1
|
Casari G, Dall'Ora M, Melandri A, Masciale V, Chiavelli C, Prapa M, Neri G, Spano MC, Murgia A, D'Esposito A, Baschieri MC, Ceccherelli GB, Dominici M, Grisendi G. Impact of soluble tumor necrosis factor-related apoptosis-inducing ligand released by engineered adipose mesenchymal stromal cells on white blood cells. Cytotherapy 2023; 25:605-614. [PMID: 37012089 DOI: 10.1016/j.jcyt.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/26/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND AIMS The proapoptotic protein tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is physiologically expressed by immune cells and performs regulatory functions in infections, autoimmune diseases and cancer, where it acts as a tumor suppressor. Adipose-derived mesenchymal stromal cells (AD-MSCs) also may play immunomodulatory roles in both primary and acquired immune responses. We have previously demonstrated the efficacy of an anticancer gene therapy based on AD-MSC engineered to secrete a soluble TRAIL variant (sTRAIL) against pancreatic cancer. However, the impact of AD-MSC sTRAIL on leukocyte subsets has been not yet considered also to predict a possible immunotoxicity profile in the clinical translation of this cell-based anticancer strategy. METHODS Monocytes, polymorphonuclear cells and T lymphocytes were freshly isolated from the peripheral blood of healthy donors. Immunophenotype and functional (DR4 and DR5) and decoy (DcR1 and DcR2) TRAIL receptors were tested by flow cytometry. The viability of white blood cells treated with sTRAIL released by gene-modified AD-MSC or co-cultured with AD-MSC sTRAIL was then evaluated by both metabolic assays and flow cytometry. In addition, cytokine profile in co-cultures was analyzed by multiplex enzyme-linked immunosorbent assay. RESULTS Monocytes and polymorphonuclear cells showed high positivity for DR5 and DcR2, respectively, whereas T cells revealed negligible expression of all TRAIL receptors. Irrespective of TRAIL receptors' presence on the cell membrane, white blood cells were refractory to the proapoptotic effect displayed by sTRAIL secreted by gene-modified AD-MSC, and direct cell-to-cell contact with AD-MSC sTRAIL had negligible impact on T-cell and monocyte viability. Cytokine crosstalk involving interleukin 10, tumor necrosis factor alpha, and interferon gamma secreted by T lymphocytes and vascular endothelial growth factor A and interleukin 6 released by AD-MSC was highlighted in T-cell and AD-MSC sTRAIL co-cultures. CONCLUSIONS In summary, this study demonstrates the immunological safety and thus the clinical feasibility of an anticancer approach based on AD-MSC expressing the proapoptotic molecule sTRAIL.
Collapse
Affiliation(s)
- Giulia Casari
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, Ancona, Italy
| | | | - Aurora Melandri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiavelli
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Department of Medical Technical Sciences, Universiteti Barleti, Tirana, Albania
| | - Giovanni Neri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Alba Murgia
- Technopole of Mirandola TPM, Mirandola, Modena, Italy
| | - Angela D'Esposito
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Maria Cristina Baschieri
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Massimo Dominici
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy; EVOTEC (Modena) Srl, Medolla, Modena, Italy.
| | - Giulia Grisendi
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
2
|
Nallakumarasamy A, Jeyaraman M, Maffulli N, Jeyaraman N, Suresh V, Ravichandran S, Gupta M, Potty AG, El-Amin SF, Khanna M, Gupta A. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Wound Healing. Life (Basel) 2022; 12:1733. [PMID: 36362890 PMCID: PMC9699035 DOI: 10.3390/life12111733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 07/26/2023] Open
Abstract
The well-orchestrated process of wound healing may be negatively impacted from interrupted or incomplete tissue regenerative processes. The healing potential is further compromised in patients with diabetes mellitus, chronic venous insufficiency, critical limb ischemia, and immunocompromised conditions, with a high health care burden and expenditure. Stem cell-based therapy has shown promising results in clinical studies. Mesenchymal stem cell-derived exosomes (MSC Exos) may favorably impact intercellular signaling and immunomodulation, promoting neoangiogenesis, collagen synthesis, and neoepithelization. This article gives an outline of the biogenesis and mechanism of extracellular vesicles (EVs), particularly exosomes, in the process of tissue regeneration and discusses the use of preconditioned exosomes, platelet-rich plasma-derived exosomes, and engineered exosomes in three-dimensional bioscaffolds such as hydrogels (collagen and chitosan) to prolong the contact time of exosomes at the recipient site within the target tissue. An appropriate antibiotic therapy based on culture-specific guidance coupled with the knowledge of biopolymers helps to fabricate nanotherapeutic materials loaded with MSC Exos to effectively deliver drugs locally and promote novel approaches for the management of chronic wounds.
Collapse
Affiliation(s)
- Arulkumar Nallakumarasamy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 751019, Odissa, India
- Fellow in Orthopaedic Rheumatology, Dr. RML National Law University, Lucknow 226010, Uttar Pradesh, India
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Medical Research and Translational Medicine, Faculty of Medicine—Sri Lalithambigai Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600095, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, 84084 Fisciano, Italy
- San Giovanni di Dio e Ruggi D’Aragona Hospital “Clinica Ortopedica” Department, Hospital of Salerno, 84124 Salerno, Italy
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent ST5 5BG, UK
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Fellow in Joint Replacement, Department of Orthopaedics, Atlas Hospitals, Tiruchirappalli 620002, Tamil Nadu, India
| | - Veerasivabalan Suresh
- Department of Obstetrics-Gynecology, Madras Medical College and Hospital, Chennai 600003, Tamil Nadu, India
| | - Srinath Ravichandran
- Department of General and GI Surgery, Stepping Hill Hospital, Stockport NHS Foundation Trust, Stockport SK27JE, UK
| | - Manu Gupta
- Polar Aesthetics Dental & Cosmetic Centre, Noida 201301, Uttar Pradesh, India
| | - Anish G. Potty
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
| | - Saadiq F. El-Amin
- El-Amin Orthopaedic & Sports Medicine Institute, Lawrenceville, GA 30043, USA
- Regenerative Sports Medicine, Lawrenceville, GA 30043, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
| | - Manish Khanna
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- Department of Orthopaedics, Autonomous State Medical College, Ayodhya 224135, Uttar Pradesh, India
| | - Ashim Gupta
- Indian Stem Cell Study Group (ISCSG) Association, Lucknow 226010, Uttar Pradesh, India
- South Texas Orthopaedic Research Institute (STORI Inc.), Laredo, TX 78045, USA
- BioIntegrate, Lawrenceville, GA 30043, USA
- Regenerative Orthopaedics, Noida 201301, Uttar Pradesh, India
- Future Biologics, Lawrenceville, GA 30043, USA
| |
Collapse
|
3
|
Raj V, Claudine S, Subramanian A, Tam K, Biswas A, Bongso A, Fong CY. Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton's jelly stem cells with and without a nanocarrier. J Cell Biochem 2019; 120:11222-11240. [PMID: 30706534 DOI: 10.1002/jcb.28398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
We showed in previous studies that human umbilical cord Wharton's jelly stem cells (hWJSCs) improved the healing rates of excisional and diabetic wounds in the mouse model. As an extension of those studies, we report here the more detailed quantitative histological, immunohistochemical, and genomic evaluation of biopsies from those excisional and diabetic wounds in an attempt to understand the mechanisms of the enhanced wound healing aided by hWJSCs. Bright-field microscopic observations and ImageJ software analysis on histological sections of the excisional and diabetic wound biopsies collected at different time points showed that the thickness of the epidermis and dermis, and positive picrosirius-red stained areas for collagen, were significantly greater in the presence of hWJSCs compared with controls (P < 0.05). Immunohistochemistry of the diabetic wound biopsies showed increased positive staining for the vascular endothelial marker CD31 and cell proliferation marker Ki67 in the presence of hWJSCs and its conditioned medium (hWJSC-CM). Quantitative real-time polymerase chain reaction showed upregulation of groups of genes involved in extracellular matrix regulation, collagen biosynthesis, angiogenesis, antifibrosis, granulation, and immunomodulation in the presence of hWJSCs. Taken together, the results demonstrated that hWJSCs and hWJSC-CM that contains the paracrine secretions of hWJSCs, enhance the healing of excisional and diabetic wounds via re-epithelialization, collagen deposition, angiogenesis, and immunomodulation. The inclusion of an Aloe vera-polycaprolactone (AV/PCL) nanocarrier did not significantly change the effect of the hWJSCs. However, the topical application of an AV/PCL nanocarrier impregnated with hWJSCs is convenient and less invasive than the administration of hWJSC injections into wounds.
Collapse
Affiliation(s)
- Vaishnevi Raj
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Stephanie Claudine
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Kimberley Tam
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance in Research and Technology, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
4
|
Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, Raeisi Dehkordi S. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther 2019; 10:111. [PMID: 30922387 PMCID: PMC6440165 DOI: 10.1186/s13287-019-1212-2] [Citation(s) in RCA: 289] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Normal wound healing is a dynamic and complex multiple phase process involving coordinated interactions between growth factors, cytokines, chemokines, and various cells. Any failure in these phases may lead wounds to become chronic and have abnormal scar formation. Chronic wounds affect patients' quality of life, since they require repetitive treatments and incur considerable medical costs. Thus, much effort has been focused on developing novel therapeutic approaches for wound treatment. Stem-cell-based therapeutic strategies have been proposed to treat these wounds. They have shown considerable potential for improving the rate and quality of wound healing and regenerating the skin. However, there are many challenges for using stem cells in skin regeneration. In this review, we present some sets of the data published on using embryonic stem cells, induced pluripotent stem cells, and adult stem cells in healing wounds. Additionally, we will discuss the different angles whereby these cells can contribute to their unique features and show the current drawbacks.
Collapse
Affiliation(s)
- Azar Nourian Dehkordi
- Department of Stem Cell and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Fatemeh Mirahmadi Babaheydari
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | |
Collapse
|
5
|
Patel S, Athirasala A, Menezes PP, Ashwanikumar N, Zou T, Sahay G, Bertassoni LE. Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Eng Part A 2019; 25:91-112. [PMID: 29661055 PMCID: PMC6352544 DOI: 10.1089/ten.tea.2017.0444] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/09/2018] [Indexed: 12/25/2022] Open
Abstract
The ability to control cellular processes and precisely direct cellular reprogramming has revolutionized regenerative medicine. Recent advances in in vitro transcribed (IVT) mRNA technology with chemical modifications have led to development of methods that control spatiotemporal gene expression. Additionally, there is a current thrust toward the development of safe, integration-free approaches to gene therapy for translational purposes. In this review, we describe strategies of synthetic IVT mRNA modifications and nonviral technologies for intracellular delivery. We provide insights into the current tissue engineering approaches that use a hydrogel scaffold with genetic material. Furthermore, we discuss the transformative potential of novel mRNA formulations that when embedded in hydrogels can trigger controlled genetic manipulation to regenerate tissues and organs in vitro and in vivo. The role of mRNA delivery in vascularization, cytoprotection, and Cas9-mediated xenotransplantation is additionally highlighted. Harmonizing mRNA delivery vehicle interactions with polymeric scaffolds can be used to present genetic cues that lead to precise command over cellular reprogramming, differentiation, and secretome activity of stem cells-an ultimate goal for tissue engineering.
Collapse
Affiliation(s)
- Siddharth Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Avathamsa Athirasala
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Paula P. Menezes
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Postgraduate Program in Health Sciences, Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - N. Ashwanikumar
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
| | - Ting Zou
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Collaborative Life Science Building, Oregon State University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
| | - Luiz E. Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon
- Department of Biomedical Engineering, Collaborative Life Science Building, Oregon Health and Science University, Portland, Oregon
- Center for Regenerative Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
6
|
Ding X, Gu R, Zhang M, Ren H, Shu Q, Xu G, Wu H. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol 2018; 18:249. [PMID: 30223824 PMCID: PMC6142340 DOI: 10.1186/s12886-018-0886-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/14/2018] [Indexed: 11/30/2022] Open
Abstract
Background Attention is increasingly being given to microglia-related inflammation in neovascular diseases, such as diabetic retinopathy and age-related macular disease. Evidence shows that activated microglia contribute to disruption of the blood–retinal barrier, however, the mechanism is unclear. In this study, we aimed to clarify whether and how microglia affect the function of retinal microvascular endothelial cells (RMECs). Methods We activated microglia by Lipopolysaccharides (LPS) stimulation. After co-culturing static or activated microglia with RMECs using the Transwell system, we evaluated the function of RMECs. Vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) levels in the supernatant from the lower chamber were evaluated by ELISA. Angiogenesis, migration, and proliferation of RMECs were assessed by tube formation, wound healing, and WST-1 assays. The expression levels of tight junction proteins (ZO-1 and occludin) and endothelial markers (CD31 and CD34) were examined by Western blot analysis. Results We successfully established an LPS-activated microglia model and co-culture system of static or activated microglia with RMECs. In the co-culture system, we showed that microglia, especially activated microglia stimulated VEGF-A and PDGF-BB expression, enhanced angiogenesis, migration, proliferation, and permeability, and altered the phenotype of co-cultured RMECs. Conclusions Microglia, especially activated microglia, play important roles in angiogenesis and maintenance of vascular function hemostasis in the retinal microvasculature. The mechanism needs further investigation and clarification.
Collapse
Affiliation(s)
- Xinyi Ding
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Meng Zhang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Hui Ren
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Qinmeng Shu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China.,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China
| | - Haixiang Wu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, 83 Fen Yang Road, Shanghai, 200031, People's Republic of China. .,Institute of Eye Research, Eye and ENT Hospital of Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University), Shanghai, China. .,Shanghai Key Laboratory of Visual Impairment and Restoration(Fudan University), Shanghai, China.
| |
Collapse
|
7
|
Cuenca J, Le-Gatt A, Castillo V, Belletti J, Díaz M, Kurte G M, Gonzalez PL, Alcayaga-Miranda F, Schuh CMAP, Ezquer F, Ezquer M, Khoury M. The Reparative Abilities of Menstrual Stem Cells Modulate the Wound Matrix Signals and Improve Cutaneous Regeneration. Front Physiol 2018; 9:464. [PMID: 29867527 PMCID: PMC5960687 DOI: 10.3389/fphys.2018.00464] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
Considerable advances have been made toward understanding the cellular and molecular mechanism of wound healing, however, treatments for chronic wounds remain elusive. Emerging concepts utilizing mesenchymal stem cells (MSCs) from umbilical cord, adipose tissue and bone marrow have shown therapeutical advantages for wound healing. Based on this positive outcome, efforts to determine the optimal sources for MSCs are required in order to improve their migratory, angiogenic, immunomodulatory, and reparative abilities. An alternative source suitable for repetitive, non-invasive collection of MSCs is from the menstrual fluid (MenSCs), displaying a major practical advantage over other sources. This study aims to compare the biological functions and the transcriptomic pattern of MenSCs with umbilical cord MSCs in conditions resembling the wound microenvironment. Consequently, we correlate the specific gene expression signature from MenSCs with changes of the wound matrix signals in vivo. The direct comparison revealed a superior clonogenic and migratory potential of MenSCs as well as a beneficial effect of their secretome on human dermal fibroblast migration in vitro. Furthermore, MenSCs showed increased immunomodulatory properties, inhibiting T-cell proliferation in co-culture. We further, investigated the expression of selected genes involved in wound repair (growth factors, cytokines, chemokines, AMPs, MMPs) and found considerably higher expression levels in MenSCs (ANGPT1 1.5-fold; PDGFA 1.8-fold; PDGFB 791-fold; MMP3 21.6-fold; ELN 13.4-fold; and MMP10 9.2-fold). This difference became more pronounced under a pro-inflammatory stimulation, resembling wound bed conditions. Locally applied in a murine excisional wound splinting model, MenSCs showed a significantly improved wound closure after 14 days, as well as enhanced neovascularization, compared to the untreated group. Interestingly, analysis of excised wound tissue revealed a significantly higher expression of VEGF (1.42-fold) among other factors, translating an important conversion of the matrix signals in the wound site. Furthermore, histological analysis of the wound tissue from MenSCs-treated group displayed a more mature robust vascular network and a genuinely higher collagen content confirming the pro-angiogenic and reparative effect of MenSCs treatment. In conclusion, the superior clonogenicity, immunosuppressive and migration potential in combination with specific paracrine signature of MenSCs, resulted in an enhanced wound healing and cutaneous regeneration process.
Collapse
Affiliation(s)
- Jimena Cuenca
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Alice Le-Gatt
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Valentina Castillo
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Jose Belletti
- Laboratory of Pathological Anatomy, Hospital DIPRECA, Las Condes, Chile
| | - Macarena Díaz
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Mónica Kurte G
- Laboratory of Immunology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Paz L Gonzalez
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francisca Alcayaga-Miranda
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| | - Christina M A P Schuh
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Maroun Khoury
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Santiago, Chile
| |
Collapse
|
8
|
Liao YH, Wang J, Wei YY, Zhang T, Zhang Y, Zuo ZF, Teng XY, Li YQ. Histone deacetylase 2 is involved in µ‑opioid receptor suppression in the spinal dorsal horn in a rat model of chronic pancreatitis pain. Mol Med Rep 2017; 17:2803-2810. [PMID: 29257262 PMCID: PMC5783494 DOI: 10.3892/mmr.2017.8245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Chronic pain occurs in ~85–90% of chronic pancreatitis (CP) patients. However, as the pathogenesis of CP pain remains to be fully understood, the current therapies for CP pain remain inadequate. Emerging evidence has suggested that the epigenetic modulations of genes are involved in chronic pain. In the present study, intrapancreatic trinitrobenzene sulfonic acid infusions were used to establish a CP model in rats. Mechanical allodynia was measured with von Frey filaments. Immunofluorescent staining analysis was used to observe the expression changes of histone deacetylase 2 (HDAC2) and µ-opioid receptor (MOR), and intrathecal administration of the selective HDAC2 inhibitor AR-42 was used to assess the underlying mechanisms. The expression levels of c-Jun N-terminal kinase (JNK) in the thoracic spinal cord were detected by western blotting, and the mRNA expression levels of interleukin (IL)1-β, IL-6 and tumor necrosis factor (TNF)-α were detected by reverse transcription-quantitative polymerase chain reaction. The results demonstrated that HDAC2 expression was upregulated during the course of CP induction, while MOR activity in the thoracic spinal dorsal horn was significantly suppressed. Intrathecal infusion of AR-42 significantly attenuated CP-induced mechanical allodynia, with rescued MOR activity. Additionally, HDAC2 facilitated the release of inflammatory cytokines, including IL-1β, IL-6 and TNF-α. These results suggested that the underlying mechanisms of HDAC2 regulating MOR activity under CP induction may occur via promoting the release of inflammatory cytokines, thus activating the JNK signaling pathway. The present study suggested that the epigenetic-regulated disturbance of MOR is dependent on the endogenous analgesia system in CP, which may a provide novel therapeutic strategy for treating pain in CP.
Collapse
Affiliation(s)
- Yong-Hui Liao
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Wang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan-Yan Wei
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ting Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Zhang
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Xiao-Yu Teng
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yun-Qing Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Preclinical School of Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
9
|
Dabrowska S, Sypecka J, Jablonska A, Strojek L, Wielgos M, Domanska-Janik K, Sarnowska A. Neuroprotective Potential and Paracrine Activity of Stromal Vs. Culture-Expanded hMSC Derived from Wharton Jelly under Co-Cultured with Hippocampal Organotypic Slices. Mol Neurobiol 2017; 55:6021-6036. [PMID: 29134515 PMCID: PMC5994221 DOI: 10.1007/s12035-017-0802-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 01/01/2023]
Abstract
Regardless of enormous translational progress in stem cell clinical application, our knowledge about biological determinants of transplantation-related protection is still limited. In addition to adequate selection of the cell source well dedicated to a specific disease and optimal standardization of all other pre-transplant procedures, we have decided to focus more attention to the impact of culture time and environment itself on molecular properties and regenerative capacity of cell cultured in vitro. The aim of this investigation was to determine neuroprotection-linked cell phenotypic and functional changes that could spontaneously take place when freshly isolated Wharton’s jelly mesenchymal stem cell (WJ-MSC) undergo standard selection, growth, and spontaneous differentiation throughout passaging in vitro. For determining their neuroprotective potential, we used experimental model of human WJ-MSC co-culture with intact or oxygen-glucose-deprived (OGD) rat organotypic hippocampal culture (OHC). It has been shown that putative molecular mechanisms mediating regenerative interactions between WJ-MSC and OHC slices relies mainly on mesenchymal cell paracrine activity. Interestingly, it has been also found that the strongest protective effect is exerted by the co-culture with freshly isolated umbilical cord tissue fragments and by the first cohort of human mesenchymal stem cells (hMSCs) migrating out of these fragments (passage 0). Culturing of WJ-derived hMSC in well-controlled standard conditions under air atmosphere up to fourth passage caused unexpected decline of neuroprotective cell effectiveness toward OGD-OHC in the co-culture model. This further correlated with substantial changes in the WJ-MSC phenotype, profile of their paracrine activities as well as with the recipient tissue reaction evaluated by changes in the rat-specific neuroprotection-linked gene expression.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Joanna Sypecka
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Anna Jablonska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Lukasz Strojek
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Miroslaw Wielgos
- 1st Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
| | - Krystyna Domanska-Janik
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland
| | - Anna Sarnowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, Warsaw, Poland.
| |
Collapse
|
10
|
Jahandideh S, Maghsood F, Ghahhari NM, Lotfinia M, Mohammadi M, Johari B, Kadivar M. The effect of Trimetazidine and Diazoxide on immunomodulatory activity of human embryonic stem cell-derived mesenchymal stem cell secretome. Tissue Cell 2017; 49:597-602. [DOI: 10.1016/j.tice.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/18/2017] [Accepted: 08/10/2017] [Indexed: 12/29/2022]
|
11
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
12
|
Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, Zhang C, Li Q, Wang Y. Exosomes Derived from Human Endothelial Progenitor Cells Accelerate Cutaneous Wound Healing by Promoting Angiogenesis Through Erk1/2 Signaling. Int J Biol Sci 2016; 12:1472-1487. [PMID: 27994512 PMCID: PMC5166489 DOI: 10.7150/ijbs.15514] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic skin wounds represent one of the most common and disabling complications of diabetes. Endothelial progenitor cells (EPCs) are precursors of endothelial cells and can enhance diabetic wound repair by facilitating neovascularization. Recent studies indicate that the transplanted cells exert therapeutic effects primarily via a paracrine mechanism and exosomes are an important paracrine factor that can be directly used as therapeutic agents for regenerative medicine. However, application of exosomes in diabetic wound repair has been rarely reported. In this study, we demonstrated that the exosomes derived from human umbilical cord blood-derived EPCs (EPC-Exos) possessed robust pro-angiogenic and wound healing effects in streptozotocin-induced diabetic rats. By using a series of in vitro functional assays, we found that EPC-Exos could be incorporated into endothelial cells and significantly enhance endothelial cells' proliferation, migration, and angiogenic tubule formation. Moreover, microarray analyses indicated that exosomes treatment markedly altered the expression of a class of genes involved in Erk1/2 signaling pathway. It was further confirmed with functional study that this signaling process was the critical mediator during the exosomes-induced angiogenic responses of endothelial cells. Therefore, EPC-Exos are able to stimulate angiogenic activities of endothelial cells by activating Erk1/2 signaling, which finally facilitates cutaneous wound repair and regeneration.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Chunyuan Chen
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Graduate School of Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xiaolin Liu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Guowei Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Changqing Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China;; Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| |
Collapse
|
13
|
Chen J, Gu Z, Wu M, Yang Y, Zhang J, Ou J, Zuo Z, Wang J, Chen Y. C-reactive protein can upregulate VEGF expression to promote ADSC-induced angiogenesis by activating HIF-1α via CD64/PI3k/Akt and MAPK/ERK signaling pathways. Stem Cell Res Ther 2016; 7:114. [PMID: 27526687 PMCID: PMC4986362 DOI: 10.1186/s13287-016-0377-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/04/2016] [Accepted: 07/26/2016] [Indexed: 12/31/2022] Open
Abstract
Background Proliferation of the vasa vasorum has been implicated in the pathogenesis of atherosclerosis, and the vasa vasorum is closely associated with resident stem cells within the vasculature. C-reactive protein (CRP) is positively correlated with cardiovascular disease risk, and our previous study demonstrated that it induces inflammatory reactions of perivascular adipose tissue by targeting adipocytes. Methods Here we investigated whether CRP affected the proliferation and proangiogenic paracrine activity of adipose-derived stem cells (ADSCs), which may contribute to vasa vasorum angiogenesis. Results We found that CRP did not affect ADSC apoptosis, cell cycle, or proliferation but did increase their migration by activating the PI3K/Akt pathway. Our results demonstrated that CRP can upregulate vascular endothelial growth factor-A (VEGF-A) expression by activating hypoxia inducible factor-1α (HIF-1α) in ADSCs, which significantly increased tube formation on Matrigel and functional vessels in the Matrigel plug angiogenesis assay. The inhibition of CRP-activated phosphorylation of ERK and Akt can suppress CRP-stimulated HIF-1α activation and VEGF-A expression. CRP can also stimulate proteolytic activity of matrix metalloproteinase-2 in ADSCs. Furthermore, CRP binds activating CD64 on ADSCs, rather than CD16/32. Conclusion Our findings implicate that CRP might play a role in vasa vasorum growth by activating the proangiogenic activity of ADSCs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0377-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- JiaYuan Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - ZhenJie Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - MaoXiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - JianHua Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China.,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - JingSong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, 510080, People's Republic of China
| | - ZhiYi Zuo
- Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.,Department of Anesthesiology, University of Virginia, Health Science Center, Charlottesville, VA, USA
| | - JingFeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China. .,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - YangXin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China. .,Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, People's Republic of China. .,Laboratory of RNA and Major Disease of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| |
Collapse
|
14
|
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 2016; 118:95-107. [PMID: 26837742 DOI: 10.1161/circresaha.115.305373] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past decade, substantial evidence supports the paradigm that stem cells exert their reparative and regenerative effects, in large part, through the release of biologically active molecules acting in a paracrine fashion on resident cells. The data suggest the existence of a tissue microenvironment where stem cell factors influence cell survival, inflammation, angiogenesis, repair, and regeneration in a temporal and spatial manner.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Akshay Bareja
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - José A Gomez
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
15
|
Ma K, Tan Z, Zhang C, Fu X. Mesenchymal stem cells for sweat gland regeneration after burns: From possibility to reality. Burns 2016; 42:492-9. [DOI: 10.1016/j.burns.2015.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/18/2015] [Accepted: 04/17/2015] [Indexed: 01/16/2023]
|
16
|
Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J 2015; 10:1235-47. [DOI: 10.1002/biot.201400586] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/19/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
|
17
|
Gray A, Maguire T, Schloss R, Yarmush ML. Identification of IL-1β and LPS as optimal activators of monolayer and alginate-encapsulated mesenchymal stromal cell immunomodulation using design of experiments and statistical methods. Biotechnol Prog 2015; 31:1058-70. [PMID: 25958832 DOI: 10.1002/btpr.2103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Indexed: 12/13/2022]
Abstract
Induction of therapeutic mesenchymal stromal cell (MSC) function is dependent upon activating factors present in diseased or injured tissue microenvironments. These functions include modulation of macrophage phenotype via secreted molecules including prostaglandin E2 (PGE2). Many approaches aim to optimize MSC-based therapies, including preconditioning using soluble factors and cell immobilization in biomaterials. However, optimization of MSC function is usually inefficient as only a few factors are manipulated in parallel. We utilized fractional factorial design of experiments to screen a panel of 6 molecules (lipopolysaccharide [LPS], polyinosinic-polycytidylic acid [poly(I:C)], interleukin [IL]-6, IL-1β, interferon [IFN]-β, and IFN-γ), individually and in combinations, for the upregulation of MSC PGE2 secretion and attenuation of macrophage secretion of tumor necrosis factor (TNF)-α, a pro-inflammatory molecule, by activated-MSC conditioned medium (CM). We used multivariable linear regression (MLR) and analysis of covariance to determine differences in functions of optimal factors on monolayer MSCs and alginate-encapsulated MSCs (eMSCs). The screen revealed that LPS and IL-1β potently activated monolayer MSCs to enhance PGE2 production and attenuate macrophage TNF-α. Activation by LPS and IL-1β together synergistically increased MSC PGE2, but did not synergistically reduce macrophage TNF-α. MLR and covariate analysis revealed that macrophage TNF-α was strongly dependent on the MSC activation factor, PGE2 level, and macrophage donor but not MSC culture format (monolayer versus encapsulated). The results demonstrate the feasibility and utility of using statistical approaches for higher throughput cell analysis. This approach can be extended to develop activation schemes to maximize MSC and MSC-biomaterial functions prior to transplantation to improve MSC therapies.
Collapse
Affiliation(s)
- Andrea Gray
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Timothy Maguire
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Rene Schloss
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| | - Martin L Yarmush
- Dept. of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854
| |
Collapse
|
18
|
Abstract
Although a variety of disease-modifying agents have been studied as potential sepsis treatments, no beneficial effects on the course of sepsis, in terms of survival, have been observed until now. Because of their plasticity, mesenchymal stromal cells (MSCs) have been implicated as an effective novel therapy modality for various diseases and are widely used for cellular therapies and tissue engineering. The existing knowledge supports the idea that MSCs might be beneficial in sepsis treatment. Our objective was to selectively address the evidence, based on multistep processes, supporting the potential of MSC-based therapies in clinical sepsis trials. In this study, we performed a stepwise approach to defend the evaluation of MSC treatments for sepsis from the bench to the bedside. Altogether, the reviewed data postulate that the signals produced by inflamed tissues might determine the functional effects of MSCs. These effects include bacterial clearance, suppression of inflammation, antiapoptosis, or stimulation of regenerative responses. We conclude that the clinical application of MSCs is a feasible and well-tolerated approach and therefore may have benefits for patients with sepsis.
Collapse
|
19
|
Hou Y, Ryu CH, Jun JA, Kim SM, Jeong CH, Jeun SS. IL-8 enhances the angiogenic potential of human bone marrow mesenchymal stem cells by increasing vascular endothelial growth factor. Cell Biol Int 2014; 38:1050-9. [PMID: 24797366 DOI: 10.1002/cbin.10294] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
The beneficial effects of mesenchymal stem cells (MSCs) are mediated partly by the paracrine production of cytoprotective and trophic factors. Vascular endothelial growth factor (VEGF) is released from MSCs as a paracrine trophic factor and contributes to the therapeutic effects of the stem cell by regulating angiogenesis and promoting revascularization in injured tissues. Interleukin-8 (IL-8), an inflammatory chemokine with potent proangiogenic properties, is upregulated in the ischemic brain and has been shown to promote homing of bone marrow-derived cells to injured sites. However, the effect of IL-8 on MSCs paracrine function remains unknown. We found that IL-8 induced VEGF production and phosphorylation of Akt and ERK. Both effects could be blocked by inhibitors (LY294002, PD098059) or siRNA-mediated silencing of Akt and ERK in human bone marrow MSCs (hBM-MSCs). IL-8-induced VEGF production in hBM-MSCs significantly increased tube formation on Matrigel compared with basal secreted VEGF. In a rat stroke model, administration of IL-8-treated hBM-MSCs decreased the infarction volume and increased angiogenesis in the ischemic boundary zone compared with hBM-MSC treatment alone. In conclusion, IL-8 stimulates VEGF production in hBM-MSCs in part via the PI3K/Akt and MAPK/ERK signal transduction pathways and that administration of IL-8-treated hBM-MSCs increases angiogenesis after stroke. This approach may be used to optimize MSC-based therapies for numerous diseases including stroke, myocardial ischemia, and spinal cord injury.
Collapse
Affiliation(s)
- Yun Hou
- Department of Biomedical Science, College of Medicine, Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul 137-701, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Wang CM, Guo Z, Xie YJ, Hao YY, Sun JM, Gu J, Wang AL. Co-treating mesenchymal stem cells with IL‑1β and TNF-α increases VCAM-1 expression and improves post-ischemic myocardial function. Mol Med Rep 2014; 10:792-8. [PMID: 24840001 DOI: 10.3892/mmr.2014.2236] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/24/2014] [Indexed: 11/06/2022] Open
Abstract
Inflammatory mediators are released by the myocardium following myocardial ischemia as a response to tissue injury, and contribute to cardiac repair and adaptive responses. Treating mesenchymal stem cells (MSCs) with various inflammatory factors activates a series of biological processes that enhance cell-mediated cardioprotection following myocardial infarction (MI). The present study was designed to examine the effect of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) treatment on vascular cell adhesion molecule-1 (VCAM-1) expression in MSCs, and to identify whether cytokine-treated MSCs improve post-ischemic myocardial function in a rat model. MSCs were stimulated with IL-1β and/or TNF-α for 24 h, the production of vascular cell adhesion molecule-1 (VCAM-1) and the adhesion ability of MSCs were assessed by flow cytometry, adhesion assays, quantitative polymerase chain reaction and western blot analysis. The cardiac function was examined by two-dimensional echocardiography. The results demonstrated that in treated MSCs, the secretion of VCAM-1 and the cell adhesion ability were significantly increased, thus markedly improving cardiac function compared with that of the control group (P<0.01). Of all the groups, the rats stimulated with a combination of IL-1β and TNF-α exhibited the greatest cardiac improvements. However, there was no significant difference between the 10 and 20 ng/ml groups which were stimulated with one of the cytokines alone (P>0.05). In conclusion, stimulating MSCs with IL-1β and TNF-α promoted the expression of VCAM-1 and improved post-ischemic cardiac function recovery. Treating MSCs with two cytokines in combination may be a useful method to maximize the potential of cell-based therapy for MI.
Collapse
Affiliation(s)
- Chun-Miao Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zeng Guo
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yang-Jing Xie
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yu-Yu Hao
- Department of Emergency, The First People's Hospital of Hefei, Hefei, Anhui 230051, P.R. China
| | - Ji-Min Sun
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jian Gu
- Department of Cardiology, The First People's Hospital of Hefei, Hefei, Anhui 230051, P.R. China
| | - Ai-Ling Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
21
|
Laverdet B, Micallef L, Lebreton C, Mollard J, Lataillade JJ, Coulomb B, Desmoulière A. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. ACTA ACUST UNITED AC 2014; 62:108-17. [DOI: 10.1016/j.patbio.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
|
22
|
Peng Y, Huang S, Wu Y, Cheng B, Nie X, Liu H, Ma K, Zhou J, Gao D, Feng C, Yang S, Fu X. Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments. Stem Cells Dev 2013; 22:3236-51. [PMID: 23885779 PMCID: PMC3868358 DOI: 10.1089/scd.2013.0064] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/25/2013] [Indexed: 01/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been optimal targets in the development of cell based therapies, but their limited availability and high death rate after transplantation remains a concern in clinical applications. This study describes novel effects of platelet rich clot releasate (PRCR) on rat bone marrow-derived MSCs (BM-MSCs), with the former driving a gene program, which can reduce apoptosis and promote the regenerative function of the latter in hostile microenvironments through enhancement of paracrine/autocrine factors. By using reverse transcription-polymerase chain reaction, immunofluorescence and western blot analyses, we showed that PRCR preconditioning could alleviate the apoptosis of BM-MSCs under stress conditions induced by hydrogen peroxide (H2O2) and serum deprivation by enhancing expression of vascular endothelial growth factor and platelet-derived growth factor (PDGF) via stimulation of the platelet-derived growth factor receptor (PDGFR)/PI3K/AKT/NF-κB signaling pathways. Furthermore, the effects of PRCR preconditioned GFP-BM-MSCs subcutaneously transplanted into rats 6 h after wound surgery were examined by histological and other tests from days 0-22 after transplantation. Engraftment of the PRCR preconditioned BM-MSCs not only significantly attenuated apoptosis and wound size but also improved epithelization and blood vessel regeneration of skin via regulation of the wound microenvironment. Thus, preconditioning with PRCR, which reprograms BM-MSCs to tolerate hostile microenvironments and enhance regenerative function by increasing levels of paracrine factors through PDGFR-α/PI3K/AKT/NF-κB signaling pathways would be a safe method for boosting the effectiveness of transplantation therapy in the clinic.
Collapse
Affiliation(s)
- Yan Peng
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Command, Guangzhou, People's Republic of China
- Southern Medical University, Guangzhou, People's Republic of China
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Sha Huang
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, People's Republic of China
| | - Yan Wu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical College, Mudanjiang, People's Republic of China
| | - Biao Cheng
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Command, Guangzhou, People's Republic of China
| | - Xiaohu Nie
- Southern Medical University, Guangzhou, People's Republic of China
| | - Hongwei Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Kui Ma
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Jiping Zhou
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Dongyun Gao
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Changjiang Feng
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Siming Yang
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaobing Fu
- Burns Institute, Trauma Center of Postgraduate Medical College, The First Affiliated Hospital, General Hospital of PLA, Beijing, People's Republic of China
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, People's Republic of China
| |
Collapse
|
23
|
Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 2013; 10:29-37. [PMID: 24322872 DOI: 10.4161/org.27405] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.
Collapse
Affiliation(s)
- Austin Nuschke
- Department of Pathology; University of Pittsburgh; Pittsburgh, PA USA
| |
Collapse
|
24
|
Jang HJ, Tsoyi K, Kim YM, Park EJ, Park SW, Kim HJ, Lee JH, Chang KC. (S)-1-α-naphthylmethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (CKD712), promotes wound closure by producing VEGF through HO-1 induction in human dermal fibroblasts and mouse skin. Br J Pharmacol 2013; 168:1485-96. [PMID: 23088309 DOI: 10.1111/bph.12031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Given the importance of VEGF and haem oxygenase (HO)-1 in wound healing, the present study tested the hypothesis that CKD712, a synthetic tetrahydroisoquinoline alkaloid, activated VEGF production through the induction of HO-1 in human dermal fibroblasts (HDFs) and in mouse skin to stimulate wound healing. EXPERIMENTAL APPROACH Using HDFs, the effects of CKD712 on the production of VEGF and migration were evaluated. The mechanisms responsible were investigated using various signal inhibitors and small interfering RNA techniques. The ability of CKD712 to promote wound healing was also investigated in full-thickness skin-wounded mice. KEY RESULTS CKD712 treatment of HDFs increased VEGF production and accelerated migration, which was antagonized by anti-VEGF antibodies. Both an AMPK inhibitor (compound C) and a HO-1 activity inhibitor (SnPPIX) but not inhibitors of MAPKs, PI3K and PKC reduced the production of VEGF by CKD712. Interestingly, SnPPIX inhibited HO-1 expression but not p-AMPK, whereas compound C inhibited both p-AMPK and HO-1 induction by CKD712. Moreover, CKD712 decreased HO-1 expression without affecting the expression of p-AMPK by siHO-1 transfection, but it failed to induce HO-1 in siAMPKα1-transfected cells, suggesting that AMPK is involved in HO-1 induction by CKD712 in HDFs. Also, CKD712 shortened the time of wound closure in an SnPPIX-sensitive manner in a full-thickness skin-wounded mouse model. CONCLUSION AND IMPLICATIONS CKD712 accelerated cutaneous wound healing, at least in part, by the production of VEGF through HO-1 induction in HDFs and mouse skin.
Collapse
Affiliation(s)
- Hwa Jin Jang
- Department of Pharmacology, School of Medicine Gyeongsang National University, Institute of Health Sciences, Jinju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang YC, Leung VYL, Lu WW, Luk KDK. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J 2013; 13:352-62. [PMID: 23340343 DOI: 10.1016/j.spinee.2012.12.005] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 07/08/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recent studies have demonstrated new therapeutic strategy using transplantation of mesenchymal stem cells (MSCs), especially bone marrow-derived MSCs (BM-MSCs), to preserve intervertebral disc (IVD) structure and functions. It is important to understand whether and how the MSCs survive and thrive in the hostile microenvironment of the degenerated IVD. Therefore, this review majorly examines how resident disc cells, hypoxia, low nutrition, acidic pH, mechanical loading, endogenous proteinases, and cytokines regulate the behavior of the exogenous MSCs. PURPOSE To review and summarize the effect of the microenvironment in biological characteristics of BM-MSCs for IVD regeneration; the presence of endogenous stem cells and the state of the art in the use of BM-MSCs to regenerate the IVD in vivo were also discussed. STUDY DESIGN Literature review. METHODS MEDLINE electronic database was used to search for articles concerning stem/progenitor cell isolation from the IVD, regulation of the components of microenvironment for MSCs, and MSC-based therapy for IVD degeneration. The search was limited to English language. RESULTS Stem cells are probably resident in the disc, but exogenous stem cells, especially BM-MSCs, are currently the most popular graft cells for IVD regeneration. The endogenous disc cells and the biochemical and biophysical components in the degenerating disc present a complicated microenvironment to regulate the transplanted BM-MSCs. Although MSCs regenerate the mildly degenerative disc effectively in the experimental and clinical trials, many underlying questions are in need of further investigation. CONCLUSIONS There has been a dramatic improvement in the understanding of potential MSC-based therapy for IVD regeneration. The use of MSCs for IVD degeneration is still at the stage of preclinical and Phase 1 studies. The effects of the disc microenvironment in MSCs survival and function should be closely studied for transferring MSC transplantation from bench to bedside successfully.
Collapse
Affiliation(s)
- Yong-Can Huang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, Queen Mary Hospital, The University of Hong Kong, 5/F Professor Block, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
26
|
Adipose stromal cells primed with hypoxia and inflammation enhance cardiomyocyte proliferation rate in vitro through STAT3 and Erk1/2. J Transl Med 2013; 11:39. [PMID: 23406316 PMCID: PMC3586350 DOI: 10.1186/1479-5876-11-39] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/02/2022] Open
Abstract
Background Experimental clinical stem cell therapy has been used for more than a decade to alleviate the adverse aftermath of acute myocardial infarction (aMI). The post-infarcted myocardial microenvironment is characterized by cardiomyocyte death, caused by ischemia and inflammation. These conditions may negatively affect administered stem cells. As postnatal cardiomyocytes have a poor proliferation rate, while induction of proliferation seems even more rare. Thus stimulation of their proliferation rate is essential after aMI. In metaplastic disease, the pro-inflammatory cytokine interleukin-6 (IL-6) has been identified as potent mediators of the proliferation rate. We hypothesized that IL-6 could augment the proliferation rate of (slow-)dividing cardiomyocytes. Methods To mimic the behavior of therapeutic cells in the post-infarct cardiac microenvironment, human Adipose Derived Stromal Cells (ADSC) were cultured under hypoxic (2% O2) and pro-inflammatory conditions (IL-1β) for 24h. Serum-free conditioned medium from ADSC primed with hypoxia and/or IL-1β was added to rat neonatal cardiomyocytes and adult cardiomyocytes (HL-1) to assess paracrine-driven changes in cardiomyocyte proliferation rate and induction of myogenic signaling pathways. Results We demonstrate that ADSC enhance the proliferation rate of rat neonatal cardiomyocytes and adult HL-1 cardiomyocytes in a paracrine fashion. ADSC under hypoxia and inflammation in vitro had increased the interleukin-6 (IL-6) gene and protein expression. Similar to conditioned medium of ADSC, treatment of rat neonatal cardiomyocytes and HL-1 with recombinant IL-6 alone also stimulated their proliferation rate. This was corroborated by a strong decrease of cardiomyocyte proliferation after addition of IL-6 neutralizing antibody to conditioned medium of ADSC. The stimulatory effect of ADSC conditioned media or IL-6 was accomplished through activation of both Janus Kinase-Signal Transducer and Activator of Transcription (JAK/STAT) and Mitogen-Activated Protein (MAP) kinases (MAPK) mitogenic signaling pathways. Conclusion ADSC are promising therapeutic cells for cardiac stem cell therapy. The inflammatory and hypoxic host post-MI microenvironment enhances the regenerative potential of ADSC to promote the proliferation rate of cardiomyocytes. This was achieved in paracrine manner, which warrants the development of ADSC conditioned medium as an “of-the-shelf” product for treatment of post-myocardial infarction complications.
Collapse
|
27
|
Zoja C, Garcia PB, Rota C, Conti S, Gagliardini E, Corna D, Zanchi C, Bigini P, Benigni A, Remuzzi G, Morigi M. Mesenchymal stem cell therapy promotes renal repair by limiting glomerular podocyte and progenitor cell dysfunction in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 2012; 303:F1370-81. [PMID: 22952284 DOI: 10.1152/ajprenal.00057.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We previously reported that in a model of spontaneously progressive glomerular injury with early podocyte loss, abnormal migration, and proliferation of glomerular parietal epithelial progenitor cells contributed to the formation of synechiae and crescentic lesions. Here we first investigated whether a similar sequence of events could be extended to rats with adriamycin (ADR)-induced nephropathy. As a second aim, the regenerative potential of therapy with bone marrow-derived mesenchymal stem cells (MSCs) on glomerular resident cells was evaluated. In ADR-treated rats, decrease of WT1(+) podocyte number due to apoptosis was associated with reduced glomerular expression of nephrin and CD2AP. As a consequence of podocyte injury, glomerular adhesions of the capillary tuft to the Bowman's capsule were observed, followed by crescent-like lesions and glomerulosclerosis. Cellular components of synechiae were either NCAM(+) parietal progenitor cells or nestin(+) podocytes. In ADR rats, repeated injections of MSCs limited podocyte loss and apoptosis and partially preserved nephrin and CD2AP. MSCs attenuated the formation of glomerular podocyte-parietal epithelial cell bridges and normalized the distribution of NCAM(+) progenitor cells along the Bowman's capsule, thereby reducing glomerulosclerosis. Finding that MSCs increased glomerular VEGF expression and limited microvascular rarefaction may explain the prosurvival effect by stem cell therapy. MSCs also displayed anti-inflammatory activity. Coculture of MSCs with ADR-damaged podocytes showed a functional role of stem cell-derived VEGF on prosurvival pathways. These data suggest that MSCs by virtue of their tropism for damaged kidney and ability to provide a local prosurvival environment may represent a useful strategy to preserve podocyte viability and reduce glomerular inflammation and sclerosis.
Collapse
Affiliation(s)
- Carla Zoja
- Mario Negri Institute for Pharmacological Research, Centro Anna Maria Astori, Science and Technology Park Km Rosso, Via Stezzano, 87-24126 Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012; 10:244-58. [PMID: 22385653 DOI: 10.1016/j.stem.2012.02.005] [Citation(s) in RCA: 631] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The broad repertoire of secreted trophic and immunomodulatory cytokines produced by mesenchymal stem cells (MSCs), generally referred to as the MSC secretome, has considerable potential for the treatment of cardiovascular disease. However, harnessing this MSC secretome for meaningful therapeutic outcomes is challenging due to the limited control of cytokine production following their transplantation. This review outlines the current understanding of the MSC secretome as a therapeutic for treatment of ischemic heart disease. We discuss ongoing investigative directions aimed at improving cellular activity and characterizing the secretome and its regulation in greater detail. Finally, we provide insights on and perspectives for future development of the MSC secretome as a therapeutic tool.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | | | | | | |
Collapse
|
29
|
Pretreating mesenchymal stem cells with interleukin-1β and transforming growth factor-β synergistically increases vascular endothelial growth factor production and improves mesenchymal stem cell-mediated myocardial protection after acute ischemia. Surgery 2011; 151:353-63. [PMID: 22088815 DOI: 10.1016/j.surg.2011.09.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) improve postischemic myocardial function in part through their secretion of growth factors such as vascular endothelial growth factor (VEGF). Pretreating MSCs with various cytokines or small molecules can improve VEGF secretion and MSC-mediated cardioprotection. However, whether 1 cytokine can potentiate the effect of another cytokine in MSC pretreatment to achieve a synergistic effect on VEGF production and cardioprotection is poorly studied. METHODS MSCs were treated with interleukin (IL)-1β and/or transforming growth factor (TGF)-β1 for 24 hours before experiments. VEGF production was determined by enzyme-linked immunosorbent assay. Isolated hearts from adult male Sprague-Dawley rats were subjected to 15 minutes of equilibration, 25 minutes of ischemia, and 40 minutes reperfusion. Hearts (n = 5-7 per group) were randomly infused with vehicle, untreated MSCs, or MSCs pretreated with IL-1β and/or TGF-β1. Specific inhibitors were used to delineate the roles of p38 mitogen-activated protein kinase (MAPK) and SMAD3 in IL-1β- and TGF-β1-mediated stimulation of MSCs. RESULTS MSCs cotreated with IL-1β and TGF-β1 exhibited synergistically increased VEGF secretion, and they greatly improved postischemic myocardial functional recovery. Ablation of p38 MAPK and SMAD3 activation with specific inhibitors negated both IL-1β- and TGF-β1-mediated VEGF production in MSCs and the ability of these pretreated MSCs to improve myocardial recovery after ischemia. CONCLUSION Pretreating MSCs with 2 cytokines may be useful to fully realize the potential of cell-based therapies for ischemic tissues.
Collapse
|
30
|
What's New In Shock, May 2011? Shock 2011; 35:437-9. [DOI: 10.1097/shk.0b013e31821555cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|