosomes, exosome-like nanovesicles and engineered exosomes for therapeutic applications. J Control Release 2023; 353:1127-1149. [PMID: 36528193 DOI: 10.1016/j.jconrel.2022.12.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/28/2022]
Abstract
Exosomes are endosome-derived nanovesicles involved in cellular communication. They are natural nanocarriers secreted by various cells, making them suitable candidates for diverse drug delivery and therapeutic applications from a material standpoint. They have a phospholipid bilayer decorated with functional molecules and an enclosed parental matrix, which has attracted interest in developing designer/hybrid engineered exosome nanocarriers. The structural versatility of exosomes allows the modification of their original configuration using various methods, including genetic engineering, chemical procedures, physical techniques, and microfluidic technology, to load exosomes with additional cargo for expanded biomedical applications. Exosomes show enormous potential for overcoming the limitations of conventional nanoparticle-based techniques in targeted therapy. This review highlights the exosome sources, characteristics, state of the art in the field of hybrid exosomes, exosome-like nanovesicles and engineered exosomes as potential cargo delivery vehicles for therapeutic applications.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea
| | | | - Monochura Saha
- Media lab, Massachusetts Institute of Technology (MIT), 75 Amherst Street, Cambridge 02139, USA
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Biomedical Science Graduate Program (BMSGP), Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 61469, Republic of Korea.
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea; Department of Chemical & Biological Engineering, Korea National University of Transportation, Chungju 27470, Republic of Korea.
| |
Collapse
|
4
|
Berezin AA, Obradovic Z, Kopp K, Berezina TA, Lichtenauer M, Wernly B, Berezin AE. The Association of Glucose Control with Circulating Levels of Red Blood Cell-Derived Vesicles in Type 2 Diabetes Mellitus Patients with Atrial Fibrillation. Int J Mol Sci 2022; 24:ijms24010729. [PMID: 36614172 PMCID: PMC9820839 DOI: 10.3390/ijms24010729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Hyperglycemia is a trigger for structural alteration of red blood cells (RBCs) and their ability to release extracellular vesicles (EVs). The aim of the study was to elucidate whether glucose control in T2DM patients with concomitant HF and AF affects a circulating number of RBC-derived EVs. We prospectively included 417 T2DM patients with HF, 51 of them had atrial fibrillation and 25 healthy volunteers and 30 T2DM non-HF individuals. Clinical assessment, echocardiography examination and biomarker measures were performed at the baseline of the study. RBC-derived EVs were determined as CD235a+ PS+ particles by flow cytometry. NT-proBNP levels were measured by ELISA. AF patients with glycosylated hemoglobin (HbA1c) < 6.9% had lower levels of CD235a+ PS+ RBC-derived vesicles than those with HbA1c ≥ 7.0%. There were no significant differences in number of CD235a+ PS+ RBC-derived vesicles between patients in entire cohort and in non-AF sub-cohort with HbA1c < 6.9% and HbA1c ≥ 7.0%, respectively. Multivariate linear regression yielded that CD235a+ PS+ RBC-derived vesicles ≥ 545 particles in µL (OR = 1.06; 95% CI = 1.01−1.11, p = 0.044) independently predicted HbA1c ≥ 7.0%. Elevated levels of CD235a+ PS+ RBC-derived EVs independently predicted poor glycaemia control in T2DM patients with HF and AF.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Zaporozhye Medical Academy of Postgraduate Education, 20 Vinter Av., 69096 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Kristen Kopp
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Tetiana A. Berezina
- Department of Internal Medicine, Vita Center, 3 Sedov Str., 69000 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
| | - Bernhard Wernly
- Department of Internal Medicine, General Hospital of Oberndorf, Paracelsusstraβe 37, 5110 Oberndorf bei Salzburg, Austria
- Center for Public Health and Healthcare Research, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Correspondence:
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University of Salzburg, Strubergasse 21, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 26 Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
5
|
Zingg SW, Schuster R, Joseph B, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Storage with ethanol attenuates the red blood cell storage lesion. Surgery 2022; 172:1829-1836. [PMID: 36109200 PMCID: PMC10979325 DOI: 10.1016/j.surg.2022.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Current management of hemorrhagic shock relies on control of surgical bleeding along with resuscitation with packed red blood cells and plasma in a 1-to-1 ratio. Transfusion, however, is not without consequence as red blood cells develop a series of biochemical and physical changes during storage termed "the red blood cell storage lesion." Previous data has suggested that ethanol may stabilize the red blood cell membrane, resulting in improved deformability. We hypothesized that storage of packed red blood cells with ethanol would alter the red blood cell storage lesion. METHODS Mice underwent donation and storage of red blood cells with standard storage conditions in AS-3 alone or ethanol at concentrations of 0.07%, 0.14%, and 0.28%. The red blood cell storage lesion parameters of microvesicles, Band-3, free hemoglobin, annexin V, and erythrocyte osmotic fragility were measured and compared. In additional experiments, the mice underwent hemorrhage and resuscitation with stored packed red blood cells to further evaluate the in vivo inflammatory impact. RESULTS Red blood cells stored with ethanol demonstrated decreased microvesicle accumulation and Band-3 levels. There were no differences in phosphatidylserine or cell-free hemoglobin levels. After hemorrhage and resuscitation with packed red blood cells stored with 0.07% ethanol, mice demonstrated decreased serum levels of interleukin-6, macrophage inflammatory protein-1α, keratinocyte chemokine, and tumor necrosis factor α compared to those mice receiving packed red blood cells stored with additive solution-3. CONCLUSION Storage of murine red blood cells with low-dose ethanol results in decreased red blood cell storage lesion severity. Resuscitation with packed red blood cells stored with 0.07% ethanol also resulted in a decreased systemic inflammatory response in a murine model of hemorrhage.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael D Goodman
- Department of Surgery, University of Cincinnati, OH. https://twitter.com/Mdgoodmanmd
| | | |
Collapse
|
6
|
Kay AB, Morris DS, Woller SC, Stevens SM, Bledsoe JR, Collingridge DS, Jacobs JR, Majercik S. The Risk Assessment Profile is suboptimal for guiding duplex ultrasound surveillance in trauma patients. SURGERY IN PRACTICE AND SCIENCE 2022; 11:100127. [PMID: 39845166 PMCID: PMC11750042 DOI: 10.1016/j.sipas.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Background The utility of the Risk Assessment Profile (RAP) score in predicting VTE was assessed, and VTE risk factors identified to guide a duplex ultrasound (DUS) protocol in injured patients. Methods Secondary analysis of prospective data on trauma inpatients (March 2017-September 2019), with admission RAP ≥5. Inhospital VTE patients compared to those without. Regression analyses in DVT, PE and proximal DVT, and ROC analysis evaluating RAP's VTE predictability were performed. Results 1989 patients were analyzed. VTE was identified in 163(8.2%), DVT 159(8.0%), and PE 10(0.5%) patients. Strongest VTE predictors were massive transfusion (OR 5.97, p = 0.005) and spinal cord injury (OR 2.43, p = 0.03). AUC 0.61 (p < 0.001) on ROC analysis evaluating RAP on VTE. Abdominal injury and major surgery were unique risk factors to non-screened patients. Conclusion Performance of RAP to predict VTE was moderate. VTE predictor variables could serve as the foundation for a novel approach guiding DUS surveillance. Derivation and validation are warranted.
Collapse
Affiliation(s)
- Annika Bickford Kay
- Division of Trauma Services and Surgical Critical Care, Intermountain Medical Center, Murray, UT, USA
| | - David S. Morris
- Division of Trauma Services and Surgical Critical Care, Intermountain Medical Center, Murray, UT, USA
| | - Scott C. Woller
- Department of Medicine, Intermountain Medical Center, Murray, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Scott M. Stevens
- Department of Medicine, Intermountain Medical Center, Murray, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Joseph R. Bledsoe
- Department of Emergency Medicine, Intermountain Medical Center, Murray, UT, USA
| | | | - Jason R. Jacobs
- Office of Research, Intermountain Medical Center, Murray, UT, USA
| | - Sarah Majercik
- Division of Trauma Services and Surgical Critical Care, Intermountain Medical Center, Murray, UT, USA
| |
Collapse
|
7
|
Zhang R, Bu T, Cao R, Li Z, Wang C, Huang B, Wei M, Yuan L, Yang G. An optimized exosome production strategy for enhanced yield while without sacrificing cargo loading efficiency. J Nanobiotechnology 2022; 20:463. [PMID: 36309712 PMCID: PMC9618217 DOI: 10.1186/s12951-022-01668-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Exosome mediated mRNA delivery is a promising strategy for the treatment of multiple diseases. However, the low yield of exosomes is a bottleneck for clinical translation. In this study, we boosted exosome production via simultaneously reducing the expression of genes inhibiting exosome biogenesis and supplementing the culture medium with red cell membrane components. Results Among the candidate genes, knocking down of Rab4 was identified to have the highest efficacy in promoting exosome biogenesis while without any obvious cytotoxicity. Additionally, supplementing red cell membrane particles (RCMPs) in the culture medium further promoted exosome production. Combination of Rab4 knockdown and RCMP supplement increased exosome yield up to 14-fold. As a proof-of-concept study, low-density lipoprotein receptor (Ldlr) mRNA was forced expressed in the exosome donor cells and passively encapsulated into the exosomes during biogenesis with this strategy. Though exosome production per cell increased, the booster strategy didn’t alter the loading efficiency of therapeutic Ldlr mRNA per exosome. Consistently, the therapeutic exosomes derived by the strategy alleviated liver steatosis and atherosclerosis in Ldlr−/− mice, similar as the exosomes produced by routine methods. Conclusions Together, the proposed exosome booster strategy conquers the low yield bottleneck to some extent and would certainly facilitate the clinical translation of exosomes. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01668-3.
Collapse
|
8
|
Pulliam KE, Joseph B, Veile RA, Friend LA, Makley AT, Caldwell CC, Lentsch AB, Goodman MD, Pritts TA. Expired But Not Yet Dead: Examining the Red Blood Cell Storage Lesion in Extended-Storage Whole Blood. Shock 2021; 55:526-535. [PMID: 32826814 PMCID: PMC7937408 DOI: 10.1097/shk.0000000000001646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT Whole blood is a powerful resuscitation strategy for trauma patients but has a shorter shelf life than other blood products. The red blood cell storage lesion in whole blood has not previously been investigated beyond the standard storage period. In the present study, we hypothesized that erythrocytes in stored whole blood exhibit similar aspects of the red blood cell storage lesion and that transfusion of extended storage whole blood would not result in a more severe inflammatory response after hemorrhage in a murine model. To test this hypothesis, we stored low-titer, O-positive, whole blood units, and packed red blood cells (pRBCs) for up to 42 days, then determined aspects of the red blood cell storage lesion. Compared with standard storage pRBCs, whole blood demonstrated decreased microvesicle and free hemoglobin at 21 days of storage and no differences in osmotic fragility. At 42 days of storage, rotational thromboelastometry demonstrated that clotting time was decreased, alpha angle was increased, and clot formation time and maximum clot firmness similar in whole blood as compared with pRBCs with the addition of fresh frozen plasma. In a murine model, extended storage whole blood demonstrated decreased microvesicle formation, phosphatidylserine, and cell-free hemoglobin. After hemorrhage and resuscitation, TNF-a, IL-6, and IL-10 were decreased in mice resuscitated with whole blood. Red blood cell survival was similar at 24 h after transfusion. Taken together, these data suggest that red blood cells within whole blood stored for an extended period of time demonstrate similar or reduced accumulation of the red blood cell storage lesion as compared with pRBCs. Further examination of extended-storage whole blood is warranted.
Collapse
Affiliation(s)
- Kasiemobi E Pulliam
- Section of General Surgery, Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Antognoni MT, Marenzoni ML, Misia AL, Avellini L, Chiaradia E, Gavazza A, Miglio A. Effect of Leukoreduction on Hematobiochemical Parameters and Storage Hemolysis in Canine Whole Blood Units. Animals (Basel) 2021; 11:ani11040925. [PMID: 33805143 PMCID: PMC8064101 DOI: 10.3390/ani11040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/28/2023] Open
Abstract
Simple Summary During the storage of blood units, cells undergo many changes, defined as storage lesions; these are biochemical, morphological and immunological modifications and seem to be responsible for adverse post-transfusion effects in recipients. The pre-storage leukoreduction seems to reduce them. The aims of this study are both to evaluate the human filter effectiveness and the effect of pre-storage leukoreduction in stored canine whole blood units. We tested whole blood units, leukoreduced and not, obtained from seven enrolled subjects, until the 42nd day. The white blood cell (WBC) and platelet (PLT) counts are reported to express the leukoreduction effectiveness. As indicators of storage-induced hemolysis, the lactate dehydrogenase activity (LDH) and sodium, potassium, and chlorine electrolytes were measured in plasma, and the red blood cell (RBC) count, hemoglobin concentration (Hgb), and hematocrit (Hct) were obtained with the complete blood count (CBC). The mean corpuscular volume (MCV) values and morphological index obtained from blood smear evaluation were used as indices of morphological changes. We observed that the leukoreduction filter for human use is equally effective on canine whole blood and that leukoreduction has a partially protective role to prevent some storage lesions. Abstract Storage lesions (SLs) occur when the red blood cell quality is altered during the preservation of blood units. Pre-storage leukoreduction would limit the number of SLs. The aims of this study were to evaluate the effectiveness of a leukoreduction filter for human use and the effect of pre-storage leukoreduction on some ematobiochemical parameters in stored canine whole blood. Seven canine blood units were tested. Each one was divided into two units—one leukoreduced (LRWB) and one non-leukoreduced (nLRWB). On each unit, we determined the complete blood count (CBC), lactate-dehydrogenase (LDH), electrolytes (Na+, K+, Cl−), morphological index (MI) and hemolysis, on storage days 0, 7, 14, 21, 28, 35, and 42. Leukoreduction allowed a 98.30% recovery of the RBC count, retaining 99.69% and 94.91% of WBCs and PLTs, respectively. We detected a significant increase of LDH and MI with strongly higher values in nLRWB compared to LRWB. A progressive increase in electrolytes and LDH concentrations was observed as indices of stored hemolysis. LDH showed significantly lower values in LRWB units compared to nLRWB, suggesting its release from leukocytes. In the majority of units, hemolysis reached 1% on the 42nd day of storage. We assert the human leukoreduction filter effectiveness on canine whole blood, and we recommend using nLRWB before day 14, especially for critically ill patients. The difference of the basal hemolysis (day 0) percentages observed between subjects suggests that more studies should be performed to confirm a possible inter-individual donor biological variability of RBC membrane resistance, as happens in humans.
Collapse
Affiliation(s)
- Maria Teresa Antognoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Ambra Lisa Misia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
| | - Alessandra Gavazza
- School of Bioscences and Veterinary Medicine, University of Camerino, 62024 Camerino, Italy;
| | - Arianna Miglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.T.A.); (M.L.M.); (A.L.M.); (L.A.); (E.C.)
- Correspondence:
| |
Collapse
|
10
|
Sihombing MAEM, Safitri M, Zhou T, Wang L, McGinty S, Zhang HJ, Yin Y, Peng Q, Qiu J, Wang G. Unexpected Role of Nonimmune Cells: Amateur Phagocytes. DNA Cell Biol 2021; 40:157-171. [PMID: 33439750 DOI: 10.1089/dna.2020.5647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effective and efficient efferocytosis of dead cells and associated cellular debris are critical to tissue homeostasis and healing of injured tissues. This important task was previously thought to be restricted to professional phagocytes (PPs). However, accumulating evidence has revealed another type of phagocyte, the amateur phagocyte (AP), which can also participate in efferocytosis. APs are non-myeloid progenitor/nonimmune cells that include differentiated cells (e.g., epithelial cells, fibroblasts, and endothelial cells [ECs]) and stem cells (e.g., neuronal progenitor cells and mesenchymal cells) and can be found throughout the human body. Studies have shown that APs have two prominent roles: identifying and removing dead cells presumably before PPs reach the site of injury and assisting PPs in the removal of cell corpses and the resolution of inflamed tissue. With respect to the engulfment and degradation of dead cells, APs are slower and less efficient than PPs. However, APs are fundamental to preventing the spread of inflammation over a large area. In this review, we present the diversity and characteristics of healthy and non-neoplastic APs in mammals. We also propose a hypothetical mechanism of the efferocytosis of immunoglobulin G (IgG)-opsonized myelin debris by ECs (APs). Furthermore, the ingestion and clearance of dead cells can induce proinflammatory or anti-inflammatory cytokine production, endothelial activation, and cellular fate transition, which contribute to the progression of disease. An understanding of the role of APs is necessary to develop effective intervention strategies, including potential molecular targets for clinical diagnosis and drug development, for inflammation-related diseases.
Collapse
Affiliation(s)
- Maic Audo Eybi Mayer Sihombing
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Maharani Safitri
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Lu Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Hai-Jun Zhang
- Department of Vascular and Intervention, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yuxia Yin
- National United Engineering Laboratory for Biomedical Material Modification, Denzhou, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzen Bay Laboratory, Shenzhen, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
11
|
Chambers IG, Willoughby MM, Hamza I, Reddi AR. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118881. [PMID: 33022276 PMCID: PMC7756907 DOI: 10.1016/j.bbamcr.2020.118881] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Heme, as a hydrophobic iron-containing organic ring, is lipid soluble and can interact with biological membranes. The very same properties of heme that nature exploits to support life also renders heme potentially cytotoxic. In order to utilize heme, while also mitigating its toxicity, cells are challenged to tightly control the concentration and bioavailability of heme. On the bright side, it is reasonable to envision that, analogous to other transition metals, a combination of membrane-bound transporters, soluble carriers, and chaperones coordinate heme trafficking to subcellular compartments. However, given the dual properties exhibited by heme as a transition metal and lipid, it is compelling to consider the dark side: the potential role of non-proteinaceous biomolecules including lipids and nucleic acids that bind, sequester, and control heme trafficking and bioavailability. The emergence of inter-organellar membrane contact sites, as well as intracellular vesicles derived from various organelles, have raised the prospect that heme can be trafficked through hydrophobic channels. In this review, we aim to focus on heme delivery without deliverers - an alternate paradigm for the regulation of heme homeostasis through chaperone-less pathways for heme trafficking.
Collapse
Affiliation(s)
- Ian G Chambers
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America
| | - Mathilda M Willoughby
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Iqbal Hamza
- Department of Animal and Avian Sciences, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20740, United States of America.
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America.
| |
Collapse
|
12
|
Save it-don't waste it! Maximizing utilization of erythrocytes from previously stored whole blood. J Trauma Acute Care Surg 2020; 89:665-672. [PMID: 32590560 DOI: 10.1097/ta.0000000000002839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recent military and civilian experience suggests that fresh whole blood may be the preferred for treatment of hemorrhagic shock, but its use is limited by its 21-day shelf life. The red blood cell storage lesion and coagulation status of packed red blood cells (pRBCs) salvaged from expired whole blood are unknown. We hypothesized that pRBCs can be salvaged from previously stored whole blood. METHODS Cold stored, low-titer, O-positive, nonleukoreduced, whole blood units were obtained at 21 days of storage. Erythrocytes were separated by centrifugation, resuspended in AS-3, and stored for 21 additional days as salvaged pRBCs. The red blood cell storage lesion parameters of microvesicles, Band-3, free hemoglobin, annexin V, and erythrocyte osmotic fragility were measured and compared with pRBCs prepared at the time of donation and stored in AS-3 for 42 days (standard pRBCs). In additional experiments, murine pRBCs were prepared from expired whole blood units and compared with those stored under standard conditions. Mice underwent hemorrhage and resuscitation with standard and salvaged pRBC units, and serum cytokines and free hemoglobin were determined. RESULTS There were no significant differences in microvesicle formation or cell-free hemoglobin concentration between salvaged and standard pRBCs. There was decreased Band-3 and increased phosphatidylserine in the salvaged units as well as greater osmotic fragility. Salvaged pRBCs maintained consistent clot firmness. After hemorrhage and resuscitation in a murine model, salvaged pRBCs did not demonstrate increased serum cytokine levels. CONCLUSION Salvaged pRBCs from previously stored whole blood accumulate the red blood cell storage lesion in a similar fashion to standard pRBCs and maintain consistent coagulability when reconstituted with plasma. Salvaged pRBCs are not associated with an increased inflammatory response when used for resuscitation in a murine model. Salvaged pRBCs may be a viable product for utilization in the treatment of traumatic hemorrhagic shock.
Collapse
|
13
|
Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020; 9:E579. [PMID: 32121449 PMCID: PMC7140478 DOI: 10.3390/cells9030579] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Heme is a ubiquitous and essential iron containing metallo-organic cofactor required for virtually all aerobic life. Heme synthesis is initiated and completed in mitochondria, followed by certain covalent modifications and/or its delivery to apo-hemoproteins residing throughout the cell. While the biochemical aspects of heme biosynthetic reactions are well understood, the trafficking of newly synthesized heme-a highly reactive and inherently toxic compound-and its subsequent delivery to target proteins remain far from clear. In this review, we summarize current knowledge about heme biosynthesis and trafficking within and outside of the mitochondria.
Collapse
Affiliation(s)
| | - Courtney M. Moore
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Jason R. Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Amit R. Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA;
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Fred and Pamela Buffett Cancer Center, Omaha, NE 68105, USA
| |
Collapse
|
14
|
Kim Y, Goodman MD, Jung AD, Abplanalp WA, Schuster RM, Caldwell CC, Lentsch AB, Pritts TA. Microparticles from aged packed red blood cell units stimulate pulmonary microthrombus formation via P-selectin. Thromb Res 2019; 185:160-166. [PMID: 31821908 DOI: 10.1016/j.thromres.2019.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/31/2019] [Accepted: 11/24/2019] [Indexed: 01/11/2023]
Abstract
INTRODUCTION During storage, packed red blood cells undergo a series of physical, metabolic, and chemical changes collectively known as the red blood cell storage lesion. One key component of the red blood cell storage lesion is the accumulation of microparticles, which are submicron vesicles shed from erythrocytes as part of the aging process. Previous studies from our laboratory indicate that transfusion of these microparticles leads to lung injury, but the mechanism underlying this process is unknown. In the present study, we hypothesized that microparticles from aged packed red blood cell units induce pulmonary thrombosis. MATERIALS AND METHODS Leukoreduced, platelet-depleted, murine packed red blood cells (pRBCS) were prepared then stored for up to 14 days. Microparticles were isolated from stored units via high-speed centrifugation. Mice were transfused with microparticles. The presence of pulmonary microthrombi was determined with light microscopy, Martius Scarlet Blue, and thrombocyte stains. In additional studies microparticles were labelled with CFSE prior to injection. Murine lung endothelial cells were cultured and P-selectin concentrations determined by ELISA. In subsequent studies, P-selectin was inhibited by PSI-697 injection prior to transfusion. RESULTS We observed an increase in microthrombi formation in lung vasculature in mice receiving microparticles from stored packed red blood cell units as compared with controls. These microthrombi contained platelets, fibrin, and microparticles. Treatment of cultured lung endothelial cells with microparticles led to increased P-selectin in the media. Treatment of mice with a P-selectin inhibitor prior to microparticle infusion decreased microthrombi formation. CONCLUSIONS These data suggest that microparticles isolated from aged packed red blood cell units promote the development of pulmonary microthrombi in a murine model of transfusion. This pro-thrombotic event appears to be mediated by P-selectin.
Collapse
Affiliation(s)
- Young Kim
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael D Goodman
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew D Jung
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William A Abplanalp
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca M Schuster
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Charles C Caldwell
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alex B Lentsch
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy A Pritts
- Section of General Surgery, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Zheng J, Tan J, Miao YY, Zhang Q. Extracellular vesicles degradation pathway based autophagy lysosome pathway. Am J Transl Res 2019; 11:1170-1183. [PMID: 30972154 PMCID: PMC6456539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
As an ancient intracellular degradation pathway, the autophagy lysosome pathway exists in various cells continuously and stably and maintains cellular homeostasis by degrading damaged organelles and misfolded proteins that are prejudicial to cells. Extracellular vesicles (EVs) including microparticles and exosomes, are derived from varieties of mammalian tissue cells such as platelets, endothelial cells, cardiomyocytes. Through large quantity of active substances carried by EVs, EVs exert momentous biological functions. Recent researches have revealed the molecular mechanism of the interaction between extracellular vesicles and autophagy. In this review, we first elaborate that extracellular vesicles are identified and internalized by target cells by means of receptor-ligand. Since extracellular vesicles contain multiple functional molecules, we subsequently describe the process of intracellular autophagy pathway induced by extracellular vesicles, which activates autophagy-related pathways or delivers autophagy-associated molecules. Finally, we introduced the effects of extracellular vesicle-induced autophagy on extracellular vesicles and target cells respectively. In conclusion, this article integrates relevant theoretical knowledge of autophagy caused by extracellular vesicles and provides a new direction for the study of extracellular vesicles in the future.
Collapse
Affiliation(s)
- Jun Zheng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics InstituteTianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics InstituteTianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics InstituteTianjin, China
| |
Collapse
|
16
|
Lower Extremity Duplex Ultrasound Screening Protocol for Moderate- and High-Risk Trauma Patients. J Surg Res 2019; 235:280-287. [DOI: 10.1016/j.jss.2018.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/26/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
|
17
|
Stanojcic M, Jeschke MG. What's New in Shock, March 2018? Shock 2018; 49:239-242. [PMID: 29432388 DOI: 10.1097/shk.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
| | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Surgery, Division of Plastic Surgery, University of Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Ontario, Canada.,Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|