1
|
Liu H, Li JF, Zhang LM, Wang HH, Wang XQ, Liu GQ, Du HB, Jin YJ, Xing LQ, Zhao ZG, Niu CY. POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH IMPAIRS SPLENIC DENDRITIC CELL FUNCTION IN MICE. Shock 2023; 59:256-266. [PMID: 36427100 DOI: 10.1097/shk.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Dendritic cell (DC)-mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post-hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock-induced immunosuppression through the impairment of DC function and maturation.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | | | | - Xu-Qing Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Gui-Qing Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | | - Li-Qiang Xing
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | |
Collapse
|
2
|
Kelestemur T, Nemeth Z, Pacher P, Antonioli L, Haskó G. A 2A ADENOSINE RECEPTORS REGULATE MULTIPLE ORGAN FAILURE AFTER HEMORRHAGIC SHOCK IN MICE. Shock 2022; 58:321-331. [PMID: 36018304 PMCID: PMC10292675 DOI: 10.1097/shk.0000000000001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Trauma hemorrhagic shock (T/HS) is a clinical condition that causes multiple organ failure that needs rapid intervention. Restricted oxygen at the cellular level causes inflammation and subsequent cell death. Adenosine triphosphate is the universal intracellular energy currency and an important extracellular inflammatory signaling molecule. Adenosine, an endogenous nucleotide formed as a result of the breakdown of adenosine triphosphate, is also released during T/HS. Adenosine binds to four G protein-coupled receptors (A 1R , A 2a , A 2b , A 3R ) called adenosine receptors or P1 receptors. In the present study, we evaluated the effect of activation, inactivation, and genetic absence of A2aR (A2aR -/- mice) on T/HS-induced multiple organ failure. Wild-type mice were pretreated (30 min before shock induction) with an agonist or antagonist and then subjected to T/HS by withdrawing arterial blood and maintaining the blood pressure between 28 and 32 mm Hg. A2aR -/- mice were subjected to T/HS in the absence of pharmacologic treatment. Neutrophil sequestration was assessed by detecting myeloperoxidase, and Evans blue dye (EBD) method was used to analyze lung permeability. Blood and lung inflammatory cytokine levels were determined by sandwich enzyme-linked immunosorbent assay. The liver enzymes aspartate aminotransferase and alanine aminotransferase were determined spectrophotometrically from plasma. Activation of the apoptotic cascade was evaluated using a mouse apoptosis array. Our results demonstrate that the selective A2aR agonist CGS21680 decreases lung neutrophil sequestration, lung proinflammatory cytokines IL-6 and TNF-α, and bronchoalveolar lavage EBD. Pretreatment with the selective antagonist ZM241385 and genetic blockade in A2aR -/- mice increased neutrophil sequestration, proinflammatory cytokine levels, and bronchoalveolar lavage fluid EBD. The myeloperoxidase level in the lung was also increased in A2aR -/- mice. We observed that antiapoptotic markers decreased significantly with the absence of A2aR in the lung and spleen after T/HS. In conclusion, our data demonstrate that activation of A2aR regulates organ injury and apoptosis in the setting of T/HS.
Collapse
Affiliation(s)
- Taha Kelestemur
- Department of Anesthesiology, Columbia University, NY 10032, USA
- Department of Physiology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkiye
| | - Zoltan Nemeth
- Department of Anesthesiology, Columbia University, NY 10032, USA
- Department of Surgery, Morristown Medical Center, Morristown, NJ 07960, USA
| | - Pal Pacher
- Department of Surgery, Morristown Medical Center, Morristown, NJ 07960, USA
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - György Haskó
- Department of Anesthesiology, Columbia University, NY 10032, USA
| |
Collapse
|
3
|
Gihring A, Gärtner F, Schirmer M, Wabitsch M, Knippschild U. Recent Developments in Mouse Trauma Research Models: A Mini-Review. Front Physiol 2022; 13:866617. [PMID: 35574493 PMCID: PMC9101050 DOI: 10.3389/fphys.2022.866617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
The urgency to investigate trauma in a controlled and reproducible environment rises since multiple trauma still account for the most deaths for people under the age of 45. The most common multiple trauma include head as well as blunt thorax trauma along with fractures. However, these trauma remain difficult to treat, partially because the molecular mechanisms that trigger the immediate immune response are not fully elucidated. To illuminate these mechanisms, investigators have used animal models, primarily mice as research subjects. This mini review aims to 1) emphasize the importance of the development of clinically relevant murine trauma research, 2) highlight and discuss the existing conflict between simulating clinically relevant situations and elucidating molecular mechanisms, 3) describe the advantages and disadvantages of established mouse trauma models developed to simulate clinically relevant situations, 4) summarize and list established mouse models in the field of trauma research developed to simulate clinically relevant situations.
Collapse
Affiliation(s)
- Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Melanie Schirmer
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Uwe Knippschild,
| |
Collapse
|
4
|
Traumatic brain injury and hemorrhage in a juvenile rat model of polytrauma leads to immunosuppression and splenic alterations. J Neuroimmunol 2021; 361:577723. [PMID: 34619426 DOI: 10.1016/j.jneuroim.2021.577723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a common cause of morbidity and mortality. We have previously shown that TBI with a concurrent extra-cranial injury reliably leads to post-injury suppression of the innate immune system, but the impact of this injury on the adaptive immune system is unknown. We present data showing that combined injury reduced immune response as assayed in both blood and spleen samples and that these changes parallel apoptosis in the spleen. To assess the clinical relevance of these changes, we examined lungs for spontaneous bacterial colonization. METHODS For these studies, prepubescent (28 day old) rats were injured using a controlled cortical impact model and then 25% blood volume removal by arteriotomy, and injured animals were compared with sham injured animals. Blood and spleen samples at post-injury day 1 were incubated with or without immunostimulant and examined for IFN-γ production using an Eli-Spot assay. Spleen samples were also examined for apoptosis using Annexin V staining, and lungs were harvested and plated on blood agar to examine for spontaneous bacterial colonization. RESULTS Stimulations of whole blood and spleen samples with phorbol 12-myristate 13-acetate/ionomycin (PMA/I) at post-injury day 1 were associated with significant decreases in IFN-γ-positive cells/million in injured animals. Stimulation of whole blood with either PMA/I or pokeweed mitogen led to reduced tumor necrosis factor alpha production. Spleen from injured animals showed a marked increase in apoptosis. Lung samples showed a 300% increase in colonies per plate in injured animals. CONCLUSIONS These data suggest that the combined injury can lead to adaptive immunosuppression, and our findings further suggest a potential role for the spleen in altering leukocyte function following injury.
Collapse
|
5
|
Li Y, Du HB, Jiang LN, Wang C, Yin M, Zhang LM, Zhang H, Zhao ZA, Liu ZK, Niu CY, Zhao ZG. Stellate Ganglion Block Improves the Proliferation and Function of Splenic CD4 + T Cells Through Inhibition of Posthemorrhagic Shock Mesenteric Lymph-Mediated Autophagy. Inflammation 2021; 44:2543-2553. [PMID: 34533673 DOI: 10.1007/s10753-021-01523-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α-induced protein 8-like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.
Collapse
Affiliation(s)
- Ying Li
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Chen Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Meng Yin
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China
| | - Zhan-Kuang Liu
- Affiliated First Hospital, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China.
- Basic Medical College, Hebei Medical University, ZhongShan East Road 361, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, People's Republic of China.
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang and Zhangjiakou, Diamond South Road 11, Zhangjiakou, Hebei, People's Republic of China.
| |
Collapse
|
6
|
Buchmann Godinho D, da Silva Fiorin F, Schneider Oliveira M, Furian AF, Rechia Fighera M, Freire Royes LF. The immunological influence of physical exercise on TBI-induced pathophysiology: Crosstalk between the spleen, gut, and brain. Neurosci Biobehav Rev 2021; 130:15-30. [PMID: 34400178 DOI: 10.1016/j.neubiorev.2021.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a non-degenerative and non-congenital insult to the brain and is recognized as a global public health problem, with a high incidence of neurological disorders. Despite the causal relationship not being entirely known, it has been suggested that multiorgan inflammatory response involving the autonomic nervous system and the spleen-gut brain axis dysfunction exacerbate the TBI pathogenesis in the brain. Thus, applying new therapeutic tools, such as physical exercise, have been described in the literature to act on the immune modulation induced by brain injuries. However, there are caveats to consider when interpreting the effects of physical exercise on this neurological injury. Given the above, this review will highlight the main findings of the literature involving peripheral immune responses in TBI-induced neurological damage and how changes in the cellular metabolism of the spleen-gut brain axis elicited by different protocols of physical exercise alter the pathophysiology induced by this neurological injury.
Collapse
Affiliation(s)
- Douglas Buchmann Godinho
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós-Graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando da Silva Fiorin
- Programa de Pós-Graduação em Neuroengenharia, Instituto Internacional de Neurociências Edmond e Lily Safra, Instituto Santos Dumont, Macaíba, RN, Brazil
| | - Mauro Schneider Oliveira
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Flavia Furian
- Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele Rechia Fighera
- Laboratório de Bioquímica do Exercício, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Centro de Ciências da Saúde, Departamento de Clínica Médica e Pediatria, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
7
|
Yang X, Yang L, Pan D, Liu H, Xia H, Wang S, Sun G. Wheat peptide protects against ethanol-induced gastric mucosal damage through downregulation of TLR4 and MAPK. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
8
|
Engagement of Posthemorrhagic Shock Mesenteric Lymph on CD4 + T Lymphocytes In Vivo and In Vitro. J Surg Res 2020; 256:220-230. [PMID: 32711179 DOI: 10.1016/j.jss.2020.06.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/27/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Immune dysfunction is associated with posthemorrhagic shock mesenteric lymph (PHSML) return. To determine the proliferation and cytokine production capacity of CD4+ T lymphocytes, the effect of PHSML drainage on spleen CD4+ T lymphocytes in a mouse model of hemorrhagic shock was assessed. METHODS The normal spleen CD4+ T lymphocytes were in vitro incubated with either drained normal mesenteric lymph (NML), PHSML during hypotension (PHSML-H), or PHSML from 0 h to 3 h after resuscitation (PHSML-R) to verify direct proliferation effects of PHSML. RESULTS Hemorrhagic shock led to reduction of proliferation and mRNA expression of interleukin 2 (IL-2) and IL-2 receptor in CD4+ T lymphocytes and to decrease in IL-2 and interferon γ (IFN-γ) levels in supernatants. In contrast, the interleukin-4 levels were increased. These effects were reversed by PHSML drainage. Moreover, NML incubation promoted CD4+ T lymphocyte proliferation, whereas both PHSML-H and PHSML-R treatment had a biphasic effects on CD4+ T lymphocyte proliferation, exhibiting an enhanced effect at early stages and an inhibitory effect at later stages. Compared with NML, PHSML-H increased IL-2 expression at 12 h, but decreased expression of both IL-2 and IFN-γ at 24 h. By contrast, PHSML-R induced significant increases in IL-2 and IFN-γ levels at 24 h. Interleukin-4 expression in CD4+ T lymphocytes was reduced at 12 h, but augmented at 24 h after incubation with either PHSML-H or PHSML-R. CONCLUSIONS The results indicate that PHSML has a direct inhibitory effect on CD4+ T lymphocyte proliferation that induces an inflammatory response, which is associated with cellular immune dysfunction.
Collapse
|
9
|
Zhang H, Zhai JY, Du HB, Zhang LM, Li LF, Bian AQ, Jiang LN, Zhao ZG. Mesenteric lymph drainage alleviates hemorrhagic shock-induced spleen injury and inflammation. Acta Cir Bras 2019; 34:e201900903. [PMID: 31778525 PMCID: PMC6887095 DOI: 10.1590/s0102-865020190090000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To investigate the effect of mesenteric lymph drainage on the spleen injury and the expressions of inflammatory cytokines in splenic tissue in mice following hemorrhagic shock. METHODS Male C57 mice were randomly divided into the sham shock, shock and shock+drainage groups. The mice in both shock and shock+drainage groups suffered femoral artery bleeding, maintained mean arterial pressure (MAP) of 40±2 mmHg for 90 min, and were resuscitated. And mesenteric lymph drainage was performed in the shock+drainage group at the time of resuscitation. After three hours of resuscitation, the splenic tissues were harvested for the histological observation and protein and mRNA expression analysis of cytokines. RESULTS The spleen in the shock group revealed a significantly structural damage and increased mRNA expressions of MyD88 and TRAF6 and protein expressions of TIPE2, MyD88, TRIF and TRAF3 compared to the sham group. By contrast, the splenic pathological injury in the shock+drainage group was alleviated significantly, and the mRNA and protein expressions of TIPE2, MyD88, TRIF, TRAF3 and TRAF6 were significantly lower than those in the shock group. CONCLUSION These results indicate that post-hemorrhagic shock mesenteric lymph drainage alleviates hemorrhagic shock-induced spleen injury and the expressions of inflammatory cytokines.
Collapse
Affiliation(s)
- Hong Zhang
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Acquisition, analysis and interpretation of data; technical procedures; statistics analysis; histopathological examinations; manuscript writing
| | - Jia-Yi Zhai
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Acquisition of data, technical procedures, statistics analysis
| | - Hui-Bo Du
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Technical procedures
| | - Li-Min Zhang
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Technical procedures
| | - Lin-Feng Li
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Technical procedures
| | - An-Qi Bian
- MB, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Technical procedures
| | - Li-Na Jiang
- PhD, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Conception and design of the study, analysis and interpretation of data, technical procedures, critical revision
| | - Zi-Gang Zhao
- PhD, Institute of Microcirculation, Hebei North University, Zhangjiakou, China. Conception and design of the study, analysis and interpretation of data, manuscript preparation, critical revision, final approval
| |
Collapse
|
10
|
Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M. Challenge to the Intestinal Mucosa During Sepsis. Front Immunol 2019; 10:891. [PMID: 31114571 PMCID: PMC6502990 DOI: 10.3389/fimmu.2019.00891] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a complex of life-threating organ dysfunction in critically ill patients, with a primary infectious cause or through secondary infection of damaged tissues. The systemic consequences of sepsis have been intensively examined and evidences of local alterations and repercussions in the intestinal mucosal compartment is gradually defining gut-associated changes during sepsis. In the present review, we focus on sepsis-induced dysfunction of the intestinal barrier, consisting of an increased permeability of the epithelial lining, which may facilitate bacterial translocation. We discuss disturbances in intestinal vascular tonus and perfusion and coagulopathies with respect to their proposed underlying molecular mechanisms. The consequences of enzymatic responses by pancreatic proteases, intestinal alkaline phosphatases, and several matrix metalloproteases are also described. We conclude our insight with a discussion on novel therapeutic interventions derived from crucial aspects of the gut mucosal dynamics during sepsis.
Collapse
Affiliation(s)
- Felix Haussner
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Chakraborty S, Karasu E, Huber-Lang M. Complement After Trauma: Suturing Innate and Adaptive Immunity. Front Immunol 2018; 9:2050. [PMID: 30319602 PMCID: PMC6165897 DOI: 10.3389/fimmu.2018.02050] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
The overpowering effect of trauma on the immune system is undisputed. Severe trauma is characterized by systemic cytokine generation, activation and dysregulation of systemic inflammatory response complementopathy and coagulopathy, has been immensely instrumental in understanding the underlying mechanisms of the innate immune system during systemic inflammation. The compartmentalized functions of the innate and adaptive immune systems are being gradually recognized as an overlapping, interactive and dynamic system of responsive elements. Nonetheless the current knowledge of the complement cascade and its interaction with adaptive immune response mediators and cells, including T- and B-cells, is limited. In this review, we discuss what is known about the bridging effects of the complement system on the adaptive immune system and which unexplored areas could be crucial in understanding how the complement and adaptive immune systems interact following trauma.
Collapse
Affiliation(s)
- Shinjini Chakraborty
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Ebru Karasu
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Abstract
Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.
Collapse
|
13
|
Xiang B, Xiao C, Shen T, Li X. Anti-inflammatory effects of anisalcohol on lipopolysaccharide-stimulated BV2 microglia via selective modulation of microglia polarization and down-regulation of NF-κB p65 and JNK activation. Mol Immunol 2018; 95:39-46. [DOI: 10.1016/j.molimm.2018.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023]
|
14
|
BLOCKADE OF ENDOTHELIAL GROWTH FACTOR, ANGIOPOIETIN-2, REDUCES INDICES OF ARDS AND MORTALITY IN MICE RESULTING FROM THE DUAL-INSULTS OF HEMORRHAGIC SHOCK AND SEPSIS. Shock 2016; 45:157-65. [PMID: 26529660 DOI: 10.1097/shk.0000000000000499] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have demonstrated hemorrhagic shock "priming" for the development of indirect acute respiratory distress syndrome (iARDS) in mice following subsequent septic challenge, and show pathology characteristic of patients with iARDS, including increased lung microvascular permeability and arterial PO2/FI02 reduced to levels comparable to mild/moderate ARDS during the 48 h following hemorrhage. Loss of endothelial cell (EC) barrier function is a major component in the development of iARDS. EC growth factors, Angiopoietin (Ang)-1 and 2, maintain vascular homeostasis via tightly regulated competitive interaction with tyrosine kinase receptor, Tie2, expressed on ECs. Ang-2/Tie2 binding, in contrast to Ang-1, is believed to produce vessel destabilization, pulmonary leakage, and inflammation. Recent clinical findings from our trauma/surgical intensive care units and others have reported elevated Ang-2 in the plasma from patients that develop ARDS. We have previously described similarly elevated Ang-2 in plasma and lung tissue in our shock/sepsis model for the development of iARDS, and demonstrated effective reduction in indices of inflammation and lung tissue injury following siRNA inhibition of Ang-2 protein synthesis. In this study we show that Ang-2 in lung tissue and plasma spikes following hemorrhage (priming) and remain elevated at sepsis induction. In addition, that transient inhibition of Ang-2 function immediately following hemorrhage, suppressing priming, but not following sepsis, impacts the development of iARDS in our model. Our data demonstrate that selective temporal blockade of Ang-2 function following hemorrhagic shock priming significantly improved PO2/FIO2, decreased lung protein leak and indices of inflammation, and improved 10-day survival in our murine model for the development iARDS.
Collapse
|
15
|
Copotoiu R, Cinca E, Collange O, Levy F, Mertes PM. [Pathophysiology of hemorragic shock]. Transfus Clin Biol 2016; 23:222-228. [PMID: 27567990 DOI: 10.1016/j.tracli.2016.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
This review addresses the pathophysiology of hemorrhagic shock, a condition produced by rapid and significant loss of intravascular volume, which may lead to hemodynamic instability, decreases in oxygen delivery, decreased tissue perfusion, cellular hypoxia, organ damage, and death. The initial neuroendocrine response is mainly a sympathetic activation. Haemorrhagic shock is associated altered microcirculatory permeability and visceral injury. It is also responsible for a complex inflammatory response associated with hemostasis alteration.
Collapse
Affiliation(s)
- R Copotoiu
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - E Cinca
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - O Collange
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - F Levy
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France
| | - P-M Mertes
- Service d'anesthésie-réanimation chirurgicale, hôpitaux universitaires de Strasbourg, nouvel hôpital civil, 1, place de l'Hôpital, BP 426, 67091 Strasbourg cedex, France.
| |
Collapse
|
16
|
Zhang YP, Hao XQ, Zhang LM, Tian YT. Enhanced cyclooxygenase-2 activity leads to intestinal dysmotility following hemorrhagic shock. Acta Cir Bras 2016; 30:838-43. [PMID: 26735056 DOI: 10.1590/s0102-865020150120000008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023] Open
Abstract
PURPOSE To test whether hemorrhagic shock (HS) increases the Cyclooxygenase-2 (COX-2) expression in the intestine and whether this enhanced COX-2 expression mediates the intestinal dysmotility after HS. METHODS Male Wistar rats were randomly divided into HS sham group and HS group. At 180 min following HS establishment, the duodenum samples were harvested to assess the motility function, protein expression of COX-2 and the downstream products of COX-2, prostaglandins. RESULTS Examination of motility function ex vivo showed that the contractile response to acetylcholine of smooth muscle strips of rats subjected to HS was significantly suppressed. A COX-2 inhibitor, NS-398, abolished this depressed contractile response after HS. Western blotting revealed an increased protein expression of COX-2 in intestinal tissues of HS rats. Immunohistochemical examination indicated that intestine tissues of HS rats were manifested by part of villous expansion and disruption, a large amount of COX-2 positive cells appearance in lamina propria and submucosa. Furthermore, the contents of prostaglandin E2 was significantly increased in intestinal tissues of HS rats. CONCLUSION The enhanced COX-2/ prostaglandin E2 involves in the hemorrhagic shock induced intestinal dysmotility.
Collapse
Affiliation(s)
- Yu-Ping Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Xiu-Qing Hao
- Department of Pathology, First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Ting Tian
- School of Basic Medical Sciences, Hebei North University, Zhangjiakou, China
| |
Collapse
|
17
|
Zhang R, He GZ, Wang YK, Zhou KG, Ma EL. Omega-3 polyunsaturated fatty acids inhibit the increase in cytokines and chemotactic factors induced in vitro by lymph fluid from an intestinal ischemia-reperfusion injury model. Nutrition 2014; 31:508-14. [PMID: 25701342 DOI: 10.1016/j.nut.2014.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 08/17/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To investigate the active factors and the intervention effect of ω-3 polyunsaturated fatty acids (PUFAs) during intestinal ischemia-reperfusion (I/R) injury, which causes the inflammation of monocytes-macrophages cultured in lymph fluid and stimulated with ω-3 PUFAs. METHODS Forty-eight Sprague-Dawley male rats were randomly divided into the following two groups: A. (N + D) group and B. (I/R + D) group. The rats in the (N + D) group were drained of lymph for 180 min; the rats in the (I/R + D) group were subjected to 60 min ischemia by clamping the superior mesenteric artery followed by 120 min reperfusion and 180 min of lymph draining. Lymph fluid from each group was further divided into 4 subgroups, respectively: lymph group (A1, B1); eicosopentaenoic acid (EPA)-treated group (A2, B2); EPA + docosahexaeonic acid (DHA)-treated group (A3, B3); and DHA-treated group (A4, B4), then cultured monocyte-macrophage cell line. RESULTS The levels of tumor necrosis factor-α, interleukin (IL)-1 β, IL-6, soluble cell adhesion molecule-1, chemotactic factors macrophage chemoattractant protein-1, macrophage inflammatory protein-2, and high mobility group box protein 1 in the B1 group were significantly higher than in the A1 group. Importantly, addition of EPA, EPA + DHA, and DHA to the culture media significantly reduced the levels of the above-mentioned factors. Cell stimulation with EPA, EPA + DHA, and DHA also significantly decreased the expression of Toll-like receptor 4, nuclear factor-κB p65, macrophage chemoattractant protein-1, and macrophage inflammatory protein-2 with the combined treatment of EPA and DHA showing the strongest effect. CONCLUSIONS The factors induced in lymph during intestinal I/R injury can cause inflammation in vitro. These data provide in vitro evidence that ω-3 PUFAs provide a protective effect by reducing the inflammatory response caused by intestinal I/R lymph. Moreover, the synergism of EPA and DHA had the greatest effect, which is possibly mediated through Toll-like receptor 4 and nuclear factor-κB p65.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gui-zhen He
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yu-kang Wang
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-guo Zhou
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - En-ling Ma
- Department of Parenteral and Enteral Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Zhang YM, Zhang SK, Cui NQ. Intravenous infusion of mesenteric lymph from severe intraperitoneal infection rats causes lung injury in healthy rats. World J Gastroenterol 2014; 20:4771-4777. [PMID: 24782631 PMCID: PMC4000515 DOI: 10.3748/wjg.v20.i16.4771] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/24/2014] [Accepted: 03/05/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether mesenteric lymph from rats with severe intraperitoneal infection (SII) induces lung injury in healthy rats.
METHODS: Twenty adult male specific pathogen-free Wistar rats were divided into two groups. Animals in the SII group received intraperitoneal injection of Escherichia coli (E. coli) at a dose of 0.3 mL/100 g. Control rats underwent the same procedure, but were injected with normal saline rather than E. coli. We ligated and drained the mesenteric lymphatic vessels and collected the mesenteric lymph. Mesenteric lymph collected from SII or control rats was infused intravenously into male healthy rats at a rate of 1 mL/h for 4 h. At the end of the infusion, all rats were sacrificed. Lungs were removed and examined histologically, and wet-to-dry weight (W/D) ratio and myeloperoxidase (MPO) activity were determined. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the levels of the proinflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6. We performed Western blot to investigate the activation of Toll-like receptor (TLR)-4, and nuclear factor (NF)-κB p65.
RESULTS: Compared with the control infusion group, there were obvious pathological changes in the SII group. The W/D ratio was significantly increased in the SII compared to control infusion group (5.86 ± 0.06 vs 5.37 ± 0.06, P < 0.01). MPO activity significantly increased in the SII infusion rats with a mean level of 0.86 ± 0.02 U/g compared to 0.18 ± 0.05 U/g in the control group (P < 0.01). The concentrations of TNF-α and IL-6 were significantly increased in the SII infusion group. The concentration of TNF-α was significantly increased in the SII infusion rats compared to control infusion rats (2104.46 ± 245.91 vs 1475.13 ± 137.82 pg/mL, P < 0.01). The concentration of IL-6 was significantly increased in the SII infusion rats with a mean level of 50.56 ± 2.85 pg/mL compared to 43.29 ± 2.02 pg/mL (P < 0.01). The expression levels of TLR-4 (7496.68 ± 376.43 vs 4589.02 ± 233.16, P < 0.01) and NF-κB (8722.19 ± 323.96 vs 6498.91 ± 338.76, P < 0.01) were significantly increased in the SII infusion group compared to the control infusion group. The infusion of SII lymph, but not control lymph, caused lung injury.
CONCLUSION: The results indicate that SII lymph is sufficient to induce acute lung injury.
Collapse
|
19
|
What’s New in Shock? June 2013. Shock 2013; 39:465-6. [DOI: 10.1097/shk.0b013e318296757a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|