1
|
Liewhiran C, Punginsang M, Inyawilert K, Siriwalai M, Wisitsoraat A. Selectivity toward H2S against various gaseous disease markers in exhaled breath of flame-produced CuOx-loaded SnO2 nanosensors. SENSORS AND ACTUATORS B: CHEMICAL 2025; 424:136856. [DOI: 10.1016/j.snb.2024.136856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Iitaka S, Kuroda A, Narita T, Hatakeyama H, Morishita M, Ungkulpasvich U, Hirotsu T, di Luccio E, Yagi K, Seto Y. Evaluation of N-NOSE as a surveillance tool for recurrence in gastric and esophageal cancers: a prospective cohort study. BMC Cancer 2024; 24:1544. [PMID: 39695429 PMCID: PMC11656990 DOI: 10.1186/s12885-024-13327-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE Early detection of recurrent gastric and esophageal cancers remains a critical challenge. Innovative and non-invasive cancer screening technologies, such as N-NOSE, can improve early detection. N-NOSE is a urine-based scent test that leverages the olfactory abilities of the nematode C. elegans. For the first time, this prospective study evaluates the efficacy of the N-NOSE chemotaxis index as a novel biomarker for postoperative surveillance and recurrence in patients with upper gastrointestinal cancers. METHODS A two-year prospective cohort study was conducted at The University of Tokyo Hospital, involving 40 patients with gastric and esophageal cancers. Urine samples were collected pre- and postoperatively and analysed using the N-NOSE technique. RESULTS In cases of recurrence with vascular invasion, the chemotaxis index at 100-fold urine dilution was significantly elevated compared to the non-recurrence group. CONCLUSION This study suggests the potential of N-NOSE as an effective follow-up tool for patients with upper gastrointestinal cancer, particularly those with vascular invasion. While N-NOSE has been validated to distinguish between cancer and non-cancer, and its performance compared to traditional markers has been proven, it has not been studied for recurrence. Our data highlights, for the first time, the capability of N-NOSE in the surveillance of cancer recurrence.
Collapse
Affiliation(s)
- Sayuri Iitaka
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akihiro Kuroda
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tomonori Narita
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | | | | | | | | | | | - Koichi Yagi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
- Present address: National Cancer Center Hospital, Tokyo, 104-0045, Japan.
| |
Collapse
|
3
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
4
|
Liu Q, Li S, Mao M, Gui X, Zhang Y, Zhao Y, Yu L, Zhang X, Zhang Y. Serum-volatile organic compounds in the diagnostics of esophageal cancer. Sci Rep 2024; 14:17722. [PMID: 39085271 PMCID: PMC11291479 DOI: 10.1038/s41598-024-67818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
The early diagnosis of esophageal cancer (EC) is extremely challenging due to a lack of effective diagnostic methods. The study presented herein aims to assess whether serum volatile organic compounds (VOCs) could be utilised as emerging diagnostic biomarkers for EC. Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect VOCs in the serum samples of 55 patients with EC, with samples from 84 healthy controls (HCs) patients analysed as a comparison. All machine learning analyses were based on data from serum VOCs obtained by GC-IMS. A total of 33 substance peak heights were detected in all patient serum samples. The ROC analysis revealed that four machine learning models were effective in facilitating the diagnosis of EC. In addition, the random forests model for 5 VOCs had an AUC of 0.951, with sensitivities and specificities of 94.1 and 96.0%, respectively.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mai Mao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinru Gui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China.
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
5
|
Song Y, Xu T. Letter to the editor for the article "Pilot study for bladder cancer detection with volatile organic compounds using ion mobility spectrometry: a novel urine-based approach". World J Urol 2024; 42:430. [PMID: 39037478 DOI: 10.1007/s00345-024-05129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Affiliation(s)
- Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
6
|
Zheng W, Min Y, Pang K, Wu D. Sample Collection and Processing in Volatile Organic Compound Analysis for Gastrointestinal Cancers. Diagnostics (Basel) 2024; 14:1563. [PMID: 39061700 PMCID: PMC11276357 DOI: 10.3390/diagnostics14141563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Volatile organic compounds have drawn significant attention in recent years as a novel tool for non-invasive detection of a wide range of diseases, including gastrointestinal cancers, for which the need for effective, affordable, and non-invasive screening methods is substantial. Sample preparation is a fundamental step that greatly influences the quality of results and the feasibility of wide-range applications. This review summarizes sampling methods used in studies aiming at testing the diagnostic value of volatile organic compounds in gastrointestinal cancers, discussing in detail some of the recent advancements in automated sampling techniques. Finally, we propose some directions in which sample collection and processing can improve for VOC analysis to be popularized in clinical settings.
Collapse
Affiliation(s)
- Weiyang Zheng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yiyang Min
- 8-yr M.D. Program, Peking Union Medical College, Beijing 100730, China
| | - Ke Pang
- 8-yr M.D. Program, Peking Union Medical College, Beijing 100730, China
| | - Dong Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
7
|
Zhou J, Ge D, Chu Y, Liu Y, Lu Y, Chu Y. Distinguish Esophageal Cancer Cells through VOCs Induced by Methionine Regulation. J Proteome Res 2024; 23:2552-2560. [PMID: 38864484 DOI: 10.1021/acs.jproteome.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.
Collapse
Affiliation(s)
- Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| |
Collapse
|
8
|
Xie X, Yu W, Wang L, Yang J, Tu X, Liu X, Liu S, Zhou H, Chi R, Huang Y. SERS-based AI diagnosis of lung and gastric cancer via exhaled breath. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124181. [PMID: 38527410 DOI: 10.1016/j.saa.2024.124181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Distinct diagnosis between Lung cancer (LC) and gastric cancer (GC) according to the same biomarkers (e.g. aldehydes) in exhaled breath based on surface-enhanced Raman spectroscopy (SERS) remains a challenge in current studies. Here, an accurate diagnosis of LC and GC is demonstrated, using artificial intelligence technologies (AI) based on SERS spectrum of exhaled breath in plasmonic metal organic frameworks nanoparticle (PMN) film. In the PMN film with optimal structure parameters, 1780 SERS spectra are collected, in which 940 spectra come from healthy people (n = 49), another 440 come from LC patients (n = 22) and the rest 400 come from GC patients (n = 8). The SERS spectra are trained through artificial neural network (ANN) model with the deep learning (DL) algorithm, and the result exhibits a good identification accuracy of LC and GC with an accuracy over 89 %. Furthermore, combined with information of SERS peaks, the data mining in ANN model is successfully employed to explore the subtle compositional difference in exhaled breath from healthy people (H) and L/GC patients. This work achieves excellent noninvasive diagnosis of multiple cancer diseases in breath analysis and provides a new avenue to explore the feature of disease based on SERS spectrum.
Collapse
Affiliation(s)
- Xin Xie
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Wenrou Yu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Li Wang
- School of Optoelectronics Engineering, Chongqing University, Chongqing 401331, China
| | - Junjun Yang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Xiaobin Tu
- Department of Oncology and Department of Hematology, Chongqing Wulong People's Hospital, Chongqing 408500, China
| | - Xiaochun Liu
- Department of Oncology and Department of Hematology, Chongqing Wulong People's Hospital, Chongqing 408500, China
| | - Shihong Liu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Han Zhou
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Runwei Chi
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China
| | - Yingzhou Huang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Chen J, Ji Y, Liu Y, Cen Z, Chen Y, Zhang Y, Li X, Li X. Exhaled volatolomics profiling facilitates personalized screening for gastric cancer. Cancer Lett 2024; 590:216881. [PMID: 38614384 DOI: 10.1016/j.canlet.2024.216881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Gastric cancer (GC) is one of the most fatal cancers, characterized by non-specific early symptoms and difficulty in detection. However, there are no valid non-invasive screening tools available for GC. Here we establish a non-invasive method that employs exhaled volatolomics and ensemble learning to detect GC. We developed a comprehensive mass spectrometry-based procedure and determined of a wide range of volatolomics from 314 breath samples. The discovery, identification and verification research screened a biomarker panel to distinguish GC from controls. This panel has achieved 0.90 (0.87-0.94, 95%CI) accuracy, with an area under curve (AUC) of 0.92 (0.89-0.94, 95%CI) in discovery cohort and 0.88 (0.83-0.91, 95%CI) accuracy with an AUC of 0.91 (0.87-0.93, 95%CI) in replication cohort, which outperformed traditional serum markers. Single-cell sequencing and gene set enrichment analysis revealed that these exhaled markers originated from aldehyde oxidation and pyruvate metabolism. Our approach advances the design of exhaled analysis for GC detection and holds promise as a non-invasive method to the clinic.
Collapse
Affiliation(s)
- Jian Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongyan Ji
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongqian Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yuanwen Chen
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Yixuan Zhang
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China
| | - Xiaowen Li
- Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, PR China.
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
10
|
Song HW, Moon D, Won Y, Cha YK, Yoo J, Park TH, Oh JH. A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. SCIENCE ADVANCES 2024; 10:eadl2882. [PMID: 38781346 PMCID: PMC11114221 DOI: 10.1126/sciadv.adl2882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
Neuromorphic sensors, designed to emulate natural sensory systems, hold the promise of revolutionizing data extraction by facilitating rapid and energy-efficient analysis of extensive datasets. However, a challenge lies in accurately distinguishing specific analytes within mixtures of chemically similar compounds using existing neuromorphic chemical sensors. In this study, we present an artificial olfactory system (AOS), developed through the integration of human olfactory receptors (hORs) and artificial synapses. This AOS is engineered by interfacing an hOR-functionalized extended gate with an organic synaptic device. The AOS generates distinct patterns for odorants and mixtures thereof, at the molecular chain length level, attributed to specific hOR-odorant binding affinities. This approach enables precise pattern recognition via training and inference simulations. These findings establish a foundation for the development of high-performance sensor platforms and artificial sensory systems, which are ideal for applications in wearable and implantable devices.
Collapse
Affiliation(s)
- Hyun Woo Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongseok Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yousang Won
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeon Kyung Cha
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jin Yoo
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Zhou M, Wang Q, Lu X, Zhang P, Yang R, Chen Y, Xia J, Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: a systematic review and meta-analysis. Int J Surg 2024; 110:1755-1769. [PMID: 38484261 PMCID: PMC10942174 DOI: 10.1097/js9.0000000000000999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 03/17/2024]
Abstract
BACKGROUND The gradual evolution of the detection and quantification of volatile organic compounds (VOCs) has been instrumental in cancer diagnosis. The primary objective of this study was to assess the diagnostic potential of exhaled breath and urinary VOCs in cancer detection. As VOCs are indicative of tumor and human metabolism, our work also sought to investigate the metabolic pathways linked to the development of cancerous tumors. MATERIALS AND METHODS An electronic search was performed in the PubMed database. Original studies on VOCs within exhaled breath and urine for cancer detection with a control group were included. A meta-analysis was conducted using a bivariate model to assess the sensitivity and specificity of the VOCs for cancer detection. Fagan's nomogram was designed to leverage the findings from our diagnostic analysis for the purpose of estimating the likelihood of cancer in patients. Ultimately, MetOrigin was employed to conduct an analysis of the metabolic pathways associated with VOCs in relation to both human and/or microbiota. RESULTS The pooled sensitivity, specificity and the area under the curve for cancer screening utilizing exhaled breath and urinary VOCs were determined to be 0.89, 0.88, and 0.95, respectively. A pretest probability of 51% can be considered as the threshold for diagnosing cancers with VOCs. As the estimated pretest probability of cancer exceeds 51%, it becomes more appropriate to emphasize the 'ruling in' approach. Conversely, when the estimated pretest probability of cancer falls below 51%, it is more suitable to emphasize the 'ruling out' approach. A total of 14, 14, 6, and 7 microbiota-related VOCs were identified in relation to lung, colorectal, breast, and liver cancers, respectively. The enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in the aforementioned tumor types. CONCLUSIONS The analysis of exhaled breath and urinary VOCs showed promise for cancer screening. In addition, the enrichment analysis of volatile metabolites revealed a significant enrichment of butanoate metabolism in four tumor types, namely lung, colorectum, breast and liver. These findings hold significant implications for the prospective clinical application of multiomics correlation in disease management and the exploration of potential therapeutic targets.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Qinghua Wang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Xinyi Lu
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi Maternity and Child Health Care Hospital
- Research Institute for Reproductive Health and Genetic Diseases, Women’s Hospital of Jiangnan University
| |
Collapse
|
12
|
Zhang Y, Yao H, Xue C, Xu Y, Yi C, Sun Y, Cui S, Hoa ND, Jouyban A, Jin H, Cui D. Au Nanostars Coated with a Thin Film of MIL-100 (Fe) for SERS-Based Sensing of Volatile Organic Compound Indicators in Saliva. ACS APPLIED NANO MATERIALS 2024; 7:2735-2743. [DOI: 10.1021/acsanm.3c04835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yuna Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Haizi Yao
- School of Energy Engineering, Huanghuai University, Zhumadian, Henan Province 463600, People’s Republic of China
| | - Cuili Xue
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yuli Xu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chenghan Yi
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yiyang Sun
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengsheng Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Nguyen Duc Hoa
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Han Jin
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
13
|
Belluomo I, Whitlock SE, Myridakis A, Parker AG, Converso V, Perkins MJ, Langford VS, Španěl P, Hanna GB. Combining Thermal Desorption with Selected Ion Flow Tube Mass Spectrometry for Analyses of Breath Volatile Organic Compounds. Anal Chem 2024; 96:1397-1401. [PMID: 38243802 PMCID: PMC10831795 DOI: 10.1021/acs.analchem.3c04286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
An instrument integrating thermal desorption (TD) to selected ion flow tube mass spectrometry (SIFT-MS) is presented, and its application to analyze volatile organic compounds (VOCs) in human breath is demonstrated for the first time. The rationale behind this development is the need to analyze breath samples in large-scale multicenter clinical projects involving thousands of patients recruited in different hospitals. Following adapted guidelines for validating analytical techniques, we developed and validated a targeted analytical method for 21 compounds of diverse chemical class, chosen for their clinical and biological relevance. Validation has been carried out by two independent laboratories, using calibration standards and real breath samples from healthy volunteers. The merging of SIFT-MS and TD integrates the rapid analytical capabilities of SIFT-MS with the capacity to collect breath samples across multiple hospitals. Thanks to these features, the novel instrument has the potential to be easily employed in clinical practice.
Collapse
Affiliation(s)
- Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Sophia E. Whitlock
- Syft
Technologies Limited, 68 St. Asaph Street, Christchurch 8011, New Zealand
| | - Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Valerio Converso
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Mark J. Perkins
- Element
Lab Solutions, Wellbrook
Court, Girton Road, Cambridge CB3 0NA, United Kingdom
| | - Vaughan S. Langford
- Syft
Technologies Limited, 68 St. Asaph Street, Christchurch 8011, New Zealand
| | - Patrik Španěl
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, 182 23 Prague, Czechia
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| |
Collapse
|
14
|
Belaid I, Baya MF, Ben Ayed S, Ben Ayed A, Maatoug J, Zommit N, Trabelsi MA, Ben Chida N, Khairi H, Ben Fatma L, Chabchoub I, Ammar N, Bourigua R, Hochlaf M, Ezzaari F, Ben Ahmed S. Transcutaneous canine breast cancer detection in Tunisia: a pilot study. BMC Cancer 2024; 24:151. [PMID: 38291377 PMCID: PMC10826062 DOI: 10.1186/s12885-023-11599-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/01/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Breast cancer in Tunisia is often diagnosed at a late stage with long delay in time to consultation and to diagnosis.The aim of this study is to estimate the sensitivity and specificity of the transcutaneous breast cancer detection by canine olfactionin Tunisian women and to identify the potential confounding factors. METHODS This is a diagnostic case control study that took place from October 2021 to November 2022 in the Department of Medical Oncology at the University Hospital Farhat Hached of Sousse and in the security and training dog center located in Sousse (K9 Dog Center Security & Training). A two-year-old male Belgian Malinois was trained to detect breast cancer on skin secretion samples in compresses that had been worn overnight by women on their breast and then a double-blind testing was performed. There was no contact between women and the dog. From the mentioned responses of the dog, four parameters were calculated: sensitivity, specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV). RESULTS Two hundred women were included in this trial: 100 breast cancer (BC) patients recruited from Farhat Hached University Hospital of Sousse and 100 healthy volunteers (HV).The calculated sensitivity was 84% (95% CI 78-89%) and the calculated specificity was 81% (95% CI 75-86%). The calculated predictive values were: PPV = 83,51% (95% CI 78,37-88,65%) and NPV = 81,55% (95% CI 76.17-86.93%). In the multivariate study, only four confounding factors of test's sensitivity were retained: age (OR = 1.210 [95% CI = 1.085-1.349]; p = 0.001), history of diabetes(OR = 0.017 [95% CI = 0.001-0.228]; p = 0.002), sampling at hospital (OR = 0.010 [95% CI = 0.003-0.464]; p = 0.010) and testing during chemotherapy courses (OR = 0.034 [95% CI = 0.003-0.404]; p = 0.007).For test's specificity, we retained the three following confounding factors: age (OR = 1,104 [95% CI = 1.021-1.195]; p = 0.014), history of benign mastopathy (OR = 0.243 [95% CI = 0.074-0.805]; p = 0.021)and history of arterial hypertension (OR = 0.194 [95% CI = 0.053-0.707]; p = 0.013). CONCLUSION This is a pilot study that opens new avenues in developing a reliable cancer diagnostic tool that integrates the dog's olfactory ability to detect breast cancer using a transcutaneous sampling method. It could be a pre-test to select patients who are eligible to a screening mammogram, especially in low-income countries where there is no national mammography screening program. PACTR. ORG IDENTIFIER PACTR202201864472288, registration date 11/01/2022.
Collapse
Affiliation(s)
- Imtinene Belaid
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia.
| | - Mohamed Fedy Baya
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Saif Ben Ayed
- K9 Dog Security and Training Center, Sousse, Tunisia
| | - Ali Ben Ayed
- K9 Dog Security and Training Center, Sousse, Tunisia
| | - Jihen Maatoug
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Epidemiology, Université de Sousse, 4000, Sousse, Tunisia
| | - Nawel Zommit
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Epidemiology, Université de Sousse, 4000, Sousse, Tunisia
| | | | - Noureddine Ben Chida
- National School of Veterinary Medicine, Veterinary Research Institute, Tunis, Tunisia
| | - Hedi Khairi
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Gynecology, Université de Sousse, 4000, Sousse, Tunisia
| | - Leila Ben Fatma
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Imene Chabchoub
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Nouha Ammar
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Rym Bourigua
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Makrem Hochlaf
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Faten Ezzaari
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| | - Slim Ben Ahmed
- Faculté de Médecine de Sousse, Farhat Hached University Hospital, Department of Medical Oncology, Association de Recherche et d'Information sur le Cancer du Centre Tunisien (ARIC), Université de Sousse, 4000, Sousse, Tunisia
| |
Collapse
|
15
|
Fitzgerald S, Holland L, Ahmed W, Piechulla B, Fowler SJ, Morrin A. Volatilomes of human infection. Anal Bioanal Chem 2024; 416:37-53. [PMID: 37843549 PMCID: PMC10758372 DOI: 10.1007/s00216-023-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.
Collapse
Affiliation(s)
- Shane Fitzgerald
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
16
|
Le T, Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023; 265:124767. [PMID: 37327663 DOI: 10.1016/j.talanta.2023.124767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Although there are new approaches in both cancer treatment and diagnosis, overall mortality is a major concern. New technologies have attempted to look at breath volatile organic compounds (VOCs) detection to diagnose cancer. Gas Chromatography and Mass Spectrometry (GC - MS) have remained the gold standard of VOC analysis for decades, but it has limitations in differentiating VOCs between cancer subtypes. To increase efficacy and accuracy, new methods to analyze these breath VOCs have been introduced, such as Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry (SPME/GC-MS), Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS), Proton Transfer Reaction - Mass Spectrometry (PRT-MS), Ion Mobility Spectrometry (IMS), and Colorimetric Sensors. This article highlights new technologies that have been studied and applied in the detection and quantification of breath VOCs for possible cancer diagnoses.
Collapse
Affiliation(s)
- Tien Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States.
| |
Collapse
|
17
|
Patel NM, Geropoulos G, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. The Role of Mucin Expression in the Diagnosis of Oesophago-Gastric Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15:5252. [PMID: 37958425 PMCID: PMC10650431 DOI: 10.3390/cancers15215252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Survival in oesophago-gastric cancer (OGC) is poor due to early diagnostic challenges. Non-invasive risk stratification may identify susceptible patients with pre-malignant or benign disease. Following diagnostic confirmation with endoscopic biopsy, early OGC may be treated sooner. Mucins are transmembrane glycoproteins implicated in OGC with potential use as biomarkers of malignant transformation. This systematic review defines the role of mucins in OGC diagnosis. A literature search of MEDLINE, Web of Science, Embase and Cochrane databases was performed following PRISMA protocols for studies published January 1960-December 2022. Demographic data and data on mucin sampling and analysis methods were extracted. The review included 124 studies (n = 11,386 patients). Gastric adenocarcinoma (GAc) was the commonest OG malignancy (n = 101) followed by oesophageal adenocarcinoma (OAc, n = 24) and squamous cell carcinoma (OSqCc, n = 10). Mucins MUC1, MUC2, MUC5AC and MUC6 were the most frequently implicated. High MUC1 expression correlated with poorer prognosis and metastases in OSqCc. MUC2 expression decreases during progression from healthy mucosa to OAc, causing reduced protection from gastric acid. MUC5AC was upregulated, and MUC6 downregulated in GAc. Mucin expression varies in OGC; changes may be epigenetic or mutational. Profiling upper GI mucin expression in OGC, with pre-malignant, benign and healthy controls may identify potential early diagnostic biomarkers.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Georgios Geropoulos
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
- The Upper Gastrointestinal Surgical Oncology Research Group, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
18
|
Liu Q, Li S, Li Y, Yu L, Zhao Y, Wu Z, Fan Y, Li X, Wang Y, Zhang X, Zhang Y. Identification of urinary volatile organic compounds as a potential non-invasive biomarker for esophageal cancer. Sci Rep 2023; 13:18587. [PMID: 37903959 PMCID: PMC10616168 DOI: 10.1038/s41598-023-45989-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/01/2023] Open
Abstract
Early diagnosis of esophageal cancer (EC) is extremely challenging. The study presented herein aimed to assess whether urinary volatile organic compounds (VOCs) may be emerging diagnostic biomarkers for EC. Urine samples were collected from EC patients and healthy controls (HCs). Gas chromatography-ion mobility spectrometry (GC-IMS) was next utilised for volatile organic compound detection and predictive models were constructed using machine learning algorithms. ROC curve analysis indicated that an 8-VOCs based machine learning model could aid the diagnosis of EC, with the Random Forests having a maximum AUC of 0.874 and sensitivities and specificities of 84.2% and 90.6%, respectively. Urine VOC analysis aids in the diagnosis of EC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shuhai Li
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yaping Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Longchen Yu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuxiao Zhao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zhihong Wu
- Department of Traditional Chinese Medicine, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yingjing Fan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinyang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yifeng Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
19
|
Romano A, Fehervari M, Boshier PR. Influence of ventilatory parameters on the concentration of exhaled volatile organic compounds in mechanically ventilated patients. Analyst 2023; 148:4020-4029. [PMID: 37497696 DOI: 10.1039/d3an00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Analysis of volatile organic compounds (VOC) within exhaled breath is subject to numerous sources of methodological and physiological variability. Whilst breathing pattern is expected to influence the concentrations of selected exhaled VOCs, it remains challenging to investigate respiratory rate and depth accurately in awake subjects. Online breath sampling was performed in 20 mechanically ventilated patients using proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS). The effect of variation in respiratory rate (RR) and tidal volume (TV) on the VOC release profiles was examined. A panel of nineteen VOCs were selected, including isoprene, acetone, propofol, volatile aldehydes, acids and phenols. Variation in RR had the greatest influence on exhaled isoprene levels, with maximum and average concentrations being inversely correlated with RR. Variations in RR had a statistically significant impact on acetone, C3-C7 linear aldehydes and acetic acid. In comparison, phenols (including propofol), C8-C10 aldehydes and C3-C6 carboxylic acids were not influenced by RR. Isoprene was the only compound to be influenced by variation in TV. These findings, obtained under controlled conditions, provide useful guidelines for the optimisation of breath sampling protocols to be applied on awake patients.
Collapse
Affiliation(s)
- Andrea Romano
- Department Surgery and Cancer, Imperial College, London, UK
| | | | - Piers R Boshier
- Department Surgery and Cancer, Imperial College, London, UK
- Francis Crick Institute, London, UK
| |
Collapse
|
20
|
Shinozuka T, Kanda M, Kodera Y. Site-specific protein biomarkers in gastric cancer: a comprehensive review of novel biomarkers and clinical applications. Expert Rev Mol Diagn 2023; 23:701-712. [PMID: 37395000 DOI: 10.1080/14737159.2023.2232298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Gastric cancer (GC) is the fifth most common cancer and the fourth leading cause of cancer-related death worldwide, thus representing a significant global health burden. Early detection and monitoring of GC are essential to improve patient outcomes. While traditional cancer biomarkers such as carcinoembryonic antigen, carbohydrate antigen (CA) 19-9, and CA 72-4 are widely used, their limited sensitivity and specificity necessitate the exploration of alternative biomarkers. AREAS COVERED This review comprehensively analyzes the landscape of GC protein biomarkers identified from 2019 to 2022, with a focus on tissue, blood, urine, saliva, gastric juice, ascites, and exhaled breath as sample sources. We address the potential clinical applications of these biomarkers in early diagnosis, monitoring recurrence, and predicting survival and therapeutic response of GC patients. EXPERT OPINION The discovery of novel protein biomarkers holds great promise for improving the clinical management of GC. However, further validation in large, diverse cohorts is needed to establish the clinical utility of these biomarkers. Integrating these biomarkers with existing diagnostic and monitoring approaches will likely lead to improved personalized treatment plans and patient outcomes.
Collapse
Affiliation(s)
- Takahiro Shinozuka
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
21
|
Popov E, Polishchuk A, Kovalev A, Vitkin V. Raman Spectroscopy for Urea Breath Test. BIOSENSORS 2023; 13:609. [PMID: 37366973 PMCID: PMC10296114 DOI: 10.3390/bios13060609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
The urea breath test is a non-invasive diagnostic method for Helicobacter pylori infections, which relies on the change in the proportion of 13CO2 in exhaled air. Nondispersive infrared sensors are commonly used for the urea breath test in laboratory equipment, but Raman spectroscopy demonstrated potential for more accurate measurements. The accuracy of the Helicobacter pylori detection via the urea breath test using 13CO2 as a biomarker is affected by measurement errors, including equipment error and δ13C measurement uncertainty. We present a Raman scattering-based gas analyzer capable of δ13C measurements in exhaled air. The technical details of the various measurement conditions have been discussed. Standard gas samples were measured. 12CO2 and 13CO2 calibration coefficients were determined. The Raman spectrum of the exhaled air was measured and the δ13C change (in the process of the urea breath test) was calculated. The total error measured was 6% and does not exceed the limit of 10% that was analytically calculated.
Collapse
Affiliation(s)
- Evgeniy Popov
- Institute of Advanced Data Transfer Systems, ITMO University, Birzhevaya Liniya 14, 199034 Saint Petersburg, Russia; (A.P.); (A.K.); (V.V.)
| | | | | | | |
Collapse
|
22
|
Zhang C, Wang J, Zhang Z, Gong J, Wang H. An ultrasensitive isoprene gas sensor based on the In 2O 3/MoS 2 nanocomposite prepared by hydrothermal synthesis. RSC Adv 2023; 13:15826-15832. [PMID: 37250212 PMCID: PMC10209628 DOI: 10.1039/d3ra00608e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Isoprene is one of the specific biomarkers of liver disease in human exhaled gas, which should be detected with a high response at an order of ppb in actual application. In this paper, the heterojunction between n-type In2O3 and MoS2 was proposed to improve the isoprene sensing properties. Both In2O3 and MoS2 were prepared by a hydrothermal method, and nanostructured In2O3 flowers and solid micro irregular MoS2 particles were mixed into the In2O3/MoS2 composite with a mol ratio of 6 : 4. The composite was characterized by EDS and XRD to confirm the element types and crystal types. The isoprene sensor was prepared by dipping the composite suspension on a ceramic substrate integrated with a sensing electrode and heating unit. The testing results of the sensor showed the highest response value of 1.8 to 100 ppb isoprene at 200 °C. Besides, the low detecting limit (less than 5 ppb isoprene) and excellent selectivity are also revealed, showing that the composite can be a good candidate sensing material for isoprene for application in breath analysis.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Manufacturing Systems Engineering China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Jiuhong Wang
- State Key Laboratory for Manufacturing Systems Engineering China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Ze Zhang
- State Key Laboratory for Manufacturing Systems Engineering China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Jin Gong
- State Key Laboratory for Manufacturing Systems Engineering China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Hairong Wang
- State Key Laboratory for Manufacturing Systems Engineering China
- School of Mechanical Engineering Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
23
|
Sharma A, Kumar R, Varadwaj P. Smelling the Disease: Diagnostic Potential of Breath Analysis. Mol Diagn Ther 2023; 27:321-347. [PMID: 36729362 PMCID: PMC9893210 DOI: 10.1007/s40291-023-00640-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/03/2023]
Abstract
Breath analysis is a relatively recent field of research with much promise in scientific and clinical studies. Breath contains endogenously produced volatile organic components (VOCs) resulting from metabolites of ingested precursors, gut and air-passage bacteria, environmental contacts, etc. Numerous recent studies have suggested changes in breath composition during the course of many diseases, and breath analysis may lead to the diagnosis of such diseases. Therefore, it is important to identify the disease-specific variations in the concentration of breath to diagnose the diseases. In this review, we explore methods that are used to detect VOCs in laboratory settings, VOC constituents in exhaled air and other body fluids (e.g., sweat, saliva, skin, urine, blood, fecal matter, vaginal secretions, etc.), VOC identification in various diseases, and recently developed electronic (E)-nose-based sensors to detect VOCs. Identifying such VOCs and applying them as disease-specific biomarkers to obtain accurate, reproducible, and fast disease diagnosis could serve as an alternative to traditional invasive diagnosis methods. However, the success of VOC-based identification of diseases is limited to laboratory settings. Large-scale clinical data are warranted for establishing the robustness of disease diagnosis. Also, to identify specific VOCs associated with illness states, extensive clinical trials must be performed using both analytical instruments and electronic noses equipped with stable and precise sensors.
Collapse
Affiliation(s)
- Anju Sharma
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India
| | - Rajnish Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Pritish Varadwaj
- Systems Biology Lab, Indian Institute of Information Technology, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
24
|
Bhandari MP, Polaka I, Vangravs R, Mezmale L, Veliks V, Kirshners A, Mochalski P, Dias-Neto E, Leja M. Volatile Markers for Cancer in Exhaled Breath-Could They Be the Signature of the Gut Microbiota? Molecules 2023; 28:molecules28083488. [PMID: 37110724 PMCID: PMC10141340 DOI: 10.3390/molecules28083488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
It has been shown that the gut microbiota plays a central role in human health and disease. A wide range of volatile metabolites present in exhaled breath have been linked with gut microbiota and proposed as a non-invasive marker for monitoring pathological conditions. The aim of this study was to examine the possible correlation between volatile organic compounds (VOCs) in exhaled breath and the fecal microbiome by multivariate statistical analysis in gastric cancer patients (n = 16) and healthy controls (n = 33). Shotgun metagenomic sequencing was used to characterize the fecal microbiota. Breath-VOC profiles in the same participants were identified by an untargeted gas chromatography-mass spectrometry (GC-MS) technique. A multivariate statistical approach involving a canonical correlation analysis (CCA) and sparse principal component analysis identified the significant relationship between the breath VOCs and fecal microbiota. This relation was found to differ between gastric cancer patients and healthy controls. In 16 cancer cases, 14 distinct metabolites identified from the breath belonging to hydrocarbons, alcohols, aromatics, ketones, ethers, and organosulfur compounds were highly correlated with 33 fecal bacterial taxa (correlation of 0.891, p-value 0.045), whereas in 33 healthy controls, 7 volatile metabolites belonging to alcohols, aldehydes, esters, phenols, and benzamide derivatives correlated with 17 bacterial taxa (correlation of 0.871, p-value 0.0007). This study suggested that the correlation between fecal microbiota and breath VOCs was effective in identifying exhaled volatile metabolites and the functional effects of microbiome, thus helping to understand cancer-related changes and improving the survival and life expectancy in gastric cancer patients.
Collapse
Affiliation(s)
| | - Inese Polaka
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Linda Mezmale
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Riga East University Hospital, LV-1038 Riga, Latvia
- Faculty of Residency, Riga Stradins University, LV-1007 Riga, Latvia
| | - Viktors Veliks
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Arnis Kirshners
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - Pawel Mochalski
- Institute of Chemistry, Jan Kochanowski University of Kielce, PL-25406 Kielce, Poland
- Institute for Breath Research, University of Innsbruck, A-6850 Dornbirn, Austria
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, A.C.Camargo Cancer Center, Sao Paulo 01508-010, Brazil
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1586 Riga, Latvia
- Digestive Diseases Center GASTRO, LV-1079 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1586 Riga, Latvia
| |
Collapse
|
25
|
Geng X, Zhang K, Li H, Da Yong Chen D. Online mass spectrometry of exhaled breath with a modified ambient ion source. Talanta 2023; 255:124254. [PMID: 36634427 DOI: 10.1016/j.talanta.2023.124254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Exhaled breath (EB) may contain metabolites that are closely related to human health conditions. Real time analysis of EB is important to study its true composition, however, it has been difficult. A robust ambient ionization mass spectrometry method using a modified direct analysis in real time (DART) ion source was developed for the online analysis of breath volatiles. The modified DART ion source can provide a confined region for direct sampling, rapid transmission and efficient ionization of exhaled breath. With different sampling methods, offline analysis and near real-time evaluation of exhaled breath were also achieved, and their unique molecular features were characterized. High resolution MS data aided the putative metabolite identification in breath samples, resulting in hundreds of volatile organic compounds being identified in the exhalome. The method was sensitive enough to be used for monitoring the breath feature changes after taking different food and over-the-counter medicine. Quantification was performed for pyridine and valeric acid with fasting and after ingesting different food. The developed method is fast, simple, versatile, and potentially useful for evaluating the true state of human exhaled breath.
Collapse
Affiliation(s)
- Xin Geng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kai Zhang
- Department of Geriatric Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Gastroenterology, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Hongli Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - David Da Yong Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China; Department of Chemistry, University of British Columbia, Vancouver BC, V6T 1Z1, Canada.
| |
Collapse
|
26
|
GC-MS Techniques Investigating Potential Biomarkers of Dying in the Last Weeks with Lung Cancer. Int J Mol Sci 2023; 24:ijms24021591. [PMID: 36675106 PMCID: PMC9867309 DOI: 10.3390/ijms24021591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Predicting when a patient with advanced cancer is dying is a challenge and currently no prognostic test is available. We hypothesised that a dying process from cancer is associated with metabolic changes and specifically with changes in volatile organic compounds (VOCs). We analysed urine from patients with lung cancer in the last weeks of life by headspace gas chromatography mass spectrometry. Urine was acidified or alkalinised before analysis. VOC changes in the last weeks of life were identified using univariate, multivariate and linear regression analysis; 12 VOCs increased (11 from the acid dataset, 2 from the alkali dataset) and 25 VOCs decreased (23 from the acid dataset and 3 from the alkali dataset). A Cox Lasso prediction model using 8 VOCs predicted dying with an AUC of 0.77, 0.78 and 0.85 at 30, 20 and 10 days and stratified patients into a low (median 10 days), medium (median 50 days) or high risk of survival. Our data supports the hypothesis there are specific metabolic changes associated with the dying. The VOCs identified are potential biomarkers of dying in lung cancer and could be used as a tool to provide additional prognostic information to inform expert clinician judgement and subsequent decision making.
Collapse
|
27
|
Mass spectrometry for breath analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
MATSUMORI SEI, HASHIMOTO TAKASHI, NASU MOTOMI, KAGA NAOKO, TAKA HIKARI, FUJIMURA TSUTOMU, UENO TAKASHI, MIURA YOSHIKI, KAJIYAMA YOSHIAKI. Development of a Non-invasive Diagnostic Method for Esophageal Squamous Cell Carcinoma by Gas Chromatographic Analysis of Exhaled Breath. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:499-504. [PMID: 39081580 PMCID: PMC11284284 DOI: 10.14789/jmj.jmj22-0023-oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 08/02/2024]
Abstract
Objectives Since esophageal carcinoma progresses asymptomatically, for many patients the disease is already advanced at the time of diagnosis. The main methods that are currently used to diagnose esophageal carcinoma are upper gastrointestinal radiographic contrast examinations and upper gastrointestinal endoscopy, but early discovery of this disease remains difficult. There is a need to develop a diagnostic method using biomarkers that is non-invasive while both highly sensitive and specific. Materials and Methods Exhaled breath was collected from 17 patients with esophageal squamous cell carcinoma (ESCC), as well as 9 control subjects without history of any cancer. For each fasting subject, 1L of exhaled breath was collected in a gas sampling bag. Volatile organic compounds (VOCs) were then extracted from each sample using Solid phase micro-extraction (SPME) fibers and analyzed by gas chromatography-mass spectrometry (GC-MS). Results Levels of acetonitrile, acetic acid, acetone, and 2-butanone in exhaled breath were significantly higher in the patient group than in the control group (p = 0.0037, 0.0024, 0.0024 and 0.0037, respectively). ROC curves were drawn for these 4 VOCs, and the results for the area-under-the-curve (AUC) indicated that ESCC patients can be identified with a high probability of 0.93. Conclusion We found distinctive VOCs in exhaled breath of ESCC patients. These VOCs have a potential as new clinical biomarkers for ESCC. The measurement of VOCs in exhaled breath may be a useful, non-invasive method for diagnosis of ESCC.
Collapse
Affiliation(s)
| | - TAKASHI HASHIMOTO
- Corresponding author: Takashi Hashimoto, Department of Esophageal and Gastroenterological Surgery, Juntendo University Graduate School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan, TEL: +81-3-3813-3111 FAX: +81-3-5802-1951 E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Shahsavari D, Kudaravalli P, Yap JEL, Vega KJ. Expanding beyond endoscopy: A review of non-invasive modalities in Barrett’s esophagus screening and surveillance. World J Gastroenterol 2022; 28:4516-4526. [PMID: 36157931 PMCID: PMC9476875 DOI: 10.3748/wjg.v28.i32.4516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/14/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE) is a condition that results from replacement of the damaged normal squamous esophageal mucosa to intestinal columnar mucosa and is the most significant predisposing factor for development of esophageal adenocarcinoma. Current guidelines recommend endoscopic evaluation for screening and surveillance based on various risk factors which has limitations such as invasiveness, availability of a trained specialist, patient logistics and cost. Trans-nasal endoscopy is a less invasive modality but still has similar limitations such as limited availability of trained specialist and costs. Non-endoscopic modalities, in comparison, require minimal intervention, can be done in an office visit and has the potential to be a more ideal choice for mass public screening and surveillance, particularly in patents at low risk for BE. These include newer generations of esophageal capsule endoscopy which provides direct visualization of BE, and tethered capsule endomicroscopy which can obtain high-resolution images of the esophagus. Various cell collection devices coupled with biomarkers have been used for BE screening. Cytosponge, in combination with TFF3, as well as EsophaCap and EsoCheck have shown promising results in various studies when used with various biomarkers. Other modalities including circulatory microRNAs and volatile organic compounds that have demonstrated favorable outcomes. Use of these cell collection methods for BE surveillance is a potential area of future research.
Collapse
Affiliation(s)
- Dariush Shahsavari
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - Praneeth Kudaravalli
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - John Erikson L Yap
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| | - Kenneth J Vega
- Division of Gastroenterology and Hepatology, Augusta University-Medical College of Georgia, Augusta, GA 30912, United States
| |
Collapse
|
30
|
Analysis of volatile organic compounds from deep airway in the lung through intubation sampling. Anal Bioanal Chem 2022; 414:7647-7658. [PMID: 36018334 DOI: 10.1007/s00216-022-04295-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Exhaled volatile organic compounds (VOCs) have been widely applied for the study of disease biomarkers. Oral exhalation and nasal exhalation are two of the most common sampling methods. However, VOCs released from food residues and bacteria in the mouth or upper respiratory tract were also sampled and usually mistaken as that produced from body metabolism. In this study, exhalation from deep airway was first directly collected through intubation sampling and analyzed. The exhalation samples of 35 subjects were collected through a catheter, which was inserted into the trachea or bronchus through the mouth and upper respiratory tract. Then, the VOCs in these samples were detected by proton transfer reaction mass spectrometry (PTR-MS). In addition, fast gas chromatography proton transfer reaction mass spectrometry (FGC-PTR-MS) was used to further determine the VOCs with the same mass-to-charge ratios. The results showed that there was methanol, acetonitrile, ethanol, methyl mercaptan, acetone, isoprene, and phenol in the deep airway. Compared with that in oral exhalation, ethanol, methyl mercaptan, and phenol had lower concentrations. In detail, the median concentrations of ethanol, methyl mercaptan, and phenol were 7.3, 0.6, and 23.9 ppbv, while those in the oral exhalation were 80.0, 5.1, and 71.3 ppbv, respectively, which meant the three VOCs mainly originated from the food residues and bacteria in the mouth or upper respiratory tract, rather than body metabolism. The research results in our study can provide references for expiratory VOC research based on oral and nasal exhalation samplings, which are more feasible in clinical practice.
Collapse
|
31
|
Exhaled Aldehydes as Biomarkers for Lung Diseases: A Narrative Review. Molecules 2022; 27:molecules27165258. [PMID: 36014494 PMCID: PMC9415864 DOI: 10.3390/molecules27165258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Breath analysis provides great potential as a fast and non-invasive diagnostic tool for several diseases. Straight-chain aliphatic aldehydes were repeatedly detected in the breath of patients suffering from lung diseases using a variety of methods, such as mass spectrometry, ion mobility spectrometry, or electro-chemical sensors. Several studies found increased concentrations of exhaled aldehydes in patients suffering from lung cancer, inflammatory and infectious lung diseases, and mechanical lung injury. This article reviews the origin of exhaled straight-chain aliphatic aldehydes, available detection methods, and studies that found increased aldehyde exhalation in lung diseases.
Collapse
|
32
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. Methods: We systematically reviewed prospective clinical trials evaluating VOCs’ diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. Results: A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). Conclusions: Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Yu Q, Chen J, Fu W, Muhammad KG, Li Y, Liu W, Xu L, Dong H, Wang D, Liu J, Lu Y, Chen X. Smartphone-Based Platforms for Clinical Detections in Lung-Cancer-Related Exhaled Breath Biomarkers: A Review. BIOSENSORS 2022; 12:bios12040223. [PMID: 35448283 PMCID: PMC9028493 DOI: 10.3390/bios12040223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer has been studied for decades because of its high morbidity and high mortality. Traditional methods involving bronchoscopy and needle biopsy are invasive and expensive, which makes patients suffer more risks and costs. Various noninvasive lung cancer markers, such as medical imaging indices, volatile organic compounds (VOCs), and exhaled breath condensates (EBCs), have been discovered for application in screening, diagnosis, and prognosis. However, the detection of markers still relies on bulky and professional instruments, which are limited to training personnel or laboratories. This seriously hinders population screening for early diagnosis of lung cancer. Advanced smartphones integrated with powerful applications can provide easy operation and real-time monitoring for healthcare, which demonstrates tremendous application scenarios in the biomedical analysis region from medical institutions or laboratories to personalized medicine. In this review, we propose an overview of lung-cancer-related noninvasive markers from exhaled breath, focusing on the novel development of smartphone-based platforms for the detection of these biomarkers. Lastly, we discuss the current limitations and potential solutions.
Collapse
Affiliation(s)
- Qiwen Yu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Jing Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310051, China;
| | - Wei Fu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Kanhar Ghulam Muhammad
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yi Li
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Wenxin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Linxin Xu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Hao Dong
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Di Wang
- Research Center for Sensing Materials and Devices, Zhejiang Lab, Hangzhou 311100, China; (H.D.); (D.W.)
| | - Jun Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
| | - Yanli Lu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| | - Xing Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; (Q.Y.); (W.F.); (K.G.M.); (Y.L.); (W.L.); (L.X.); (J.L.)
- Correspondence: (Y.L.); (X.C.)
| |
Collapse
|
34
|
Ge D, Zhou J, Chu Y, Lu Y, Zou X, Xia L, Liu Y, Huang C, Shen C, Zhang L, Wang H, Chu Y. Distinguish oral-source VOCs and control their potential impact on breath biomarkers. Anal Bioanal Chem 2022; 414:2275-2284. [DOI: 10.1007/s00216-021-03866-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
|
35
|
Volatile organic compounds as a potential screening tool for neoplasm of the digestive system: a meta-analysis. Sci Rep 2021; 11:23716. [PMID: 34887450 PMCID: PMC8660806 DOI: 10.1038/s41598-021-02906-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
This meta-analysis was aimed to estimate the diagnostic performance of volatile organic compounds (VOCs) as a potential novel tool to screen for the neoplasm of the digestive system. An integrated literature search was performed by two independent investigators to identify all relevant studies investigating VOCs in diagnosing neoplasm of the digestive system from inception to 7th December 2020. STATA and Revman software were used for data analysis. The methodological quality of each study was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate mixed model was used and meta-regression and subgroup analysis were performed to identify possible sources of heterogeneity. A total of 36 studies comprised of 1712 cases of neoplasm and 3215 controls were included in our meta-analysis. Bivariate analysis showed a pooled sensitivity of 0.87 (95% confidence interval (CI) 0.83–0.90), specificity of 0.86 (95% CI 0.82–0.89), a positive likelihood ratio of 6.18 (95% CI 4.68–8.17), and a negative likelihood ratio of 0.15 (95% CI 0.12–0.20). The diagnostic odds ratio and the area under the summary ROC curve for diagnosing neoplasm of the digestive system were 40.61 (95% CI 24.77–66.57) and 0.93 (95% CI 0.90–0.95), respectively. Our analyses revealed that VOCs analysis could be considered as a potential novel tool to screen for malignant diseases of the digestive system.
Collapse
|
36
|
Dima AC, Balaban DV, Dima A. Diagnostic Application of Volatile Organic Compounds as Potential Biomarkers for Detecting Digestive Neoplasia: A Systematic Review. Diagnostics (Basel) 2021; 11:diagnostics11122317. [PMID: 34943554 PMCID: PMC8700395 DOI: 10.3390/diagnostics11122317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 02/07/2023] Open
Abstract
Volatile organic compounds (VOCs) are part of the exhaled breath that were proposed as non-invasive breath biomarkers via different human discharge products like saliva, breath, urine, blood, or tissues. Particularly, due to the non-invasive approach, VOCs were considered as potential biomarkers for non-invasive early cancer detection. We herein aimed to review the data over VOCs utility in digestive neoplasia as early diagnosis or monitoring biomarkers. A systematic literature search was done using MEDLINE via PubMed, Cochrane Library, and Thomson Reuters' Web of Science Core Collection. We identified sixteen articles that were included in the final analysis. Based on the current knowledge, we cannot identify a single VOC as a specific non-invasive biomarker for digestive neoplasia. Several combinations of up to twelve VOCs seem promising for accurately detecting some neoplasia types. A combination of different VOCs breath expression are promising tools for digestive neoplasia screening.
Collapse
Affiliation(s)
- Augustin Catalin Dima
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniel Vasile Balaban
- Department of General Surgery and Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania;
- Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Correspondence:
| | - Alina Dima
- Department of Rheumatology, Colentina Clinical Hospital, 020125 Bucharest, Romania;
| |
Collapse
|
37
|
Salman D, Ibrahim W, Kanabar A, Joyce A, Zhao B, Singapuri A, Wilde M, Cordell RL, McNally T, Ruszkiewicz D, Hadjithekli A, Free R, Greening N, Gaillard EA, Beardsmore C, Monks P, Brightling C, Siddiqui S, Thomas CLP. The variability of volatile organic compounds in the indoor air of clinical environments. J Breath Res 2021; 16. [PMID: 34724656 DOI: 10.1088/1752-7163/ac3565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
The development of clinical breath-analysis is confounded by the variability of background volatile organic compounds (VOCs). Reliable interpretation of clinical breath-analysis at individual, and cohort levels requires characterisation of clinical-VOC levels and exposures. Active-sampling with thermal-desorption/gas chromatography-mass spectrometry recorded and evaluated VOC concentrations in 245 samples of indoor air from three sites in a large National Health Service (NHS) provider trust in the UK over 27 months. Data deconvolution, alignment and clustering isolated 7344 features attributable to VOC and described the variability (composition and concentration) of respirable clinical VOC. 328 VOC were observed in more than 5% of the samples and 68 VOC appeared in more than 30% of samples. Common VOC were associated with exogenous and endogenous sources and 17 VOC were identified as seasonal differentiators. The presence of metabolites from the anaesthetic sevoflurane, and putative-disease biomarkers in room air, indicated that exhaled VOC were a source of background-pollution in clinical breath-testing activity. With the exception of solvents, and waxes associated with personal protective equipment (PPE), exhaled VOC concentrations above 3µg m-3are unlikely to arise from room air contamination, and in the absence of extensive survey-data, this level could be applied as a threshold for inclusion in studies, removing a potential environmental confounding-factor in developing breath-based diagnostics.
Collapse
Affiliation(s)
- Dahlia Salman
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Wadah Ibrahim
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Amisha Kanabar
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Abigail Joyce
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Bo Zhao
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Amisha Singapuri
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Michael Wilde
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Rebecca L Cordell
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Teresa McNally
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Dorota Ruszkiewicz
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Andria Hadjithekli
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Robert Free
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Neil Greening
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Erol A Gaillard
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Caroline Beardsmore
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Paul Monks
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | - Chris Brightling
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - Salman Siddiqui
- College of Life Sciences, Department of Respiratory Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.,Leicester NIHR Biomedical Research Centre (Respiratory theme), Glenfield Hospital, Groby Road, Leicester, LE3 9QP, United Kingdom
| | - C L Paul Thomas
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
38
|
Chang K, Jackson CS, Vega KJ. Barrett's Esophagus: Diagnosis, Management, and Key Updates. Gastroenterol Clin North Am 2021; 50:751-768. [PMID: 34717869 DOI: 10.1016/j.gtc.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Barrett's esophagus (BE) is the precursor lesion for esophageal adenocarcinoma (EAC) development. Unfortunately, BE screening/surveillance has not provided the anticipated EAC reduction benefit. Noninvasive techniques are increasingly available or undergoing testing to screen for BE among those with/without known risk factors, and the use of artificial intelligence platforms to aid endoscopic screening and surveillance will likely become routine, minimizing missed cases or lesions. Management of high-grade dysplasia and intramucosal EAC is clear with endoscopic eradication therapy preferred to surgery. BE with low-grade dysplasia can be managed with removal of visible lesions combined with endoscopic eradication therapy or endoscopic surveillance at present.
Collapse
Affiliation(s)
- Karen Chang
- Department of Internal Medicine, University of California, Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Christian S Jackson
- Section of Gastroenterology, Loma Linda VA Healthcare System, 11201 Benton Street, 2A-38, Loma Linda, CA 92357, USA
| | - Kenneth J Vega
- Division of Gastroenterology & Hepatology, Augusta University-Medical College of Georgia, 1120 15th Street, AD-2226, Augusta, GA 30912, USA.
| |
Collapse
|
39
|
Ahmed W, White IR, Wilkinson M, Johnson CF, Rattray N, Kishore AK, Goodacre R, Smith CJ, Fowler SJ. Breath and plasma metabolomics to assess inflammation in acute stroke. Sci Rep 2021; 11:21949. [PMID: 34753981 PMCID: PMC8578671 DOI: 10.1038/s41598-021-01268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.
Collapse
Affiliation(s)
- Waqar Ahmed
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Iain R White
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Craig F Johnson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Nicholas Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
40
|
Comparative analysis of volatile organic compounds of breath and urine for distinguishing patients with liver cirrhosis from healthy controls by using electronic nose and voltammetric electronic tongue. Anal Chim Acta 2021; 1184:339028. [PMID: 34625262 DOI: 10.1016/j.aca.2021.339028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022]
Abstract
Advanced stage detection of liver cirrhosis (LCi) would lead to high mortality rates in patients. Therefore, accurate and non-invasive tools for its early detection are highly needed using human emanations that may reflect this disease. Human breath, along with urine and blood, has long been one of the three main biological media for assessing human health and environmental exposure. The primary objective of this study was to explore the potential of using volatile organic compounds (VOCs) assay of exhaled breath and urine samples for the diagnosis of patients with LCi and healthy controls (HC). For this purpose, we used a hybrid electronic nose (E-nose) combining two sensor families, consisting of an array of five commercial chemical gas sensors and six interdigitated chemical gas sensors based on pristine or metal-doped WO3 nanowires for sensing volatile gases in exhaled breath. A voltammetric electronic tongue (VE-tongue), composed of five working electrodes, was dedicated to the analysis of urinary VOCs using cyclic voltammetry as a measurement technique. 54 patients were recruited for this study, comprising 22 patients with LCi, and 32 HC. The two-sensing systems coupled with pattern recognition methods, namely Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA), were trained to classify data clusters associated with the health status of the two groups. The diagnostic performances of the E-nose and VE-tongue systems were studied by using the receiver operating characteristic (ROC) method. The use of the E-nose or the VE-tongue separately, trained with these appropriate classifiers, showed a slight overlap indicating no clear discrimination between LCi patients and HC. To improve the performance of both electronic sensing devices, an emerging strategy, namely a multi-sensor data fusion technique, was proposed as a second aim to overcome this shortcoming. The data fusion approach of the two systems, at a medium level of abstraction, has demonstrated the ability to assess human health and disease status using non-invasive screening tools based on exhaled breath and urinary VOC analysis. This suggests that exhaled breath as well as urinary VOCs are specific to a disease state and could potentially be used as diagnostic methods.
Collapse
|
41
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
42
|
Zhang J, Tian Y, Luo Z, Qian C, Li W, Duan Y. Breath volatile organic compound analysis: an emerging method for gastric cancer detection. J Breath Res 2021; 15. [PMID: 34610588 DOI: 10.1088/1752-7163/ac2cde] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Gastric cancer is a common malignancy, being the fifth most frequently diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide. Diagnosis of gastric cancer at the early stage is critical to effectively improve the survival rate. However, a substantial proportion of patients with gastric cancer in the early stages lack specific symptoms or are asymptomatic. Moreover, the imaging techniques currently used for gastric cancer screening, such as computed tomography and barium examination, are usually radioactive and have low sensitivity and specificity. Even though endoscopy has high accuracy for gastric cancer screening, its application is limited by the invasiveness of the technique. Breath analysis is an economic, effective, easy to perform, non-invasive detection method, and has no undesirable side effects on subjects. Extensive worldwide research has been conducted on breath volatile organic compounds (VOCs), which reveals its prospect as a potential method for gastric cancer detection. Many interesting results have been obtained and innovative methods have been introduced in this subject; hence, an extensive review would be beneficial. By providing a comprehensive list of breath VOCs identified by gastric cancer would promote further research in this field. This review summarizes the commonly used technologies for exhaled breath analysis, focusing on the application of analytical instruments in the detection of breath VOCs in gastric cancers, and the alterations in the profile of breath biomarkers in gastric cancer patients are discussed as well.
Collapse
Affiliation(s)
- Jing Zhang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| | - Cheng Qian
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenwen Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, People's Republic of China
| |
Collapse
|
43
|
Müller-Wirtz LM, Kiefer D, Maurer F, Floss MA, Doneit J, Hüppe T, Shopova T, Wolf B, Sessler DI, Volk T, Kreuer S, Fink T. Volutrauma Increases Exhaled Pentanal in Rats: A Potential Breath Biomarker for Ventilator-Induced Lung Injury. Anesth Analg 2021; 133:263-273. [PMID: 33929393 DOI: 10.1213/ane.0000000000005576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mechanical ventilation injures lungs, but there are currently no reliable methods for detecting early injury. We therefore evaluated whether exhaled pentanal, a lipid peroxidation product, might be a useful breath biomarker for stretch-induced lung injury in rats. METHODS A total of 150 male Sprague-Dawley rats were investigated in 2 substudies. The first randomly assigned 75 rats to 7 hours of mechanical ventilation at tidal volumes of 6, 8, 12, 16, and 20 mL·kg-1. The second included 75 rats. A reference group was ventilated at a tidal volume of 6 mL·kg-1 for 10 hours 4 interventional groups were ventilated at a tidal volume of 6 mL·kg-1 for 1 hour, and then for 0.5, 1, 2, or 3 hours at a tidal volume of 16 mL.kg-1 before returning to a tidal volume of 6 mL·kg-1 for additional 6 hours. Exhaled pentanal was monitored by multicapillary column-ion mobility spectrometry. The first substudy included cytokine and leukocyte measurements in blood and bronchoalveolar fluid, histological assessment of the proportion of alveolar space, and measurements of myeloperoxidase activity in lung tissue. The second substudy included measurements of pentanal in arterial blood plasma, cytokine and leukocyte concentrations in bronchoalveolar fluid, and cleaved caspase 3 in lung tissue. RESULTS Exhaled pentanal concentrations increased by only 0.5 ppb·h-1 (95% confidence interval [CI], 0.3-0.6) when rats were ventilated at 6 mL·kg-1. In contrast, exhaled pentanal concentrations increased substantially and roughly linearly at higher tidal volumes, up to 3.1 ppb·h-1 (95% CI, 2.3-3.8) at tidal volumes of 20 mL·kg-1. Exhaled pentanal increased at average rates between 1.0 ppb·h-1 (95% CI, 0.3-1.7) and 2.5 ppb·h-1 (95% CI, 1.4-3.6) after the onset of 16 mL·kg-1 tidal volumes and decreased rapidly by a median of 2 ppb (interquartile range [IQR], 0.9-3.2), corresponding to a 38% (IQR, 31-43) reduction when tidal volume returned to 6 mL·kg-1. Tidal volume, inspiratory pressure, and mechanical power were positively associated with pentanal exhalation. Exhaled and plasma pentanal were uncorrelated. Alveolar space decreased and inflammatory markers in bronchoalveolar lavage fluid increased in animals ventilated at high tidal volumes. Short, intermittent ventilation at high tidal volumes for up to 3 hours increased neither inflammatory markers in bronchoalveolar fluid nor the proportion of cleaved caspase 3 in lung tissue. CONCLUSIONS Exhaled pentanal is a potential biomarker for early detection of ventilator-induced lung injury in rats.
Collapse
Affiliation(s)
- Lukas Martin Müller-Wirtz
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Daniel Kiefer
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Felix Maurer
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Maximilian Alexander Floss
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Jonas Doneit
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Tobias Hüppe
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Theodora Shopova
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Beate Wolf
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio
| | - Thomas Volk
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Sascha Kreuer
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| | - Tobias Fink
- From the CBR - Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
44
|
Statistical Evaluation of Total Expiratory Breath Samples Collected throughout a Year: Reproducibility and Applicability toward Olfactory Sensor-Based Breath Diagnostics. SENSORS 2021; 21:s21144742. [PMID: 34300482 PMCID: PMC8309533 DOI: 10.3390/s21144742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The endogenous volatile organic compounds (VOCs) in exhaled breath can be promising biomarkers for various diseases including cancers. An olfactory sensor has a possibility for extracting a specific feature from collective variations of the related VOCs with a certain health condition. For this approach, it is important to establish a feasible protocol for sampling exhaled breath in practical conditions to provide reproducible signal features. Here we report a robust protocol for the breath analysis, focusing on total expiratory breath measured by a Membrane-type Surface stress Sensor (MSS), which possesses practical characteristics for artificial olfactory systems. To assess its reproducibility, 83 exhaled breath samples were collected from one subject throughout more than a year. It has been confirmed that the reduction of humidity effects on the sensing signals either by controlling the humidity of purging room air or by normalizing the signal intensities leads to reasonable reproducibility verified by statistical analyses. We have also demonstrated the applicability of the protocol for detecting a target material by discriminating exhaled breaths collected from different subjects with pre- and post-alcohol ingestion on different occasions. This simple yet reproducible protocol based on the total expiratory breath measured by the MSS olfactory sensors will contribute to exploring the possibilities of clinical applications of breath diagnostics.
Collapse
|
45
|
Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nat Rev Gastroenterol Hepatol 2021; 18:432-443. [PMID: 33603224 DOI: 10.1038/s41575-021-00419-3] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Oesophageal cancer is a global health problem; in 2018 there were more than 572,000 people newly diagnosed with oesophageal cancer worldwide. There are two main histological subtypes of oesophageal cancer, oesophageal adenocarcinoma (EAC) and oesophageal squamous cell carcinoma (ESCC), and there has been a dramatic shift in its epidemiology. While the incidence of EAC and its precursor lesion, Barrett oesophagus, has increased in Western populations over the past four decades, the incidence of ESCC has declined in most parts of the world over the same period. ESCC still accounts for the vast majority of all oesophageal cancer cases diagnosed worldwide each year. Prognosis for patients with oesophageal cancer is strongly related to stage at diagnosis. As most patients are diagnosed with late-stage disease, overall 5-year survival for oesophageal cancer remains <20%. Knowledge of epidemiology and risk factors for oesophageal cancer is essential for public health and clinical decisions about risk stratification, screening and prevention. The goal of this Review is to establish the current epidemiology of oesophageal cancer, with a particular focus on the Western world and the increasing incidence of EAC and Barrett oesophagus.
Collapse
|
46
|
Quantification of Volatile Aldehydes Deriving from In Vitro Lipid Peroxidation in the Breath of Ventilated Patients. Molecules 2021; 26:molecules26113089. [PMID: 34064214 PMCID: PMC8196825 DOI: 10.3390/molecules26113089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Exhaled aliphatic aldehydes were proposed as non-invasive biomarkers to detect increased lipid peroxidation in various diseases. As a prelude to clinical application of the multicapillary column–ion mobility spectrometry for the evaluation of aldehyde exhalation, we, therefore: (1) identified the most abundant volatile aliphatic aldehydes originating from in vitro oxidation of various polyunsaturated fatty acids; (2) evaluated emittance of aldehydes from plastic parts of the breathing circuit; (3) conducted a pilot study for in vivo quantification of exhaled aldehydes in mechanically ventilated patients. Pentanal, hexanal, heptanal, and nonanal were quantifiable in the headspace of oxidizing polyunsaturated fatty acids, with pentanal and hexanal predominating. Plastic parts of the breathing circuit emitted hexanal, octanal, nonanal, and decanal, whereby nonanal and decanal were ubiquitous and pentanal or heptanal not being detected. Only pentanal was quantifiable in breath of mechanically ventilated surgical patients with a mean exhaled concentration of 13 ± 5 ppb. An explorative analysis suggested that pentanal exhalation is associated with mechanical power—a measure for the invasiveness of mechanical ventilation. In conclusion, exhaled pentanal is a promising non-invasive biomarker for lipid peroxidation inducing pathologies, and should be evaluated in future clinical studies, particularly for detection of lung injury.
Collapse
|
47
|
Müller-Wirtz LM, Kiefer D, Knauf J, Floss MA, Doneit J, Wolf B, Maurer F, Sessler DI, Volk T, Kreuer S, Fink T. Differential Response of Pentanal and Hexanal Exhalation to Supplemental Oxygen and Mechanical Ventilation in Rats. Molecules 2021; 26:2752. [PMID: 34067078 PMCID: PMC8124567 DOI: 10.3390/molecules26092752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
High inspired oxygen during mechanical ventilation may influence the exhalation of the previously proposed breath biomarkers pentanal and hexanal, and additionally induce systemic inflammation. We therefore investigated the effect of various concentrations of inspired oxygen on pentanal and hexanal exhalation and serum interleukin concentrations in 30 Sprague Dawley rats mechanically ventilated with 30, 60, or 93% inspired oxygen for 12 h. Pentanal exhalation did not differ as a function of inspired oxygen but increased by an average of 0.4 (95%CI: 0.3; 0.5) ppb per hour, with concentrations doubling from 3.8 (IQR: 2.8; 5.1) ppb at baseline to 7.3 (IQR: 5.0; 10.8) ppb after 12 h. Hexanal exhalation was slightly higher at 93% of inspired oxygen with an average difference of 0.09 (95%CI: 0.002; 0.172) ppb compared to 30%. Serum IL-6 did not differ by inspired oxygen, whereas IL-10 at 60% and 93% of inspired oxygen was greater than with 30%. Both interleukins increased over 12 h of mechanical ventilation at all oxygen concentrations. Mechanical ventilation at high inspired oxygen promotes pulmonary lipid peroxidation and systemic inflammation. However, the response of pentanal and hexanal exhalation varies, with pentanal increasing by mechanical ventilation, whereas hexanal increases by high inspired oxygen concentrations.
Collapse
Affiliation(s)
- Lukas M. Müller-Wirtz
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
| | - Daniel Kiefer
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
| | - Joschua Knauf
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
| | - Maximilian A. Floss
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
| | - Jonas Doneit
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
| | - Beate Wolf
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
| | - Felix Maurer
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
| | - Daniel I. Sessler
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas Volk
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
| | - Sascha Kreuer
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
| | - Tobias Fink
- CBR—Center of Breath Research, Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg, 66421 Saarland, Germany; (D.K.); (J.K.); (M.A.F.); (J.D.); (B.W.); (F.M.); (T.V.); (S.K.); (T.F.)
- Outcomes Research Consortium, Cleveland, OH 44195, USA;
| |
Collapse
|
48
|
Jiwa N, Takats Z, Leff DR, Sutton C. Breast health screening: a UK-wide questionnaire. BMJ Nutr Prev Health 2021; 4:206-212. [PMID: 34308128 PMCID: PMC8258049 DOI: 10.1136/bmjnph-2021-000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/04/2022] Open
Abstract
Background Currently, there is an unmet clinical need in identifying and screening women at high risk of breast cancer, where tumours are often aggressive and treatment intervention is too late to prevent metastasis, recurrence and mortality. This has been brought into sharp focus by the SARS-CoV-2 global pandemic, constantly changing hospital policies and surgical guidelines in reducing access to established screening and treatment regimens. Nipple aspirate fluid (NAF), is thought to provide a unique window into the biological processes occurring within the breast, particularly in the context of a developing neoplasm. Evaluation of NAF in asymptomatic women, for novel chemical biomarkers of either early disease and/or cancer risk offers tremendous promise as a tool to facilitate early detection and to supplement screening. However, it is acceptability as a method of collection and screening by women is critical and yet unknown. A breast health questionnaire was disseminated to women through breast cancer charities, patient support groups and social media platforms, with the aim of collecting opinions on the acceptability of use of NAF as a potential screening tool. Method Following ethical approval a questionnaire was prepared using online surveys consisting of four parts: (a) introduction on breast health screening in the UK, (b) core demographic data, (c) questions regarding screening and the acceptability of using NAF and (d) opinions about the process of collecting and using nipple fluid for screening. The voluntary and anonymous questionnaire was disseminated through social media, professional networks, charity websites and by individuals between October 2019 and December 2020. Survey responses were collected electronically, and the data analysed using online surveys statistical tools. Results A total of 3178 women completed the questionnaire (65.9% Caucasian, 27.7% Asian/British Asian, 0.6% black and 5.0% other). Of these, 2650 women (83.4%) had no prior knowledge of NAF and 89.4% were unaware that NAF can be expressed in up to 90% of all women. Concerning their risk of breast cancer, 89.8% of women were keen to know their future risk of breast cancer, 8.5% were unsure whether they wanted to know their risk and a further, 1.6% did not want to know. Regarding screening, 944 women (29.8%) were unaware of the lack of routine National Health Service Breast Screening for those under the age of 47 years. Furthermore, 53.0% of women were unaware that mammographic screening is affected by breast density. In terms of the acceptability of home testing for breast health, 92.0% were keen to undergo a home test. Both 79.7% and 70.9% stated they would consider hand massage and a breast pump to acquire nipple fluid samples, respectively. A further 48.6% of women would consider the use of a hormonal nasal spray for the same purpose. However, with regards to acquiring results from NAF testing, 42.6% of women would prefer to receive results at home and 34.2% in a medical facility. Finally, 91.6% of women believed that breast health should be incorporated as part of school education curriculum. Conclusion Public awareness regarding breast screening protocols and limitations of mammography could be improved. Many women were unaware that NAF might be a useful biofluid for future risk prediction, and yet the concept of self-testing of nipple fluid, with either hand massage or a breast pump was well received. Efforts should be made to increase awareness of the benefits of alternative and supplementary tests, especially in the context of high-risk individuals and younger patients.
Collapse
Affiliation(s)
- Natasha Jiwa
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Zoltan Takats
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Daniel R Leff
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Breast Surgery, Imperial College Healthcare NHS Trust, London, UK
| | - Christopher Sutton
- Department of Chemistry and Biosciences, University of Bradford, Bradford, UK
| |
Collapse
|
49
|
Jung YJ, Seo HS, Kim JH, Song KY, Park CH, Lee HH. Advanced Diagnostic Technology of Volatile Organic Compounds Real Time analysis Analysis From Exhaled Breath of Gastric Cancer Patients Using Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry. Front Oncol 2021; 11:560591. [PMID: 33996531 PMCID: PMC8116791 DOI: 10.3389/fonc.2021.560591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/06/2021] [Indexed: 02/01/2023] Open
Abstract
Background Screening endoscopy is considered to be the most accurate tool for early detection of gastric cancer, but it is both invasive and costly. It is therefore essential to develop cost-effective and non-invasive diagnostic tools for gastric cancer. The aim of this study is to investigate the presence of certain volatile organic compounds (VOCs) associated with gastric cancer and to survey the usefulness of VOCs as screening tools of gastric cancer. Methods The present study was conducted prospectively to identify the relationship between gastric cancer and specific VOCs quantified by mass spectrometry. Exhaled breath samples from a total of 43 participants were analysed. This study was approved by the Institutional Review Board of the College of Medicine, Catholic University of Korea (KC16TISI0598), and registered to clinical research information service (KCT0004356). Results Nine VOCs differed significantly between the control and cancer patient groups. When participants were divided into control, early gastric cancer (EGC), and advanced gastric cancer (AGC) groups, seven VOCs remained significantly different. Of these, four (propanal, aceticamide, isoprene and 1,3 propanediol) showed gradual increases as cancer advanced, from normal control to EGC to AGC. In receiver operating characteristic curves for these four VOCs, the area under the curve for gastric cancer prediction was highest (0.842) when more than two VOCs were present. Conclusions The present study offers potential directions for non-invasive gastric cancer screening, and may inspire advanced diagnostic technologies in the era of smart home healthcare. However, despite the high accuracy, cancer-specific VOCs from several studies on different populations, and analytic methods show inconsistency, it is necessary to establish standards for each analytical method, and to validate on each population.
Collapse
Affiliation(s)
- Yoon Ju Jung
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ho Seok Seo
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Hyun Kim
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kyo Young Song
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Cho Hyun Park
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Han Hong Lee
- Division of Gastrointestinal Surgery, Department of Surgery, Catholic Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
50
|
Drabińska N, Flynn C, Ratcliffe N, Belluomo I, Myridakis A, Gould O, Fois M, Smart A, Devine T, Costello BDL. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J Breath Res 2021; 15. [PMID: 33761469 DOI: 10.1088/1752-7163/abf1d0] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
This paper comprises an updated version of the 2014 review which reported 1846 volatile organic compounds (VOCs) identified from healthy humans. In total over 900 additional VOCs have been reported since the 2014 review and the VOCs from semen have been added. The numbers of VOCs found in breath and the other bodily fluids are: blood 379, breath 1488, faeces 443, milk 290, saliva 549, semen 196, skin 623 and urine 444. Compounds were assigned CAS registry numbers and named according to a common convention where possible. The compounds have been included in a single table with the source reference(s) for each VOC, an update on our 2014 paper. VOCs have also been grouped into tables according to their chemical class or functionality to permit easy comparison. Careful use of the database is needed, as a number of the identified VOCs only have level 2-putative assignment, and only a small fraction of the reported VOCs have been validated by standards. Some clear differences are observed, for instance, a lack of esters in urine with a high number in faeces and breath. However, the lack of compounds from matrices such a semen and milk compared to breath for example could be due to the techniques used or reflect the intensity of effort e.g. there are few publications on VOCs from milk and semen compared to a large number for breath. The large number of volatiles reported from skin is partly due to the methodologies used, e.g. by collecting skin sebum (with dissolved VOCs and semi VOCs) onto glass beads or cotton pads and then heating to a high temperature to desorb VOCs. All compounds have been included as reported (unless there was a clear discrepancy between name and chemical structure), but there may be some mistaken assignations arising from the original publications, particularly for isomers. It is the authors' intention that this work will not only be a useful database of VOCs listed in the literature but will stimulate further study of VOCs from healthy individuals; for example more work is required to confirm the identification of these VOCs adhering to the principles outlined in the metabolomics standards initiative. Establishing a list of volatiles emanating from healthy individuals and increased understanding of VOC metabolic pathways is an important step for differentiating between diseases using VOCs.
Collapse
Affiliation(s)
- Natalia Drabińska
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | - Cheryl Flynn
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Norman Ratcliffe
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ilaria Belluomo
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Antonis Myridakis
- Department of Surgery and Cancer, Imperial College London, St. Mary's Campus, QEQM Building, London W2 1NY, United Kingdom
| | - Oliver Gould
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Matteo Fois
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Amy Smart
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Terry Devine
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| | - Ben De Lacy Costello
- Centre of Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, United Kingdom
| |
Collapse
|