1
|
Das B, Bhattacharjee J, Preeti, Mishra A, Jain K, Iyer S, Kesarwani A, Sahu P, Sinha P, Nagarajan P, Upadhyay P. Intrasplenic Transplantation of Hepatocytes After Partial Hepatectomy in NOD.SCID Mice. J Vis Exp 2018. [PMID: 29553548 DOI: 10.3791/56018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Partial hepatectomy is a versatile and reproducible method to study liver regeneration and the effect of cell based therapeutics in various pathological conditions. Partial hepatectomy also facilitates the increased engraftment and proliferation of transplanted cells by accelerating neovascularization and cell migration towards the liver. Here, we describe a simple protocol for performing 30% hepatectomy and transplantation of cells in the spleen of a non-obese diabetic/severe combined immunodeficient NOD.SCID (NOD.CB17-Prkdcscid/J) mouse. In this procedure, two small incisions are made. The first incision is to expose and resect the left lobe of the liver, and another small incision is made to expose the spleen for the intrasplenic transplantation of cells. This procedure does not require any specialized surgical skills, and it can be completed in 5-7 minutes with less stress and pain, faster recovery, and better survival. We have demonstrated the transplantation of hepatocytes isolated from a green fluorescent protein (GFP) expressing mouse (Transgenic C57BL/6-Tg (UBC-GFP) 30Scha/J), as well as hepatocyte like cells of human origin (NeoHep) in partially hepatectomized NOD.SCID mice.
Collapse
Affiliation(s)
| | | | - Preeti
- National Institute of Immunology
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Carballo CB, Lebaschi A, Rodeo SA. Cell-based approaches for augmentation of tendon repair. TECHNIQUES IN SHOULDER & ELBOW SURGERY 2017; 18:e6-e14. [PMID: 29276433 PMCID: PMC5737795 DOI: 10.1097/bte.0000000000000132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-based approaches are among the principal interventions in orthobiologics to improve tendon and ligament healing and to combat degenerative processes. The number of options available for investigation are expanding rapidly and investigators have an increasing number of cell types to choose from for research purposes. However, in part due to the current regulatory environment, the list of available cells at clinicians' disposal for therapeutic purposes is still rather limited. In this review, we present an overview of the main cellular categories in current use. Notable recent developments in cell-based approaches include the introduction of diverse sources of mesenchymal stem cells, pluripotent cells of extra-embryonic origin, and the emerging popularity of fully differentiated cells such as tenocytes and endothelial cells. Delivery strategies are discussed and a succinct discussion of the current regulatory environment in the United States is presented.
Collapse
Affiliation(s)
- Camila B Carballo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| | - Amir Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| | - Scott A Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopedic Soft Tissue Research Program, Hospital for Special Surgery
| |
Collapse
|
3
|
Guan X, Wang N, Cui F, Liu Y, Liu P, Zhao J, Han C, Li X, Leng Z, Li Y, Ji X, Zou W, Liu J. Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Mol Med Rep 2015; 13:1487-94. [PMID: 26717806 PMCID: PMC4732856 DOI: 10.3892/mmr.2015.4743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/25/2015] [Indexed: 12/20/2022] Open
Abstract
Human adipose-derived stem cells (hADSCs), widely present in the adult human body, are an emerging and attractive tool for the establishment of stem cell-based therapies for the treatment of liver disease. However, the mechanism underlying hADSCs hepatic differentiation remains to be elucidated. Caveolin-1 (Cav-1), a 21–24 kDa membrane structural protein, is important in liver regeneration and development. In the present study, fluorescence immuno-cytochemistry and western blotting were used to analyze the expression levels of Cav-1 and evaluate its effects on the hepatic differentiation of hADSCs. The results revealed that primary hADSCs preserved the ability to proliferate and differentiate into hepatocyte-like cells. As demonstrated by semiquantitative reverse transcription-polymerase chain reaction, hepatocyte-inducing factors significantly increased the expression of Cav-1 in a time-dependent manner, as indicated by increased expression levels of the albumin (ALB) and α-fetoprotein (AFP) markers. In addition the expression levels of ALB and HNF1A significantly decreased following small interfering RNA-mediated knockdown of Cav-1. The mitogen-activated protein kinase (MAPK) signaling pathway was activated during hepatic differentiation and inhibited following Cav-1 knockdown. These results suggested that Cav-1 may regulate the hepatocyte-like differentiation of hADSCs by modulating mitogen-activated protein kinase kinase/MAPK signaling. The results of the present study will provide experimental and theoretical basis for further clinical studies on stem cell transplantation in the treatment of liver disease.
Collapse
Affiliation(s)
- Xin Guan
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Nan Wang
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Fenggong Cui
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Yang Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Peng Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jingyuan Zhao
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Chao Han
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoyan Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhiqian Leng
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ying Li
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaofei Ji
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Wei Zou
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, College of Life Science, Liaoning Normal University, Dalian, Liaoning 116029, P.R. China
| | - Jing Liu
- Regenerative Medicine Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
4
|
Peripheral Blood Monocytes as Adult Stem Cells: Molecular Characterization and Improvements in Culture Conditions to Enhance Stem Cell Features and Proliferative Potential. Stem Cells Int 2015; 2016:7132751. [PMID: 26798361 PMCID: PMC4699085 DOI: 10.1155/2016/7132751] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
Adult stem or programmable cells hold great promise in diseases in which damaged or nonfunctional cells need to be replaced. We have recently demonstrated that peripheral blood monocytes can be differentiated in vitro into cells resembling specialized cell types like hepatocytes and pancreatic beta cells. During phenotypic conversion, the monocytes downregulate monocyte/macrophage differentiation markers, being indicative of partial dedifferentiation, and are partially reprogrammed to acquire a state of plasticity along with expression of various markers of pluripotency and resumption of mitosis. Upregulation of stem cell markers and mitotic activity in the cultures was shown to be controlled by autocrine production/secretion of activin A and transforming growth factor-beta (TGF-β). These reprogrammed monocyte derivatives were termed "programmable cells of monocytic origin" (PCMO). Current efforts focus on establishing culture conditions that increase both the plasticity and proliferation potential of PCMO in order to be able to generate large amounts of blood-derived cells suitable for both autologous and allogeneic therapies.
Collapse
|
5
|
Esrefoglu M. Role of stem cells in repair of liver injury: Experimental and clinical benefit of transferred stem cells on liver failure. World J Gastroenterol 2013; 19:6757-6773. [PMID: 24187451 PMCID: PMC3812475 DOI: 10.3748/wjg.v19.i40.6757] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Although the liver has a high regenerative capacity, as a result of massive hepatocyte death, liver failure occurs. In addition to liver failure, for acute, chronic and hereditary diseases of the liver, cell transplantation therapies can stimulate regeneration or at least ensure sufficient function until liver transplantation can be performed. The lack of donor organs and the risks of rejection have prompted extensive experimental and clinical research in the field of cellular transplantation. Transplantation of cell lineages involved in liver regeneration, including mature hepatocytes, fetal hepatocytes, fetal liver progenitor cells, fetal stem cells, hepatic progenitor cells, hepatic stem cells, mesenchymal stem cells, hematopoietic stem cells, and peripheral blood and umbilical cord blood stem cells, have been found to be beneficial in the treatment of liver failure. In this article, the results of experimental and clinical cell transplantation trials for liver failure are reviewed, with an emphasis on regeneration.
Collapse
|
6
|
Gene silencing of 4-1BB by RNA interference inhibits acute rejection in rats with liver transplantation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:192738. [PMID: 23484089 PMCID: PMC3581255 DOI: 10.1155/2013/192738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/18/2012] [Indexed: 12/22/2022]
Abstract
The 4-1BB signal pathway plays a key role in organ transplantation tolerance. In this study, we have investigated the effect of gene silencing of 4-1BB by RNA interference (RNAi) on the acute rejection in rats with liver transplantation. The recombination vector of lentivirus that contains shRNA targeting the 4-1BB gene (LV-sh4-1BB) was constructed. The liver transplantation was performed using the two-cuff technique. Brown-Norway (BN) recipient rats were infected by the recombinant LVs. The results showed that gene silencing of 4-1BB by RNAi downregulated the 4-1BB gene expression of the splenic lymphocytes in vitro, and the splenic lymphocytes isolated from the rats with liver transplantation. LV-sh4-1BB decreased the plasma levels of liver injury markers including AST, ALT, and BIL and also decreased the level of plasma IL-2 and IFN-γ in recipient rats with liver transplantation. Lentivirus-mediated delivery of shRNA targeting 4-1BB gene prolonged the survival time of recipient and alleviated the injury of liver morphology in recipient rats with liver transplantation. In conclusion, our results demonstrate that gene silencing of 4-1BB by RNA interference inhibits the acute rejection in rats with liver transplantation.
Collapse
|
7
|
Abstract
Stem cell research plays an important role in orthopedic regenerative medicine today. Current literature provides us with promising results from animal research in the fields of bone, tendon, and cartilage repair. While early clinical results are already published for bone and cartilage repair, the data about tendon repair is limited to animal studies. The success of these techniques remains inconsistent in all three mentioned areas. This may be due to different application techniques varying from simple mesenchymal stem cell injection up to complex tissue engineering. However, the ideal carrier for the stem cells still remains controversial. This paper aims to provide a better understanding of current basic research and clinical data concerning stem cell research in bone, tendon, and cartilage repair. Furthermore, a focus is set on different stem cell application techniques in tendon reconstruction, cartilage repair, and filling of bone defects.
Collapse
|
8
|
Ezzat TM, Dhar DK, Newsome PN, Malagó M, Olde Damink SWM. Use of hepatocyte and stem cells for treatment of post-resectional liver failure: are we there yet? Liver Int 2011; 31:773-84. [PMID: 21645208 DOI: 10.1111/j.1478-3231.2011.02530.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-operative liver failure following extensive resections for liver tumours is a rare but significant complication. The only effective treatment is liver transplantation (LT); however, there is a debate about its use given the high mortality compared with the outcomes of LT for chronic liver diseases. Cell therapy has emerged as a possible alternative to LT especially as endogenous hepatocyte proliferation is likely inhibited in the setting of prior chemo/radiotherapy. Both hepatocyte and stem cell transplantations have shown promising results in the experimental setting; however, there are few reports on their clinical application. This review identifies the potential stem cell sources in the body, and highlights the triggering factors that lead to their mobilization and integration in liver regeneration following major liver resections.
Collapse
Affiliation(s)
- Tarek M Ezzat
- HPB and Liver Transplantation Surgery, Royal Free Hospital, University College London, Pond Street, London, UK
| | | | | | | | | |
Collapse
|
9
|
Ehnert S, Schyschka L, Noss A, Knobeloch D, Kleeff J, Büchler P, Gillen S, Stöckle U, Burkhart J, Fabian E, Nussler AK. Further characterization of autologous NeoHepatocytes for in vitro toxicity testing. Toxicol In Vitro 2011; 25:1203-8. [PMID: 21621600 DOI: 10.1016/j.tiv.2011.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 05/13/2011] [Accepted: 05/13/2011] [Indexed: 10/18/2022]
Abstract
Gold standard for in vitro toxicity tests and drug screenings is primary human hepatocytes (hHeps). Because of their limited availability efforts have been made to provide alternatives, e.g., monocyte-derived NeoHepatocytes. In the past years it has been critically discussed if gaining hepatocyte features is associated with trans-differentiation of monocytes or their activation towards a macrophage phenotype. Generating NeoHepatocytes in the presence of six different human AB sera, fetal calf serum (FCS) or autologous serum showed that yield and quality of NeoHepatocytes is inversely correlated to macrophage activation. Using autologous serum constantly the highest amount of cells with the best metabolic capacity was obtained. Focus of this study was to further analyze bio-transformation capacity of the optimized NeoHepatocytes for use as in vitro toxicity test-system. Treatment of the optimized NeoHepatocytes with two different pro-teratogenic substances with corresponding metabolites and eight known hepatotoxins showed comparable toxicity to hHeps. Bio-transformation rates, assessed by testosterone metabolism, were comparable in both cell types. Our data reveal that use of autologous serum reduced macrophage activation which improved yield and function of NeoHepatocytes resulting in bio-transformation and toxicity profiles comparable to hHeps. Thus, their easy accessibility makes them an ideal candidate for in vitro toxicity studies.
Collapse
Affiliation(s)
- S Ehnert
- Dept. of Traumatology, MRI, Technische Universität München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shi XL, Gu JY, Zhang Y, Han B, Xiao JQ, Yuan XW, Zhang N, Ding YT. Protective effects of ACLF sera on metabolic functions and proliferation of hepatocytes co-cultured with bone marrow MSCs in vitro. World J Gastroenterol 2011; 17:2397-406. [PMID: 21633639 PMCID: PMC3103792 DOI: 10.3748/wjg.v17.i19.2397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/13/2011] [Accepted: 01/20/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether the function of hepatocytes co-cultured with bone marrow mesenchymal stem cells (MSCs) could be maintained in serum from acute-on-chronic liver failure (ACLF) patients.
METHODS: Hepatocyte supportive functions and cytotoxicity of sera from 18 patients with viral hepatitis B-induced ACLF and 18 healthy volunteers were evaluated for porcine hepatocytes co-cultured with MSCs and hepatocyte mono-layered culture, respectively. Chemokine profile was also examined for the normal serum and liver failure serum.
RESULTS: Hepatocyte growth factor (HGF) and Tumor necrosis factor; tumor necrosis factor (TNF)-α were remarkably elevated in response to ACLF while epidermal growth factor (EGF) and VEGF levels were significantly decreased. Liver failure serum samples induced a higher detachment rate, lower viability and decreased liver support functions in the homo-hepatocyte culture. Hepatocytes co-cultured with MSCs could tolerate the cytotoxicity of the serum from ACLF patients and had similar liver support functions compared with the hepatocytes cultured with healthy human serum in vitro. In addition, co-cultured hepatocytes maintained a proliferative capability despite of the insult from liver failure serum.
CONCLUSION: ACLF serum does not impair the cell morphology, viability, proliferation and overall metabolic capacities of hepatocyte co-cultured with MSCs in vitro.
Collapse
|
11
|
Nussler AK, Zeilinger K, Schyschka L, Ehnert S, Gerlach JC, Yan X, Lee SML, Ilowski M, Thasler WE, Weiss TS. Cell therapeutic options in liver diseases: cell types, medical devices and regulatory issues. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1087-1099. [PMID: 21461918 DOI: 10.1007/s10856-011-4306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 03/24/2011] [Indexed: 05/30/2023]
Abstract
Although significant progress has been made in the field of orthotopic liver transplantation, cell-based therapies seem to be a promising alternative to whole-organ transplantation. The reasons are manifold but organ shortage is the main cause for this approach. However, many problems such as the question which cell type should be used or which application site is best for transplantation have been raised. In addition, some clinicians have had success by cultivating liver cells in bioreactors for temporary life support. Besides answering the question which cell type, which injection site or even which culture form should be used for liver support recent international harmonization of legal requirements is needed to be addressed by clinicians, scientists and companies dealing with cellular therapies. We here briefly summarize the possible cell types used to partially or temporarily correct liver diseases, the most recent development of bioreactor technology and important regulatory issues.
Collapse
Affiliation(s)
- Andreas K Nussler
- Department of Traumatology, MRI, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ehnert S, Seeliger C, Vester H, Schmitt A, Saidy-Rad S, Lin J, Neumaier M, Gillen S, Kleeff J, Friess H, Burkhart J, Stöckle U, Nüssler AK. Autologous serum improves yield and metabolic capacity of monocyte-derived hepatocyte-like cells: possible implication for cell transplantation. Cell Transplant 2011; 20:1465-77. [PMID: 21294943 DOI: 10.3727/096368910x550224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte-transplantation is a therapeutic approach for diverse acute and chronic liver diseases. As availability of primary cells is limited, there is an increasing demand for hepatocyte-like cells (e.g., neohepatocytes generated from peripheral blood monocytes). The aim of this study was to evaluate the effects of six different human AB sera, fetal calf serum, or autologous serum on production of neohepatocytes. The yield and quality of neohepatocytes varied considerably depending on the different sera. Using autologous sera for the whole production process we constantly generated the highest amount of cells with the highest metabolic activity for phase I (e.g., CYP1A1/2, CYP3A4) and phase II enzymes (e.g., glutathione-S-transferase). Moreover, similar effects were seen examining glucose and urea metabolism. Especially, glucose-6-phosphatase and PAS staining showed distinct serum-dependent differences. The role of macrophage activation was investigated by measuring the secretion of TNF-α, TGF-β, and RANKL, MMP activity, as well as mRNA levels of different interleukins in programmable cells of monocytic origin (PCMO). Our data clearly demonstrate that the use of autologous serum reduced initial macrophage activation in PCMOs and subsequently improved both yield and function of differentiated neohepatocytes. The autologous approach presented here might also be useful in other stem cell preparation processes where cell activation during generation shall be kept to a minimum.
Collapse
Affiliation(s)
- S Ehnert
- Department of Traumatology, MRI, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ungefroren H, Groth S, Hyder A, Thomsen N, Hinz H, Reiling N, Grage-Griebenow E, Held-Feindt J, Schulze M, Nüssler AK, Fändrich F. The Generation of Programmable Cells of Monocytic Origin Involves Partial Repression of Monocyte/Macrophage Markers and Reactivation of Pluripotency Genes. Stem Cells Dev 2010; 19:1769-80. [DOI: 10.1089/scd.2009.0351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Hendrik Ungefroren
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | - Stephanie Groth
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | - Ayman Hyder
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | - Niels Thomsen
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | - Hebke Hinz
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | - Norbert Reiling
- Molecular Infection Biology, Research Center Borstel, Borstel, Germany
| | | | | | - Maren Schulze
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| | | | - Fred Fändrich
- Clinic for Applied Cellular Medicine, Department of Neurosurgery, Kiel, Germany
| |
Collapse
|
14
|
Current world literature. Curr Opin Anaesthesiol 2010; 23:283-93. [PMID: 20404787 DOI: 10.1097/aco.0b013e328337578e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Ehnert S, Knobeloch D, Blankenstein A, Müller A, Böcker U, Gillen S, Friess H, Thasler WE, Dooley S, Nussler AK. Neohepatocytes from alcoholics and controls express hepatocyte markers and display reduced fibrogenic TGF-ß/Smad3 signaling: advantage for cell transplantation? Alcohol Clin Exp Res 2010; 34:708-18. [PMID: 20102559 DOI: 10.1111/j.1530-0277.2009.01140.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Liver transplantation is the only definitive treatment for end stage liver disease. Donor organ scarcity raises a growing interest in new therapeutic options. Recently, we have shown that injection of monocyte-derived NeoHepatocytes can increase survival in rats with extended liver resection. In order to apply this technology in humans with chronic liver diseases in an autologous setting, we generated NeoHepatocytes from patients with alcoholic liver disease and healthy controls and compared those to human hepatocytes. METHODS We generated NeoHepatocytes from alcoholics with Child A and B cirrhosis and healthy controls. Hepatocytes marker expression and transforming growth factor (TGF)-beta signaling was investigated by RT-PCR, Western blot, immunofluorescent staining, and adenoviral reporter assays. Glucose and urea was measured photometrically. Phase I and II enzyme activities were measured using fluorogenic substrates. Neutral lipids were visualized by Oil Red O staining. RESULTS There was no significant difference in generation and yield of NeoHepatocytes from alcoholics and controls. Hepatocyte markers, e.g., cytokeratin18 and alcohol dehydrogenase 1, increased significantly throughout differentiation. Glucose and urea production did not differ between alcoholics and controls and was comparable to human hepatocytes. During differentiation, phase I and II enzyme activities increased, however remained significantly lower than in human hepatocytes. Fat accumulation was induced by treatment with insulin, TGF-beta and ethanol only in differentiated cells and hepatocytes. TGF-beta signaling, via Smad transcription factors, critically required for progression of chronic liver disease, was comparable among the investigated cell types, merely expression of Smad1 and -3 was reduced (approximately 30 and approximately 60%) in monocytes, programmable cells of monocytic origin, and NeoHepatocytes. Subsequently, expression of TGF-beta regulated pro-fibrogenic genes, e.g., connective tissue growth factor and fibronectin was reduced. CONCLUSIONS Generation of NeoHepatocytes from alcoholics, displaying several features of human hepatocytes, offers new perspectives for cell therapeutic approaches, as cells can be obtained repeatedly in a noninvasive manner. Furthermore, the autologous setting reduces the need for immunosuppressants, which may support recovery of patients which are declined for liver transplantation.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Klinikum rechts der Isar, Department of Traumatology, MRI, TechnischeUniversität München, München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ungefroren H, Fändrich F. The Programmable Cell of Monocytic Origin (PCMO): A Potential Adult Stem/Progenitor Cell Source for the Generation of Islet Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:667-82. [DOI: 10.1007/978-90-481-3271-3_29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Ehnert S, Glanemann M, Schmitt A, Vogt S, Shanny N, Nussler NC, Stöckle U, Nussler A. The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg 2009; 394:985-97. [PMID: 19644703 DOI: 10.1007/s00423-009-0546-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 02/06/2023]
Abstract
Stem cells are one of the most fascinating areas in regenerative medicine today. They play a crucial role in the development and regeneration of human life and are defined as cells that continuously reproduce themselves while maintaining the ability to differentiate into various cell types. Stem cells are found at all developmental stages, from embryonic stem cells that differentiate into all cell types found in the human body to adult stem cells that are responsible for tissue regeneration. The general opinion postulates that clinical therapies based on the properties of stem cells may have the potential to change the treatment of degenerative diseases or important traumatic injuries in the "near" future. We here briefly review the literature in particularly for the liver, heart, kidney, cartilage, and bone regeneration.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Department of Traumatology, TU Munich, Klinikum rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|