1
|
Qi X, Liu Y, Zhou Y, Li H, Yang J, Liu S, He X, Li L, Zhang C, Yu H. A pectic polysaccharide from Typhonii Rhizoma: Characterization and antiproliferative activity in K562 cells through regulating mitochondrial function and energy metabolism. Carbohydr Polym 2025; 348:122897. [PMID: 39567133 DOI: 10.1016/j.carbpol.2024.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
The pectic polysaccharide WTRP-A0.2b (43 kDa) has been isolated from Typhonii rhizoma and analyzed in terms of its structural features, anti-tumor activities and mechanism of action. NMR, FT-IR, monosaccharide composition, and enzymology demonstrate that WTRP-A0.2b is composed of rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) and homogalacturonan (HG) domains with mass ratios of 3.7:1:1.7, respectively. The RG-I domains contain a highly branched structure that is substituted primarily with β-D-1,4-galactan, α-L-1,5-arabinan, and AG-II. The HG domains contain un-esterified and methyl-esterified and/or acetyl-esterified oligogalacturonides with a degree of polymerization of 1-8. In vitro experiments demonstrate that WTRP-A0.2b inhibits proliferation of K562 cells by inducing mitochondrial damage and suppressing glycolysis. This activity promotes mitochondrial permeability, increases production of reactive oxygen species (ROS), boosts extracellular oxygen consumption and adenosine triphosphate (ATP) content, while it decreases uncoupling protein-2 (UCP2) expression and lactic acid content. Our results provide valuable insight for screening natural polysaccharide-based anti-tumor effects of polysaccharides from Typhonii rhizoma.
Collapse
Affiliation(s)
- Xiaodan Qi
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Ying Liu
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Ying Zhou
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Heqi Li
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Jingyi Yang
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Senyang Liu
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Xinyi He
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China
| | - Lei Li
- Department of Clinical Biochemistry, Qiqihar Medical University, Qiqihar, China
| | - Chunjing Zhang
- Department of Biochemistry and molecular biology, Qiqihar Medical University, Qiqihar, China.
| | - Haitao Yu
- Department of Biology Genetics, Qiqihar Medical University, Qiqihar, China.
| |
Collapse
|
2
|
Zeng T, Yang YQ, He J, Si DL, Zhang H, Wang X, Xie M. [Mechanism of WAVE1 regulation of lipopolysaccharide-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2024; 26:1341-1351. [PMID: 39725399 DOI: 10.7499/j.issn.1008-8830.2408083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVES To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages. METHODS Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses. The experiment consisted of two parts. The first part included control, LPS, vector (LPS+oe-NC), WAVE1 overexpression (LPS+oe-WAVE1) groups. The second part included LPS, LPS+oe-NC, LPS+oe-WAVE1 and exogenous high mobility group box-1 (HMGB1) intervention (LPS+oe-WAVE1+HMGB1) groups. RT-PCR was used to measure mitochondrial DNA content, and RT-qPCR was used to detect the mRNA expression levels of WAVE1, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. Western blot was performed to measure the protein expression of WAVE1, hexokinase 2, and pyruvate kinase M2. ELISA was utilized to detect the levels of TNF-α, IL-1β, IL-6, and HMGB1. JC-1 staining was used to assess mitochondrial membrane potential. Seahorse XP96 was used to evaluate oxygen consumption rate and extracellular acidification rate. MitoSOX probe was employed to measure mitochondrial reactive oxygen species levels, and 2-NBDG method was used to assess glucose uptake. Kits were used to measure pyruvate kinase activity, lactate, adenosine triphosphate (ATP), and HMGB1 levels. RESULTS Compared with the control group, the LPS group showed lower levels of WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expression levels as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were significantly increased (P<0.05). Compared with the LPS+oe-NC group, the LPS+oe-WAVE1 group showed increased WAVE1 protein and mRNA expression, mitochondrial membrane potential, oxygen consumption rate, and mitochondrial DNA content (P<0.05), while TNF-α, IL-1β, IL-6 levels and mRNA expression, mitochondrial reactive oxygen species, glucose uptake, lactate, ATP, hexokinase 2, and pyruvate kinase M2 protein expressions, as well as extracellular acidification rate, pyruvate kinase activity, and HMGB1 release were decreased (P<0.05). Compared with the LPS+oe-WAVE1 group, the LPS+oe-WAVE1+HMGB1 group exhibited increased glucose uptake, lactate, ATP levels, and extracellular acidification rate (P<0.05). CONCLUSIONS WAVE1 participates in the regulation of LPS-induced inflammatory responses in macrophages by modulating the release of inflammatory factors, mitochondrial metabolism, and HMGB1 release.
Collapse
Affiliation(s)
- Ting Zeng
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yue-Qian Yang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian He
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Dao-Lin Si
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Zhang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xia Wang
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Xie
- Children's Medical Center, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
3
|
Mao S. Emerging role and the signaling pathways of uncoupling protein 2 in kidney diseases. Ren Fail 2024; 46:2381604. [PMID: 39090967 PMCID: PMC11299446 DOI: 10.1080/0886022x.2024.2381604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES Uncoupling protein 2 (UCP2) was involved in the pathogenesis and development of kidney diseases. Many signaling pathways and factors regulate the expression of UCP2. We aimed to investigate the precise role of UCP2 and its signaling pathways in kidney diseases. METHODS We summarized the available evidence to yield a more detailed conclusion of the signal transduction pathways of UCP2 and its role in the development and progression of kidney diseases. RESULTS UCP2 could interact with 14.3.3 family proteins, mitochondrial phospholipase iPLA2γ, NMDAR, glucokinase, PPARγ2. There existed a signaling pathway between UCP2 and NMDAR, PPARγ. UCP2 can inhibit the ROS production, inflammatory response, and apoptosis, which may protect against renal injury, particularly AKI. Meanwhile UCP2 can decrease ATP production and inhibit the secretion of insulin, which may alleviate chronic renal damages, such as diabetic nephropathy and kidney fibrosis. CONCLUSIONS Homeostasis of UCP2 is helpful for kidney health. UCP2 may play different roles in different kinds of renal injury.
Collapse
Affiliation(s)
- Song Mao
- Department of Pediatrics, Shanghai Sixth People’s Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Li N, Deng J, Zhang J, Yu F, Ye F, Hao L, Li S, Hu X. A New Strategy for Targeting UCP2 to Modulate Glycolytic Reprogramming as a Treatment for Sepsis A New Strategy for Targeting UCP2. Inflammation 2024; 47:1634-1647. [PMID: 38429403 PMCID: PMC11549132 DOI: 10.1007/s10753-024-01998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024]
Abstract
Sepsis is a severe and life-threatening disease caused by infection, characterized by a dysregulated immune response. Unfortunately, effective treatment strategies for sepsis are still lacking. The intricate interplay between metabolism and the immune system limits the treatment options for sepsis. During sepsis, there is a profound shift in cellular energy metabolism, which triggers a metabolic reprogramming of immune cells. This metabolic alteration impairs immune responses, giving rise to excessive inflammation and immune suppression. Recent research has demonstrated that UCP2 not only serves as a critical target in sepsis but also functions as a key metabolic switch involved in immune cell-mediated inflammatory responses. However, the regulatory mechanisms underlying this modulation are complex. This article focuses on UCP2 as a target and discusses metabolic reprogramming during sepsis and the complex regulatory mechanisms between different stages of inflammation. Our research indicates that overexpression of UCP2 reduces the Warburg effect, restores mitochondrial function, and improves the prognosis of sepsis. This discovery aims to provide a promising approach to address the significant challenges associated with metabolic dysfunction and immune paralysis.
Collapse
Affiliation(s)
- Na Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Fei Yu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fanghang Ye
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shenghao Li
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Liu C, Wei W, Huang Y, Fu P, Zhang L, Zhao Y. Metabolic reprogramming in septic acute kidney injury: pathogenesis and therapeutic implications. Metabolism 2024; 158:155974. [PMID: 38996912 DOI: 10.1016/j.metabol.2024.155974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Acute kidney injury (AKI) is a frequent and severe complication of sepsis and is characterized by significant mortality and morbidity. However, the pathogenesis of septic acute kidney injury (S-AKI) remains elusive. Metabolic reprogramming, which was originally referred to as the Warburg effect in cancer, is strongly related to S-AKI. At the onset of sepsis, both inflammatory cells and renal parenchymal cells, such as macrophages, neutrophils and renal tubular epithelial cells, undergo metabolic shifts toward aerobic glycolysis to amplify proinflammatory responses and fortify cellular resilience to septic stimuli. As the disease progresses, these cells revert to oxidative phosphorylation, thus promoting anti-inflammatory reactions and enhancing functional restoration. Alterations in mitochondrial dynamics and metabolic reprogramming are central to the energetic changes that occur during S-AKI. In this review, we summarize the current understanding of the pathogenesis of metabolic reprogramming in S-AKI, with a focus on each cell type involved. By identifying relevant key regulatory factors, we also explored potential metabolic reprogramming-related therapeutic targets for the management of S-AKI.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Wei
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yongxiu Huang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yuliang Zhao
- Department of Nephrology, Institute of Kidney Diseases, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Zhang J, Gao Y, Li Y, Liu D, Sun W, Liu C, Zhao X. Transcriptome Analysis of the Effect of Nickel on Lipid Metabolism in Mouse Kidney. BIOLOGY 2024; 13:655. [PMID: 39336083 PMCID: PMC11429462 DOI: 10.3390/biology13090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Although the human body needs nickel as a trace element, too much nickel exposure can be hazardous. The effects of nickel on cells include inducing oxidative stress, interfering with DNA damage repair, and altering epigenetic modifications. Glucose metabolism and lipid metabolism are closely related to oxidative stress; however, their role in nickel-induced damage needs further study. In Institute of Cancer Research (ICR) mice, our findings indicated that nickel stress increased the levels of blood lipid indicators (triglycerides, high-density lipoprotein, and cholesterol) by about 50%, blood glucose by more than two-fold, and glycated serum protein by nearly 20%. At the same time, nickel stress increased oxidative stress (malondialdehyde) and inflammation (Interleukin 6) by about 30% in the kidney. Based on next-generation sequencing technology, we detected and analyzed differentially expressed genes in the kidney caused by nickel stress. Bioinformatics analysis and experimental verification showed that nickel inhibited the expression of genes related to lipid metabolism and the AMPK and PPAR signaling pathways. The finding that nickel induces kidney injury and inhibits key genes involved in lipid metabolism and the AMPK and PPAR signaling pathways provides a theoretical basis for a deeper understanding of the mechanism of nickel-induced kidney injury.
Collapse
Affiliation(s)
- Jing Zhang
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yahong Gao
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Yuewen Li
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
| | - Dongdong Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Wenpeng Sun
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Chuncheng Liu
- School of Life Science and Technology, Inner Mongolia University of Science & Technology, Baotou 014020, China; (J.Z.); (Y.G.); (Y.L.); (D.L.); (W.S.)
- Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Baotou 014010, China
| | - Xiujuan Zhao
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
8
|
Tang L, Zhang J, Han J, Zhang D, Zhang H, Liu J, Li X. Molecular mechanism of circHIPK3 in mitochondrial function in septic acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2596-2609. [PMID: 38205898 DOI: 10.1002/tox.24127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Cell senescence, glycolysis, and mitochondrial deficit jointly regulate the development of septic acute kidney injury (SAKI). This study aimed to explore the role of circular RNA HIPK3 (circHIPK3) in mitochondrial function in SAKI. The SAKI mouse model was established by Candida albicans infection, followed by Western blot assay, measurements of serum lactate, and adenosine triphosphate (ATP), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) staining and flow cytometry. Human renal tubular epithelial cells were treated with lipopolysaccharide to establish the SAKI cell model, followed by cell counting kit-8 assay, tests of hexokinase activity, lactate production, oxygen consumption rate, extracellular acidification rate, ATP, and JC-1 staining, and Western blot assay. The roles of mitochondrial pyruvate carrier 1 (MPC1) were validated by kidney function tests, hematoxylin and eosin staining, periodic acid-Schiff staining, and SA-β-gal staining. circHIPK3 downregulation reduced glycolysis and mitochondrial dysfunction both in vivo and in vitro through the microRNA (miR)-148b-3p/DNMT1/3a/Klotho axis. Inhibition of miR-148b-3p or Klotho increased glycolysis and mitochondrial dysfunction. Knockdown of MPC1 increased lactate content and decreased ATP levels and MMP both in vivo and in vitro. Collectively, circHIPK3, in concert with the miR-148b-3p/DNMT1/3a/Klotho axis, increased glycolysis, and inhibited the negative regulation of lactate production by MPC1, and aggravated mitochondrial dysfunction and cell senescence in SAKI.
Collapse
Affiliation(s)
- Lili Tang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jie Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jing Han
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Danhong Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Xiaoyue Li
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| |
Collapse
|
9
|
Yu X, Xin Q, Hao Y, Zhang J, Ma T. An early warning model for predicting major adverse kidney events within 30 days in sepsis patients. Front Med (Lausanne) 2024; 10:1327036. [PMID: 38469459 PMCID: PMC10925638 DOI: 10.3389/fmed.2023.1327036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 03/13/2024] Open
Abstract
Background In sepsis patients, kidney damage is among the most dangerous complications, with a high mortality rate. In addition, major adverse kidney events within 30 days (MAKE30) served as a comprehensive and unbiased clinical outcome measure for sepsis patients due to the recent shift toward targeting patient-centered renal outcomes in clinical research. However, the underlying predictive model for the prediction of MAKE30 in sepsis patients has not been reported in any study. Methods A cohort of 2,849 sepsis patients from the Medical Information Mart for Intensive Care (MIMIC)-IV database was selected and subsequently allocated into a training set (n = 2,137, 75%) and a validation set (n = 712, 25%) through randomization. In addition, 142 sepsis patients from the Xi'An No. 3 Hospital as an external validation group. Univariate and multivariate logistic regression analyses were conducted to ascertain the independent predictors of MAKE30. Subsequently, a nomogram was developed utilizing these predictors, with an area under curve (AUC) above 0.6. The performance of nomogram was assessed through calibration curve, receiver operating characteristics (ROC) curve, and decision curve analysis (DCA). The secondary outcome was 30-day mortality, persistent renal dysfunction (PRD), and new renal replacement therapy (RRT). MAKE30 were a composite of death, PRD, new RRT. Results The construction of the nomogram was based on several independent predictors (AUC above 0.6), including age, respiratory rate (RR), PaO2, lactate, and blood urea nitrogen (BUN). The predictive model demonstrated satisfactory discrimination for MAKE30, with an AUC of 0.740, 0.753, and 0.821 in the training, internal validation, and external validation cohorts, respectively. Furthermore, the simple prediction model exhibited superior predictive value compared to the SOFA model in both the training (AUC = 0.710) and validation (AUC = 0.692) cohorts. The nomogram demonstrated satisfactory calibration and clinical utility as evidenced by the calibration curve and DCA. Additionally, the predictive model exhibited excellent accuracy in forecasting 30-day mortality (AUC = 0.737), PRD (AUC = 0.639), and new RRT (AUC = 0.846) within the training dataset. Additionally, the model displayed predictive power for 30-day mortality (AUC = 0.765), PRD (AUC = 0.667), and new RRT (AUC = 0.783) in the validation set. Conclusion The proposed nomogram holds the potential to estimate the risk of MAKE30 promptly and efficiently in sepsis patients within the initial 24 h of admission, thereby equipping healthcare professionals with valuable insights to facilitate personalized interventions.
Collapse
Affiliation(s)
- Xiaoyuan Yu
- Department of Hematology, The Affiliated Hospital of Northwest University, Xi’an No. 3 Hospital, Shaanxi, Xi’an, China
| | - Qi Xin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yun Hao
- Department of Nephrology, Yuequn Yuan District, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jin Zhang
- Department of Hematology, The Affiliated Hospital of Northwest University, Xi’an No. 3 Hospital, Shaanxi, Xi’an, China
| | - Tiantian Ma
- Department of Hematology, The Affiliated Hospital of Northwest University, Xi’an No. 3 Hospital, Shaanxi, Xi’an, China
| |
Collapse
|
10
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
11
|
Lira Chavez FM, Gartzke LP, van Beuningen FE, Wink SE, Henning RH, Krenning G, Bouma HR. Restoring the infected powerhouse: Mitochondrial quality control in sepsis. Redox Biol 2023; 68:102968. [PMID: 38039825 PMCID: PMC10711241 DOI: 10.1016/j.redox.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Sepsis is a dysregulated host response to an infection, characterized by organ failure. The pathophysiology is complex and incompletely understood, but mitochondria appear to play a key role in the cascade of events that culminate in multiple organ failure and potentially death. In shaping immune responses, mitochondria fulfil dual roles: they not only supply energy and metabolic intermediates crucial for immune cell activation and function but also influence inflammatory and cell death pathways. Importantly, mitochondrial dysfunction has a dual impact, compromising both immune system efficiency and the metabolic stability of end organs. Dysfunctional mitochondria contribute to the development of a hyperinflammatory state and loss of cellular homeostasis, resulting in poor clinical outcomes. Already in early sepsis, signs of mitochondrial dysfunction are apparent and consequently, strategies to optimize mitochondrial function in sepsis should not only prevent the occurrence of mitochondrial dysfunction, but also cover the repair of the sustained mitochondrial damage. Here, we discuss mitochondrial quality control (mtQC) in the pathogenesis of sepsis and exemplify how mtQC could serve as therapeutic target to overcome mitochondrial dysfunction. Hence, replacing or repairing dysfunctional mitochondria may contribute to the recovery of organ function in sepsis. Mitochondrial biogenesis is a process that results in the formation of new mitochondria and is critical for maintaining a pool of healthy mitochondria. However, exacerbated biogenesis during early sepsis can result in accumulation of structurally aberrant mitochondria that fail to restore bioenergetics, produce excess reactive oxygen species (ROS) and exacerbate the disease course. Conversely, enhancing mitophagy can protect against organ damage by limiting the release of mitochondrial-derived damage-associated molecules (DAMPs). Furthermore, promoting mitophagy may facilitate the growth of healthy mitochondria by blocking the replication of damaged mitochondria and allow for post sepsis organ recovery through enabling mitophagy-coupled biogenesis. The remaining healthy mitochondria may provide an undamaged scaffold to reproduce functional mitochondria. However, the kinetics of mtQC in sepsis, specifically mitophagy, and the optimal timing for intervention remain poorly understood. This review emphasizes the importance of integrating mitophagy induction with mtQC mechanisms to prevent undesired effects associated with solely the induction of mitochondrial biogenesis.
Collapse
Affiliation(s)
- F M Lira Chavez
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands.
| | - L P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - F E van Beuningen
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - S E Wink
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| | - G Krenning
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Sulfateq B.V, Admiraal de Ruyterlaan 5, 9726, GN Groningen, the Netherlands
| | - H R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands; Department of Internal Medicine, University Medical Centre Groningen, University of Groningen, 9713, GZ Groningen, the Netherlands
| |
Collapse
|
12
|
Lang L, Zheng D, Jiang Q, Meng T, Ma X, Yang Y. Uncoupling protein 2 modulates polarization and metabolism of human primary macrophages via glycolysis and the NF‑κB pathway. Exp Ther Med 2023; 26:583. [PMID: 38023353 PMCID: PMC10665990 DOI: 10.3892/etm.2023.12282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metabolic abnormalities, particularly the M1/M2 macrophage imbalance, play a critical role in the development of various diseases, leading to severe inflammatory responses. The present study aimed to investigate the role of uncoupling protein 2 (UCP2) in regulating macrophage polarization, glycolysis, metabolic reprogramming, reactive oxygen species (ROS) and inflammation. Primary human macrophages were first polarized into M1 and M2 subtypes, and these two subtypes were infected by lentivirus-mediated UCP2 overexpression or knockdown, followed by enzyme-linked immunosorbent assay, reverse transcription-quantitative PCR, western blotting and flow cytometry to analyze the effects of UCP2 on glycolysis, oxidative phosphorylation (OXPHOS), ROS production and cytokine secretion, respectively. The results demonstrated that UCP2 expression was suppressed in M1 macrophages and increased in M2 macrophages, suggesting its regulatory role in macrophage polarization. UCP2 overexpression decreased macrophage glycolysis, increased OXPHOS, decreased ROS production, and led to the conversion of M1 polarization to M2 polarization. This process involved NF-κB signaling to regulate the secretion profile of cytokines and chemokines and affected the expression of key enzymes of glycolysis and a key factor for maintaining mitochondrial homeostasis (nuclear respiratory factor 1). UCP2 knockdown in M2 macrophages exacerbated inflammation and oxidative stress by promoting glycolysis, which was attenuated by the glycolysis inhibitor 2-deoxyglucose. These findings highlight the critical role of UCP2 in regulating macrophage polarization, metabolism, inflammation and oxidative stress through its effects on glycolysis, providing valuable insights into potential therapeutic strategies for macrophage-driven inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Liguo Lang
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Dongju Zheng
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Qingjun Jiang
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Ting Meng
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiaohu Ma
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Yang Yang
- Department of Cardiology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
13
|
An S, Yao Y, Hu H, Wu J, Li J, Li L, Wu J, Sun M, Deng Z, Zhang Y, Gong S, Huang Q, Chen Z, Zeng Z. PDHA1 hyperacetylation-mediated lactate overproduction promotes sepsis-induced acute kidney injury via Fis1 lactylation. Cell Death Dis 2023; 14:457. [PMID: 37479690 PMCID: PMC10362039 DOI: 10.1038/s41419-023-05952-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023]
Abstract
The increase of lactate is an independent risk factor for patients with sepsis-induced acute kidney injury (SAKI). However, whether elevated lactate directly promotes SAKI and its mechanism remain unclear. Here we revealed that downregulation of the deacetylase Sirtuin 3 (SIRT3) mediated the hyperacetylation and inactivation of pyruvate dehydrogenase E1 component subunit alpha (PDHA1), resulting in lactate overproduction in renal tubular epithelial cells. We then found that the incidence of SAKI and renal replacement therapy (RRT) in septic patients with blood lactate ≥ 4 mmol/L was increased significantly, compared with those in septic patients with blood lactate < 2 mmol/L. Further in vitro and in vivo experiments showed that additional lactate administration could directly promote SAKI. Mechanistically, lactate mediated the lactylation of mitochondrial fission 1 protein (Fis1) lysine 20 (Fis1 K20la). The increase in Fis1 K20la promoted excessive mitochondrial fission and subsequently induced ATP depletion, mitochondrial reactive oxygen species (mtROS) overproduction, and mitochondrial apoptosis. In contrast, PDHA1 activation with sodium dichloroacetate (DCA) or SIRT3 overexpression decreased lactate levels and Fis1 K20la, thereby alleviating SAKI. In conclusion, our results show that PDHA1 hyperacetylation and inactivation enhance lactate overproduction, which mediates Fis1 lactylation and exacerbates SAKI. Reducing lactate levels and Fis1 lactylation attenuate SAKI.
Collapse
Affiliation(s)
- Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yi Yao
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongbin Hu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junjie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lulan Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jie Wu
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Maomao Sun
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhiya Deng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaoyuan Zhang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiaobing Huang
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
14
|
Fu XZ, Wang Y. Interferon-γ regulates immunosuppression in septic mice by promoting the Warburg effect through the PI3K/AKT/mTOR pathway. Mol Med 2023; 29:95. [PMID: 37434129 PMCID: PMC10337057 DOI: 10.1186/s10020-023-00690-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/20/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The main cause of high mortality from sepsis is that immunosuppression leads to life-threatening organ dysfunction, and reversing immunosuppression is key to sepsis treatment. Interferon γ (IFNγ) is a potential therapy for immunosuppression of sepsis, promoting glycolysis to restore metabolic defects in monocytes, but the mechanism of treatment is unclear. METHODS To explore the immunotherapeutic mechanism of IFNγ, this study linked the Warburg effect (aerobic glycolysis) to immunotherapy for sepsis and used cecal ligation perforation (CLP) and lipopolysaccharide (LPS) to stimulate dendritic cells (DC) to establish in vivo and in vitro sepsis models, Warburg effect inhibitors (2-DG) and PI3K pathway inhibitors (LY294002) were used to explore the mechanism by which IFNγ regulates immunosuppression in mice with sepsis through the Warburg effect. RESULTS IFNγ markedly inhibited the reduction in cytokine secretion from lipopolysaccharide (LPS)-stimulated splenocytes. IFNγ-treated mice had significantly increased the percentages of positive costimulatory receptor CD86 on Dendritic cells expressing and expression of splenic HLA-DR. IFNγ markedly reduced DC-cell apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax. CLP-induced formation of regulatory T cells in the spleen was abolished in IFNγ -treated mice. IFNγ treatment reduced the expression of autophagosomes in DC cells. IFNγ significant reduce the expression of Warburg effector-related proteins PDH, LDH, Glut1, and Glut4, and promote glucose consumption, lactic acid, and intracellular ATP production. After the use of 2-DG to suppress the Warburg effect, the therapeutic effect of IFNγ was suppressed, demonstrating that IFNγ reverses immunosuppression by promoting the Warburg effect. Moreover, IFNγ increased the expression of phosphoinositide 3-kinases (PI3K), protein kinase B (Akt), rapamycin target protein (mTOR), hypoxia-inducible factor-1 (HIF-1α), pyruvate dehydrogenase kinase (PDK1) protein, the use of 2-DG and LY294002 can inhibit the expression of the above proteins, LY294002 also inhibits the therapeutic effect of IFNγ. CONCLUSIONS It was finally proved that IFNγ promoted the Warburg effect through the PI3K/Akt/mTOR pathway to reverse the immunosuppression caused by sepsis. This study elucidates the potential mechanism of the immunotherapeutic effect of IFNγ in sepsis, providing a new target for the treatment of sepsis.
Collapse
Affiliation(s)
- Xu-Zhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
15
|
Unveiling the Role of the Proton Gateway, Uncoupling Proteins (UCPs), in Cancer Cachexia. Cancers (Basel) 2023; 15:cancers15051407. [PMID: 36900198 PMCID: PMC10000250 DOI: 10.3390/cancers15051407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Uncoupling proteins (UCPs) are identified as carriers of proton ions between the mitochondrial inner membrane and the mitochondrial matrix. ATP is mainly generated through oxidative phosphorylation in mitochondria. The proton gradient is generated across the inner mitochondrial membrane and the mitochondrial matrix, which facilitates a smooth transfer of electrons across ETC complexes. Until now, it was thought that the role of UCPs was to break the electron transport chain and thereby inhibit the synthesis of ATP. UCPs allow protons to pass from the inner mitochondrial membrane to the mitochondrial matrix and decrease the proton gradient across the membrane, which results in decreased ATP synthesis and increased production of heat by mitochondria. In recent years, the role of UCPs in other physiological processes has been deciphered. In this review, we first highlighted the different types of UCPs and their precise location across the body. Second, we summarized the role of UCPs in different diseases, mainly metabolic disorders such as obesity and diabetes, cardiovascular complications, cancer, wasting syndrome, neurodegenerative diseases, and kidney complications. Based on our findings, we conclude that UCPs play a major role in maintaining energy homeostasis, mitochondrial functions, ROS production, and apoptosis. Finally, our findings reveal that mitochondrial uncoupling by UCPs may treat many diseases, and extensive clinical studies are required to meet the unmet need of certain diseases.
Collapse
|
16
|
Dai Q, Zhang H, Tang S, Wu X, Wang J, Yi B, Liu J, Li Z, Liao Q, Li A, Liu Y, Zhang W. Vitamin D- VDR (vitamin D receptor) alleviates glucose metabolism reprogramming in lipopolysaccharide-induced acute kidney injury. Front Physiol 2023; 14:1083643. [PMID: 36909229 PMCID: PMC9998528 DOI: 10.3389/fphys.2023.1083643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Our previous study showed that vitamin D (VD)-vitamin D receptor (VDR) plays a nephroprotective role in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Recently, glucose metabolism reprogramming was reported to be involved in the pathogenesis of AKI. Objective: To investigate the role of VD-VDR in glucose metabolism reprogramming in LPS-induced AKI. Methods: We established a model of LPS-induced AKI in VDR knockout (VDR-KO) mice, renal proximal tubular-specific VDR-overexpressing (VDR-OE) mice and wild-type C57BL/6 mice. In vitro, human proximal tubular epithelial cells (HK-2 cells), VDR knockout and VDR overexpression HK-2 cell lines were used. Results: Paricalcitol (an active vitamin D analog) or VDR-OE reduced lactate concentration, hexokinase activity and PDHA1 phosphorylation (a key step in inhibiting aerobic oxidation) and simultaneously ameliorated renal inflammation, apoptosis and kidney injury in LPS-induced AKI mice, which were more severe in VDR-KO mice. In in vitro experiments, glucose metabolism reprogramming, inflammation and apoptosis induced by LPS were alleviated by treatment with paricalcitol or dichloroacetate (DCA, an inhibitor of p-PDHA1). Moreover, paricalcitol activated the phosphorylation of AMP-activated protein kinase (AMPK), and an AMPK inhibitor partially abolished the protective effect of paricalcitol in LPS-treated HK-2 cells. Conclusion: VD-VDR alleviated LPS-induced metabolic reprogramming in the kidneys of AKI mice, which may be attributed to the inactivation of PDHA1 phosphorylation via the AMPK pathway.
Collapse
Affiliation(s)
- Qing Dai
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueqin Wu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Yi
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jishi Liu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qin Liao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Aimei Li
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Liu
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
17
|
Xin Q, Xie T, Chen R, Wang H, Zhang X, Wang S, Liu C, Zhang J. Construction and validation of an early warning model for predicting the acute kidney injury in elderly patients with sepsis. Aging Clin Exp Res 2022; 34:2993-3004. [PMID: 36053443 DOI: 10.1007/s40520-022-02236-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sepsis-induced acute kidney injury (S-AKI) is a significant complication and is associated with an increased risk of mortality, especially in elderly patients with sepsis. However, there are no reliable and robust predictive models to identify high-risk patients likely to develop S-AKI. We aimed to develop a nomogram to predict S-AKI in elderly sepsis patients and help physicians make personalized management within 24 h of admission. METHODS A total of 849 elderly sepsis patients from the First Affiliated Hospital of Xi'an Jiaotong University were identified and randomly divided into a training set (75%, n = 637) and a validation set (25%, n = 212). Univariate and multivariate logistic regression analyses were performed to identify the independent predictors of S-AKI. The corresponding nomogram was constructed based on those predictors. The calibration curve, receiver operating characteristics (ROC)curve, and decision curve analysis were performed to evaluate the nomogram. The secondary outcome was 30-day mortality and major adverse kidney events within 30 days (MAKE30). MAKE30 were a composite of death, new renal replacement therapy (RRT), or persistent renal dysfunction (PRD). RESULTS The independent predictors for nomogram construction were mean arterial pressure (MAP), serum procalcitonin (PCT), and platelet (PLT), prothrombin time activity (PTA), albumin globulin ratio (AGR), and creatinine (Cr). The predictive model had satisfactory discrimination with an area under the curve (AUC) of 0.852-0.858 in the training and validation cohorts, respectively. The nomogram showed good calibration and clinical application according to the calibration curve and decision curve analysis. Furthermore, the prediction model had perfect predictive power for predicting 30-day mortality (AUC = 0.813) and MAKE30 (AUC = 0.823) in elderly sepsis patients. CONCLUSION The proposed nomogram can quickly and effectively predict S-AKI risk in elderly sepsis patients within 24 h after admission, providing information for clinicians to make personalized interventions.
Collapse
Affiliation(s)
- Qi Xin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tonghui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shufeng Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
18
|
Liu J, Zhou G, Wang X, Liu D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell Mol Life Sci 2022; 79:456. [PMID: 35904600 PMCID: PMC9336160 DOI: 10.1007/s00018-022-04490-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ failure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| |
Collapse
|
19
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
20
|
Alquraishi M, Chahed S, Alani D, Puckett DL, Dowker PD, Hubbard K, Zhao Y, Kim JY, Nodit L, Fatima H, Donohoe D, Voy B, Chowanadisai W, Bettaieb A. Podocyte specific deletion of PKM2 ameliorates LPS-induced podocyte injury through beta-catenin. Cell Commun Signal 2022; 20:76. [PMID: 35637461 PMCID: PMC9150347 DOI: 10.1186/s12964-022-00884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is associated with a severe decline in kidney function caused by abnormalities within the podocytes' glomerular matrix. Recently, AKI has been linked to alterations in glycolysis and the activity of glycolytic enzymes, including pyruvate kinase M2 (PKM2). However, the contribution of this enzyme to AKI remains largely unexplored. METHODS Cre-loxP technology was used to examine the effects of PKM2 specific deletion in podocytes on the activation status of key signaling pathways involved in the pathophysiology of AKI by lipopolysaccharides (LPS). In addition, we used lentiviral shRNA to generate murine podocytes deficient in PKM2 and investigated the molecular mechanisms mediating PKM2 actions in vitro. RESULTS Specific PKM2 deletion in podocytes ameliorated LPS-induced protein excretion and alleviated LPS-induced alterations in blood urea nitrogen and serum albumin levels. In addition, PKM2 deletion in podocytes alleviated LPS-induced structural and morphological alterations to the tubules and to the brush borders. At the molecular level, PKM2 deficiency in podocytes suppressed LPS-induced inflammation and apoptosis. In vitro, PKM2 knockdown in murine podocytes diminished LPS-induced apoptosis. These effects were concomitant with a reduction in LPS-induced activation of β-catenin and the loss of Wilms' Tumor 1 (WT1) and nephrin. Notably, the overexpression of a constitutively active mutant of β-catenin abolished the protective effect of PKM2 knockdown. Conversely, PKM2 knockdown cells reconstituted with the phosphotyrosine binding-deficient PKM2 mutant (K433E) recapitulated the effect of PKM2 depletion on LPS-induced apoptosis, β-catenin activation, and reduction in WT1 expression. CONCLUSIONS Taken together, our data demonstrates that PKM2 plays a key role in podocyte injury and suggests that targetting PKM2 in podocytes could serve as a promising therapeutic strategy for AKI. TRIAL REGISTRATION Not applicable. Video abstract.
Collapse
Affiliation(s)
- Mohammed Alquraishi
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Department of Community Health Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Samah Chahed
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dina Alani
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Dexter L. Puckett
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Presley D. Dowker
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Katelin Hubbard
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Yi Zhao
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Present Address: Kellogg Eye Center, University of Michigan, Ann Arbor, MI 48105 USA
| | - Ji Yeon Kim
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Laurentia Nodit
- Department of Pathology, University of Tennessee Medical Center, Knoxville, TN 37920 USA
| | - Huma Fatima
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Dallas Donohoe
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
| | - Brynn Voy
- Tennessee Agricultural Experiment Station, University of Tennessee Institute of Agriculture, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078 USA
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee Knoxville, 1215 Cumberland Avenue, 229 Jessie Harris Building, Knoxville, TN 37996-0840 USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840 USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840 USA
| |
Collapse
|
21
|
Davidson JA, Robison J, Khailova L, Frank BS, Jaggers J, Ing RJ, Lawson S, Iguidbashian J, Ali E, Treece A, Soranno DE, Osorio-Lujan S, Klawitter J. Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F20-F32. [PMID: 35532069 PMCID: PMC9236877 DOI: 10.1152/ajprenal.00039.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is a common cause of morbidity after congenital heart disease surgery. Progress on diagnosis and therapy remains limited, however, in part due to poor mechanistic understanding and a lack of relevant translational models. Metabolomic approaches could help identify novel mechanisms of injury and potential therapeutic targets. In the present study, we used a piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest (CPB/DHCA) and targeted metabolic profiling of kidney tissue, urine, and serum to evaluate metabolic changes specific to animals with histological acute kidney injury. CPB/DHCA animals with acute kidney injury were compared with those without acute kidney injury and mechanically ventilated controls. Acute kidney injury occurred in 10 of 20 CPB/DHCA animals 4 h after CPB/DHCA and 0 of 7 control animals. Injured kidneys showed a distinct tissue metabolic profile compared with uninjured kidneys (R2 = 0.93, Q2 = 0.53), with evidence of dysregulated tryptophan and purine metabolism. Nine urine metabolites differed significantly in animals with acute kidney injury with a pattern suggestive of increased aerobic glycolysis. Dysregulated metabolites in kidney tissue and urine did not overlap. CPB/DHCA strongly affected the serum metabolic profile, with only one metabolite that differed significantly with acute kidney injury (pyroglutamic acid, a marker of oxidative stress). In conclusion, based on these findings, kidney tryptophan and purine metabolism are candidates for further mechanistic and therapeutic investigation. Urine biomarkers of aerobic glycolysis could help diagnose early acute kidney injury after CPB/DHCA and warrant further evaluation. The serum metabolites measured at this early time point did not strongly differentiate based on acute kidney injury. NEW & NOTEWORTHY This project explored the metabolic underpinnings of postoperative acute kidney injury (AKI) following pediatric cardiac surgery in a translationally relevant large animal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Here, we present novel evidence for dysregulated tryptophan catabolism and purine catabolism in kidney tissue and increased urinary glycolysis intermediates in animals who developed histological AKI. These pathways represent potential diagnostic and therapeutic targets for postoperative AKI in this high-risk population.
Collapse
Affiliation(s)
- Jesse A Davidson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Justin Robison
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin S Frank
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James Jaggers
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard J Ing
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Scott Lawson
- Heart Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - John Iguidbashian
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eiman Ali
- Heart Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - Amy Treece
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Danielle E Soranno
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Suzanne Osorio-Lujan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
22
|
Reiter RJ, Sharma R, Rosales-Corral S, de Campos Zuccari DAP, de Almeida Chuffa LG. Melatonin: A mitochondrial resident with a diverse skill set. Life Sci 2022; 301:120612. [PMID: 35523285 DOI: 10.1016/j.lfs.2022.120612] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
Melatonin is an ancient molecule that originated in bacteria. When these prokaryotes were phagocytized by early eukaryotes, they eventually developed into mitochondria and chloroplasts. These new organelles retained the melatonin synthetic capacity of their forerunners such that all present-day animal and plant cells may produce melatonin in their mitochondria and chloroplasts. Melatonin concentrations are higher in mitochondria than in other subcellular compartments. Isolated mouse oocyte mitochondria form melatonin when they are incubated with serotonin, a necessary precursor. Oocyte mitochondria subsequently give rise to these organelles in all adult vertebrate cells where they continue to synthesize melatonin. The enzymes that convert serotonin to melatonin, i.e., arylalkylamine-N-acetyltransferase (AANAT) and acetylserotonin-O-methyltransferase, have been identified in brain mitochondria which, when incubated with serotonin, also form melatonin. Melatonin is a potent antioxidant and anti-cancer agent and is optimally positioned in mitochondria to aid in the maintenance of oxidative homeostasis and to reduce cancer cell transformation. Melatonin stimulates the transfer of mitochondria from healthy cells to damaged cells via tunneling nanotubes. Melatonin also regulates the major NAD+-dependent deacetylase, sirtuin 3, in the mitochondria. Disruptions of mitochondrial melatonin synthesis may contribute to a number of mitochondria-related diseases, as discussed in this review.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco CP45150, Mexico
| | | | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP-São Paulo State University, Botucatu, São Paulo 18618-689, Brazil
| |
Collapse
|
23
|
Gong F, Li R, Zheng X, Chen W, Zheng Y, Yang Z, Chen Y, Qu H, Mao E, Chen E. OLFM4 Regulates Lung Epithelial Cell Function in Sepsis-Associated ARDS/ALI via LDHA-Mediated NF-κB Signaling. J Inflamm Res 2021; 14:7035-7051. [PMID: 34955649 PMCID: PMC8694847 DOI: 10.2147/jir.s335915] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is one of the leading causes of death in patients with sepsis. As such, early and accurate identification of sepsis-related ARDS is critical. Methods Bioinformatic analysis was used to explore the GEO datasets. ELISA method was used to detect the plasma or cellular supernatant of relevant proteins. Quantitative real-time PCR was used for mRNA measurements and Western blot was applied for protein measurements. Immunohistochemistry staining and Immunofluorescence staining were used to identify the localization of OLFM4. Cecal ligation and puncture (CLP) model was used to establish sepsis model. Results The bioinformatic analysis results identified ten genes (CAMP, LTF, RETN, LCN2, ELANE, PGLYRP1, BPI, DEFA4, MPO, and OLFM4) as critical in sepsis and sepsis-related ARDS. OLFM4, LCN2, and BPI were further demonstrated to have diagnostic values in sepsis-related ARDS. Plasma expression of OLFM4 and LCN2 was also upregulated in sepsis-related ARDS patients compared to septic patients alone. OLFM4 expression was significantly increased in the lung tissues of septic mice and was co-localized with Ly6G+ neutrophils, F4/80+ macrophages and pro-surfactant C+ lung epithelial cells. In vitro data showed that OLFM4 expression in lung epithelial cells was downregulated upon LPS stimulation, whereas neutrophil media induced OLFM4 expression in lung epithelial cells. Overexpression of OLFM4 and treatment with recombinant OLFM4 effectively suppressed LPS-induced pro-inflammatory responses in lung epithelial cells. Furthermore, the increased levels of LDHA phosphorylation and the downstream NF-κB activation induced by LPS in epithelial cells were effectively diminished by OLFM4 overexpression and recombinant OLFM4 treatment via a reduction in ROS production and HIF1α expression. Conclusion OLFM4 may regulate the pro-inflammatory response of lung epithelial cells in sepsis-related ARDS by modulating metabolic disorders; this result could provide new insights into the treatment of sepsis-induced ARDS.
Collapse
Affiliation(s)
- Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yanjun Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Li Y, Hepokoski M, Gu W, Simonson T, Singh P. Targeting Mitochondria and Metabolism in Acute Kidney Injury. J Clin Med 2021; 10:3991. [PMID: 34501442 PMCID: PMC8432487 DOI: 10.3390/jcm10173991] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) significantly contributes to morbidity and mortality in critically ill patients. AKI is also an independent risk factor for the development and progression of chronic kidney disease. Effective therapeutic strategies for AKI are limited, but emerging evidence indicates a prominent role of mitochondrial dysfunction and altered tubular metabolism in the pathogenesis of AKI. Therefore, a comprehensive, mechanistic understanding of mitochondrial function and renal metabolism in AKI may lead to the development of novel therapies in AKI. In this review, we provide an overview of current state of research on the role of mitochondria and tubular metabolism in AKI from both pre-clinical and clinical studies. We also highlight current therapeutic strategies which target mitochondrial function and metabolic pathways for the treatment of AKI.
Collapse
Affiliation(s)
- Ying Li
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, CA 92093, USA;
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Tatum Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, San Diego, CA 92093, USA; (W.G.); (T.S.)
| | - Prabhleen Singh
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, CA 92093, USA;
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
| |
Collapse
|
25
|
Vallejo FA, Vanni S, Graham RM. UCP2 as a Potential Biomarker for Adjunctive Metabolic Therapies in Tumor Management. Front Oncol 2021; 11:640720. [PMID: 33763373 PMCID: PMC7982524 DOI: 10.3389/fonc.2021.640720] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GBM) remains one of the most lethal primary brain tumors in both adult and pediatric patients. Targeting tumor metabolism has emerged as a promising-targeted therapeutic strategy for GBM and characteristically resistant GBM stem-like cells (GSCs). Neoplastic cells, especially those with high proliferative potential such as GSCs, have been shown to upregulate UCP2 as a cytoprotective mechanism in response to chronic increased reactive oxygen species (ROS) exposure. This upregulation plays a central role in the induction of the highly glycolytic phenotype associated with many tumors. In addition to shifting metabolism away from oxidative phosphorylation, UCP2 has also been implicated in increased mitochondrial Ca2+ sequestration, apoptotic evasion, dampened immune response, and chemotherapeutic resistance. A query of the CGGA RNA-seq and the TCGA GBMLGG database demonstrated that UCP2 expression increases with increased WHO tumor-grade and is associated with much poorer prognosis across a cohort of brain tumors. UCP2 expression could potentially serve as a biomarker to stratify patients for adjunctive anti-tumor metabolic therapies, such as glycolytic inhibition alongside current standard of care, particularly in adult and pediatric gliomas. Additionally, because UCP2 correlates with tumor grade, monitoring serum protein levels in the future may allow clinicians a relatively minimally invasive marker to correlate with disease progression. Further investigation of UCP2’s role in metabolic reprogramming is warranted to fully appreciate its clinical translatability and utility.
Collapse
Affiliation(s)
- Frederic A Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Regina M Graham
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
26
|
Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021; 22:ijms22020764. [PMID: 33466614 PMCID: PMC7828708 DOI: 10.3390/ijms22020764] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin's function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin's action in switching the metabolic phenotype of cells.
Collapse
|
27
|
Clark AJ, Parikh SM. Targeting energy pathways in kidney disease: the roles of sirtuins, AMPK, and PGC1α. Kidney Int 2020; 99:828-840. [PMID: 33307105 DOI: 10.1016/j.kint.2020.09.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022]
Abstract
The kidney has extraordinary metabolic demands to sustain the active transport of solutes that is critical to renal filtration and clearance. Mitochondrial health is vital to meet those demands and maintain renal fitness. Decades of studies have linked poor mitochondrial health to kidney disease. Key regulators of mitochondrial health-adenosine monophosphate kinase, sirtuins, and peroxisome proliferator-activated receptor γ coactivator-1α-have all been shown to play significant roles in renal resilience against disease. This review will summarize the latest research into the activities of those regulators and evaluate the roles and therapeutic potential of targeting those regulators in acute kidney injury, glomerular kidney disease, and renal fibrosis.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Samir M Parikh
- Harvard Medical School, Boston, Massachusetts, USA; Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
| |
Collapse
|