1
|
Kong FKW, Wong ASY, Cheung RKK, Wan TSM, Ho ENM. Doping Control Analysis of Perfluorocarbons in Equine Plasma by Headspace Gas Chromatography-Tandem Mass Spectrometry. Drug Test Anal 2024. [PMID: 39295175 DOI: 10.1002/dta.3801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/21/2024]
Abstract
In order to control the potential misuse of perfluorocarbons as an oxygen carrier in equine sports, a simple and sensitive method for detecting perfluorocarbons in equine plasma by gas chromatography/tandem mass spectrometry using negative chemical ionization with methane as reagent gas has been developed and fully validated. The method covers seven perfluorocarbons, which are the active components in blood substitute products, and shows good sensitivity and robustness. Limits of detection as low as 0.01 ng/mL could be achieved by the method. To the best of our knowledge, this is the first report of a detection method for the screening of perfluorocarbons in equine biological samples.
Collapse
Affiliation(s)
- Fred K W Kong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T. Hong Kong, China
| | - April S Y Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T. Hong Kong, China
| | - Raymond K K Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T. Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T. Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N.T. Hong Kong, China
| |
Collapse
|
2
|
Krylov NN, Kazhlaev AY, Karpenko IV, Batoev SD. [In searching for perfect blood substitute. Creation and application of perftorane]. Khirurgiia (Mosk) 2024:111-117. [PMID: 38344968 DOI: 10.17116/hirurgia2024021111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The article is devoted to historiography of perfluorocarbons, as well as discoverers of perftorane and their discoveries. There would be no national priority in transfusiology without these discoveries. Perftorane is the only one of the world series of perfluorocarbon emulsion drugs that has passed all phases of clinical trials. Perftorane has been used in clinical medicine for 30 years.
Collapse
Affiliation(s)
- N N Krylov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A Yu Kazhlaev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - I V Karpenko
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - S D Batoev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Chen L, Yang Z, Liu H. Hemoglobin-Based Oxygen Carriers: Where Are We Now in 2023? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020396. [PMID: 36837597 PMCID: PMC9962799 DOI: 10.3390/medicina59020396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
The pursuit for blood a substitute has spanned over a century, but a majority of the efforts have been disappointing. As of today, there is no widely accepted product used as an alternative to human blood in clinical settings with severe anemic condition(s). Blood substitutes are currently also termed oxygen therapeutics. There are two major categories of oxygen therapeutics, hemoglobin-based and perfluorocarbon-based products. In this article, we reviewed the most developed but failed products and products still in active clinical research in the category of hemoglobin-based oxygen carriers. Among all of the discussed hemoglobin-based oxygen therapeutics, HemAssist, PolyHeme, Hemolink, Hemospan, and Hemoximer were discontinued. Hemopure is in clinical use in South Africa and Russia. Oxyglobin, the sister product of Hemopure, has been approved for veterinary use in the European Union and the United States. HemO2life has recently been approved for organ preservation in organ transplantation in the European Union. OxyVita and Sanguinate are still undergoing active clinical studies. The field of oxygen therapeutics seems to be entering a phase of rapid growth in the coming 10-20 years.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Hubei Women & Children’s Hospital, 745 Wuluo Road, Hongshan, Wuhan 430070, China
| | - Zeyong Yang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Embryogenic Disease, Shanghai Municipal Key Clinical Specialty, 1961 Huashan Road, Shanghai 200030, China
| | - Henry Liu
- Department of Anesthesiology & Critical Care, Perelman School of Medicine, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
4
|
Gamal-Eldeen AM, Alrehaili AA, Alharthi A, Raafat BM. Perftoran® Inhibits Hypoxia-Associated Resistance in Lung Cancer Cells to Carboplatin. Front Pharmacol 2022; 13:860898. [PMID: 35401227 PMCID: PMC8987772 DOI: 10.3389/fphar.2022.860898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Perftoran® (perfluorodecalin) is an oxygen carrier, and carboplatin is a common chemotherapy drug used worldwide for lung cancer treatment. Hypoxia is one of the factors that induce resistance of lung cancer cells to carboplatin. This study explored the role of Perftoran®, as an oxygen carrier, in lowering the resistance of lung cancer cells to carboplatin through suppression of hypoxia pathway mediators. The effect of Perftoran® on the resistance of human lung cancer A549 cells to carboplatin was investigated through the evaluation of cytotoxicity by MTT, cell death mode by dual DNA staining, DNA damage by comet assay, DNA platination (DNA/carboplatin adducts) by atomic absorption spectroscopy, hypoxia degree by pimonidazole, HIF-1α/HIF-2α concentrations by ELISA, expression of miRNAs (hypoxamiRs miR-210, miR-21, and miR-181a) by qRT-PCR, and the content of drug resistance transporter MRP-2 by immunocytochemical staining. Results indicated that compared to carboplatin, Perftoran®/carboplatin decreased cell resistance to carboplatin by potentiating its cytotoxicity using only 45% of carboplatin IC50 and inducing apoptosis. Perftoran® induced DNA platination and DNA damage index in cells compared to carboplatin alone. Moreover, compared to treatment with carboplatin alone, co-treatment of cells with Perftoran® and carboplatin inhibited cellular pimonidazole hypoxia adducts, diminished HIF-1α/HIF-2α concentrations, suppressed hypoxamiR expression, and decreased MRP-2. In conclusion, Perftoran® inhibited resistance of lung cancer cells to carboplatin through the inhibition of both hypoxia pathway mediators and the drug resistance transporter MRP-2 and through the induction of DNA/carboplatin adduct formation.
Collapse
Affiliation(s)
- Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- *Correspondence: Amira M. Gamal-Eldeen,
| | - Amani A. Alrehaili
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Afaf Alharthi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
5
|
Gamal-Eldeen AM, Alrehaili AA, Alharthi A, Raafat BM. Effect of Combined Perftoran and Indocyanine Green-Photodynamic Therapy on HypoxamiRs and OncomiRs in Lung Cancer Cells. Front Pharmacol 2022; 13:844104. [PMID: 35370727 PMCID: PMC8966667 DOI: 10.3389/fphar.2022.844104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Indocyanine green (ICG) is a nontoxic registered photosensitizer used as a diagnostic tool and for photodynamic therapy (PDT). Hypoxia is one the main factors affecting PDT efficacy. Perfluorodecalin emulsion (Perftoran®) is a known oxygen carrier. This study investigated the effect of Perftoran® on ICG/PDT efficacy in presence and absence of Perftoran® via evaluation of phototoxicity by MTT; hypoxia estimation by pimonidazole, HIF-1α/β by ELISA, and 17 miRNAs (tumor suppressors, oncomiRs, and hypoxamiRs) were analyzed by qPCR. Compared to ICG/PDT, Perftoran®/ICG/PDT led to higher photocytotoxicity, inhibited pimonidazole hypoxia adducts, inhibited HIF-1α/β concentrations, induced the expression of tumor-suppressing miRNAs let-7b/d/f/g, and strongly inhibited the pro-hypoxia miRNA let-7i. Additionally, Perftoran®/ICG/PDT suppressed the expression of the oncomiRs miR-155, miR-30c, and miR-181a and the hypoxamiRs miR-210 and miR-21 compared to ICG/PDT. In conclusion, Perftoran® induced the phototoxicity of ICG/PDT and inhibited ICG/PDT-hypoxia via suppressing HIF-α/β, miR-210, miR-21, let-7i, miR-15a, miR-30c, and miR-181a and by inducing the expression of let-7d/f and miR-15b.
Collapse
Affiliation(s)
- Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Amani A. Alrehaili
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Afaf Alharthi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Bassem M. Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
6
|
Perftoran improves Visudyne-photodynamic therapy via suppressing hypoxia pathway in murine lung cancer. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Latson GW. Perftoran: History, Clinical Trials, and Pathway Forward. BLOOD SUBSTITUTES AND OXYGEN BIOTHERAPEUTICS 2022:361-367. [DOI: 10.1007/978-3-030-95975-3_36] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
10
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
11
|
Zhu J, Parsons JT, Yang Y, Martin E, Brophy DF, Spiess BD. Platelet and White Cell Reactivity to Top-Load Intravenous Perfluorocarbon Infusion in Healthy Sheep. J Surg Res 2021; 267:342-349. [PMID: 34192613 DOI: 10.1016/j.jss.2021.05.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/20/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Perfluorocarbon emulsions (PFCs) are intravenous artificial oxygen carriers with enhanced gas solubility. As lipid micelle nanoparticle emulsions, PFCs may have a class effect that causes degrees of thrombocytopenia. Understanding the extent of the platelet effects, including mechanism and potential inflammation after PFC infusion, is important for safe human trials. METHODS Normal sheep (Dorper) were infused with 5 mL/kg of Oxygent (w/v 60% PFC) or Perftoran (w/v 20% PFC). Controls received 6% Hetastarch or were naive. Blood samples were analyzed from baseline, time 0 (the end of infusion), 3 and 24 hours, and 4 and 7 days. Platelet count, plateletcrit, mean platelet volume, platelet distribution width, and CD-62p (a platelet activation-dependent membrane protein) were measured. Neutrophils, monocytes, and total white blood cell counts were analyzed. RESULTS In these inflammatory cell lines, there were no consistent changes or cellular activation after PFC infusion. A decrease (<10% from baseline and naive controls) in platelet count was seen on day 4 after Oxygent infusion (3 g/kg), which recovered by day 7. No platelet effect was seen in Perftoran (1 g/kg). Plateletcrit, mean platelet volume, and platelet distribution width did not change significantly at any time point among the groups. CD-62p, ADP, and collagen aggregometry showed no significant change in platelet function. CONCLUSION There was no evidence of overall reduction in platelet number, or any correlation with the change in platelet activation or inhibition. Therefore, the risk of increased thrombosis/bleeding after PFC intravenous infusion is low in this non-trauma sheep model.
Collapse
Affiliation(s)
- Jiepei Zhu
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida 32610.
| | - J Travis Parsons
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Yang Yang
- Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, Florida 32611
| | - Erika Martin
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298
| | - Donald F Brophy
- Department of Pharmacotherapy & Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia 23298
| | - Bruce D Spiess
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
12
|
Jahr JS, Guinn NR, Lowery DR, Shore-Lesserson L, Shander A. Blood Substitutes and Oxygen Therapeutics: A Review. Anesth Analg 2021; 132:119-129. [PMID: 30925560 DOI: 10.1213/ane.0000000000003957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the exhaustive search for an acceptable substitute to erythrocyte transfusion, neither chemical-based products such as perfluorocarbons nor hemoglobin-based oxygen carriers have succeeded in providing a reasonable alternative to allogeneic blood transfusion. However, there remain scenarios in which blood transfusion is not an option, due to patient's religious beliefs, inability to find adequately cross-matched erythrocytes, or in remote locations. In these situations, artificial oxygen carriers may provide a mortality benefit for patients with severe, life-threatening anemia. This article provides an up-to-date review of the history and development, clinical trials, new technology, and current standing of artificial oxygen carriers as an alternative to transfusion when blood is not an option.
Collapse
Affiliation(s)
- Jonathan S Jahr
- From the David Geffen School of Medicine at University of California Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Nicole R Guinn
- Department of Anesthesiology, Center for Blood Conservation Duke University Medical Center, Durham, North Carolina
| | - David R Lowery
- US Military, San Antonio, Texas.,Department of Anesthesiology, Uniformed Services University of the Health Sciences, San Antonio Military Medical Center, San Antonio, Texas
| | | | - Aryeh Shander
- Department of Anesthesiology, Critical Care and Hyperbaric Medicine, Englewood Hospital and Medical Center, Englewood, New Jersey.,TeamHealth Research Institute, Englewood Hospital and Medical Center, Englewood, New Jersey
| |
Collapse
|
13
|
Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Arch 2020; 473:139-150. [PMID: 33141239 PMCID: PMC7607370 DOI: 10.1007/s00424-020-02482-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022]
Abstract
Developing biocompatible, synthetic oxygen carriers is a consistently challenging task that researchers have been pursuing for decades. Perfluorocarbons (PFC) are fascinating compounds with a huge capacity to dissolve gases, where the respiratory gases are of special interest for current investigations. Although largely chemically and biologically inert, pure PFCs are not suitable for injection into the vascular system. Extensive research created stable PFC nano-emulsions that avoid (i) fast clearance from the blood and (ii) long organ retention time, which leads to undesired transient side effects. PFC-based oxygen carriers (PFOCs) show a variety of application fields, which are worthwhile to investigate. To understand the difficulties that challenge researchers in creating formulations for clinical applications, this review provides the physical background of PFCs’ properties and then illuminates the reasons for instabilities of PFC emulsions. By linking the unique properties of PFCs and PFOCs to physiology, it elaborates on the response, processing and dysregulation, which the body experiences through intravascular PFOCs. Thereby the reader will receive a scientific and easily comprehensible overview why PFOCs are precious tools for so many diverse application areas from cancer therapeutics to blood substitutes up to organ preservation and diving disease.
Collapse
|
14
|
|
15
|
|
16
|
Khan F, Singh K, Friedman MT. Artificial Blood: The History and Current Perspectives of Blood Substitutes. Discoveries (Craiova) 2020; 8:e104. [PMID: 32309621 PMCID: PMC7086064 DOI: 10.15190/d.2020.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/09/2023] Open
Abstract
Blood transfusions are one of the most common procedures performed in hospitalized patients. Yet, despite all of the measures taken to ensure the safety of the blood supply, there are known risks associated with transfusions, including infectious and noninfectious complications. Meanwhile, issues with blood product availability, the need for compatibility testing, and the storage and transport requirements of blood products, have presented challenges for the administration of blood transfusions. Additionally, there are individuals who do not accept blood transfusions (e.g., Jehovah's Witnesses). Therefore, there is a need to develop alternative agents that can reliably and safely replace blood. However, although there have been many attempts to develop blood substitutes over the years, there are currently no such products available that have been approved by the United States Food and Drug Administration (FDA). However, a more-recently developed hemoglobin-based oxygen carrier has shown promise in early clinical trials and has achieved the status of "Orphan Drug" under the FDA.
Collapse
Affiliation(s)
- Fahad Khan
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| | - Kunwar Singh
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| | - Mark T. Friedman
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Mayer D, Ferenz KB. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur J Appl Physiol 2019; 119:2421-2433. [PMID: 31686213 PMCID: PMC6858394 DOI: 10.1007/s00421-019-04252-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Gastroenterology, REGIOMED Klinikum Coburg, 96450, Coburg, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, CENIDE, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
18
|
Ferenz KB, Steinbicker AU. Artificial Oxygen Carriers-Past, Present, and Future-a Review of the Most Innovative and Clinically Relevant Concepts. J Pharmacol Exp Ther 2019; 369:300-310. [PMID: 30837280 DOI: 10.1124/jpet.118.254664] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Blood transfusions are a daily practice in hospitals. Since these products are limited in availability and have various, harmful side effects, researchers have pursued the goal to develop artificial blood components for about 40 years. Development of oxygen therapeutics and stem cells are more recent goals. Medline (https://www.ncbi.nlm.nih.gov/pubmed/?holding=ideudelib), ClinicalTrials.gov (https://clinicaltrials.gov), EU Clinical Trials Register (https://www.clinicaltrialsregister.eu), and Australian New Zealand Clinical Trials Registry (http://www.anzctr.org.au) were searched up to July 2018 using search terms related to artificial blood products in order to identify new and ongoing research over the last 5 years. However, for products that are already well known and important to or relevant in gaining a better understanding of this field of research, the reader is punctually referred to some important articles published over 5 years ago. This review includes not only clinically relevant substances such as heme-oxygenating carriers, perfluorocarbon-based oxygen carriers, stem cells, and organ conservation, but also includes interesting preclinically advanced compounds depicting the pipeline of potential new products. In- depth insights into specific benefits and limitations of each substance, including the biochemical and physiologic background are included. "Fancy" ideas such as iron-based substances, O2 microbubbles, cyclodextranes, or lugworms are also elucidated. To conclude, this systematic up-to-date review includes all actual achievements and ongoing clinical trials in the field of artificial blood products to pursue the dream of artificial oxygen carrier supply. Research is on the right track, but the task is demanding and challenging.
Collapse
Affiliation(s)
- Katja B Ferenz
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.B.F.); and Department of Anesthesiology, Intensive Care and Pain Medicine, Westphalian Wilhelminian University Muenster, University Hospital Muenster, Muenster, Germany (A.U.S.)
| | - Andrea U Steinbicker
- Institute of Physiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (K.B.F.); and Department of Anesthesiology, Intensive Care and Pain Medicine, Westphalian Wilhelminian University Muenster, University Hospital Muenster, Muenster, Germany (A.U.S.)
| |
Collapse
|