1
|
Fawaz A, Mohammed MM, Ismail A, Rani KGA, Samsudin AR. The influence of simvastatin on osteoblast functionality in the presence of titanium dioxide particles In-vitro. Arch Oral Biol 2024; 167:106065. [PMID: 39146660 DOI: 10.1016/j.archoralbio.2024.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE Leaching of particles from dental titanium implant surfaces into preimplant microenvironment causes detrimental effects on bone cells. The current study investigated influence of simvastatin in mitigating adverse pro-inflammatory effects of titanium dioxide (TiO2) micro (MP) and nano (NP) particles on hFOB 1.19 cells in vitro. DESIGN Viability of hFOB 1.19 cells following exposure to varying concentrations of TiO2 MPs and NPs and simvastatin were measured by XTT assay. hFOB 1.19 cells were treated with 100 µg/mL of TiO2 MPs, 100 µg/mL of TiO2 NPs, 0.1 µM simvastatin, 100 µg/mL of TiO2 MPs+ 0.1 µM simvastatin and 100 µg/mL of TiO2 NPs+ 0.1 µM simvastatin. After 24 h, ROS was measured by flow cytometry. On day 14, real-time PCR analysis for pro-inflammatory cytokines and bone formation markers was done for TNFα, IL1β, osteocalcin, ALP, and Col1 markers; while ALP and RANKL/OPG ratio were determined by colorimetric and ELISA assays respectively. Further, mineralization study using Alizarin Red S staining (ARS) and calcium quantification were performed. RESULTS Exposure of hFOB to TiO2 MPs and NPs generated ROS and reduced cell viability significantly, with upregulation of pro-inflammatory markers TNFα and IL1β and downregulation of bone formation markers OC and increased RANKL/OPG ratio and lowered degree of mineralization. Treatment with 0.1 µM of simvastatin treatment reversed the effects by mitigating oxidative stress, dampening pro-inflammatory markers, upregulation of bone formation markers, lowering RANKL/OPG ratio and increasing degree of mineralization. CONCLUSION Simvastatin possesses antioxidant, anti-inflammatory, and pro-osteogenic properties that may support bone healing around titanium implants.
Collapse
Affiliation(s)
- Ahmad Fawaz
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Marwan Mansoor Mohammed
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Asmaa Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - K G Aghila Rani
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - A R Samsudin
- Oral and Craniofacial Health Sciences Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Yao Y, Du J, Wang D, Li N, Tao Z, Wu D, Peng F, Shi J, Zhou W, Zhao T, Tang Y. High-intensity interval training ameliorates postnatal immune activation-induced mood disorders through KDM6B-regulated glial activation. Brain Behav Immun 2024; 120:290-303. [PMID: 38851307 DOI: 10.1016/j.bbi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Postnatal immune activation (PIA) induces persistent glial activation in the brain and causes various neuropathologies in adults. Exercise training improves stress-related mood disorders; however, the role of exercise in psychiatric disorders induced by early-life immune activation and the association between exercise training and glial activation remain unclear. We compared the effects of different exercise intensities on the PIA model, including high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT). Both HIIT and MICT in adolescent mice inhibited neuroinflammation, remodeled synaptic plasticity, and improved PIA-induced mood disorders in adulthood. Importantly, HIIT was superior to MICT in terms of reducing inflammation and increasing body weight. RNA-seq of prefrontal cortex (PFC) tissues revealed a gene expression pattern, confirming that HIIT was more effective than MICT in improving brain glial cell activation through epigenetic modifications of KDM6B. We investigated the role of KDM6B, a specific histone lysine demethylation enzyme - histone 3 lysine 27 demethylase, in inhibiting glial activation against PIA-induced depression and anxiety by regulating the expression of IL-4 and brain-derived neurotrophic factor (BDNF). Overall, our data support the idea that HIIT improves PIA-induced mood disorders by regulating KDM6B-mediated epigenetic mechanisms and indicate that HIIT might be superior to MICT in improving mood disorders with PIA in mice. Our findings provide new insights into the treatment of anxiety and depression disorders.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyi Du
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Dongshuang Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Naigang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Zhouhang Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Dong Wu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Fan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China
| | - Jiaming Shi
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Wenjuan Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Tiantian Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China.
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Research Center for Sectional and Imaging Anatomy, Key Laboratory of Experimental Teratology of the Ministry of Education, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, Jinan, Shandong 250012, China; Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Tang X, Yan T, Wang S, Liu Q, Yang Q, Zhang Y, Li Y, Wu Y, Liu S, Ma Y, Yang L. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis. Neural Regen Res 2024; 19:642-649. [PMID: 37721296 PMCID: PMC10581587 DOI: 10.4103/1673-5374.380904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 05/27/2023] [Indexed: 09/19/2023] Open
Abstract
β-Sitosterol is a type of phytosterol that occurs naturally in plants. Previous studies have shown that it has anti-oxidant, anti-hyperlipidemic, anti-inflammatory, immunomodulatory, and anti-tumor effects, but it is unknown whether β-sitosterol treatment reduces the effects of ischemic stroke. Here we found that, in a mouse model of ischemic stroke induced by middle cerebral artery occlusion, β-sitosterol reduced the volume of cerebral infarction and brain edema, reduced neuronal apoptosis in brain tissue, and alleviated neurological dysfunction; moreover, β-sitosterol increased the activity of oxygen- and glucose-deprived cerebral cortex neurons and reduced apoptosis. Further investigation showed that the neuroprotective effects of β-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke. In addition, β-sitosterol showed high affinity for NPC1L1, a key transporter of cholesterol, and antagonized its activity. In conclusion, β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
Collapse
Affiliation(s)
- Xiuling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Saiying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qingqing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yongqiang Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yumei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Shuibing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, Shaanxi Province, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi Province, China
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, Air Force Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
4
|
Song A, Ding T, Wei N, Yang J, Ma M, Zheng S, Jin H. Schisandrin B induces HepG2 cells pyroptosis by activating NK cells mediated anti-tumor immunity. Toxicol Appl Pharmacol 2023; 472:116574. [PMID: 37271225 DOI: 10.1016/j.taap.2023.116574] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Pyroptosis, an inflammatory programmed cell death, has been suggested as a novel molecular mechanism for the treatment of hepatocellular carcinoma (HCC) with chemotherapeutic agents. Recent studies showed that natural killer (NK) cells could inhibit apoptosis and regulate the progression of pyroptosis in tumor cells. Schisandrin B (Sch B), a lignan isolated from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, has various pharmacological activities including anti-cancer effects. The purpose of this study was to investigate the effect of NK cells on Sch B's regulation of pyroptosis in HCC cells and the molecular mechanisms implicated. The results showed that Sch B alone could decrease cell viability and induce apoptosis in HepG2 cells. However, Sch B induced apoptosis in HepG2 cells was transformed into pyroptosis in the presence of NK cells. The mechanisms underlying NK cell's effect on pyroptosis in Sch B-treated HepG2 cells was related to its activation of caspase 3-Gasdermin E (GSDME). Further studies revealed that NK cell induced caspase 3 activation was derived from its activation of perforin-granzyme B pathway. This study explored the effect of Sch B and NK cells on pyroptosis in HepG2 cells and revealed that perforin-granzyme B-caspase 3-GSDME pathway is involved in the process of pyroptosis. These results proposed an immunomodulatory mechanism of Sch B on HepG2 cells pyroptosis and suggested Sch B as a promising immunotherapy combination partner for the treatment of HCC.
Collapse
Affiliation(s)
- Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Tingting Ding
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Na Wei
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Jieren Yang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China.
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China; Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
5
|
Idrovo JP, Boe DM, Kaahui S, Walrath T, McMahan RH, Kovacs EJ. Advanced age heightens hepatic damage in a murine model of scald burn injury. J Trauma Acute Care Surg 2021; 90:731-737. [PMID: 33306599 PMCID: PMC7979479 DOI: 10.1097/ta.0000000000003048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Elderly burn patients exhibit a lower survival rate compared with younger counterparts. The liver is susceptible to damage after burn injury, which predisposes to poor outcomes. Lipid homeostasis and the antioxidant glutathione system play fundamental roles in preserving liver integrity. Herein, we explored changes in these major pathways associated with liver damage in the aging animals after burn injury. METHODS We compared liver enzymes, histology, lipid-peroxidation, and glutathione-metabolism profiles from young and aged female mice after a 15% total body surface area burn. Mice were euthanized at 24 hours after injury, and livers and serum were collected. RESULTS Aged burn animals exhibited elevated (p < 0.05) aspartate aminotransferase and alanine aminotransferase levels and increased inflammatory cell infiltration, edema, and necrosis compared with their younger counterparts. The percentage of adipophilin-stained area in livers from young sham, young burn, aged sham, and aged burn groups was 10%, 44%, 16%, and 78% (p < 0.05), respectively. Liver malondialdehyde levels were 1.4 ± 0.5 nmol/mg, 2.06 ± 0.2 nmol/mg, 1.81 ± 0.12 nmol/mg, and 3.45 ± 0.2 nmol/mg (p < 0.05) in young sham, young burn, aged sham, and aged burn mice, respectively. Oxidized glutathione (GSSG) content increased 50% in the young burn, and 88% in aged burn animals compared with the young sham group (p < 0.05). The reduced glutathione GSH/GSSG ratio was significantly reduced by 54% in aged burn mice compared with young sham animals (p < 0.05). Furthermore, glutathione peroxidase gene expression showed a 96% decrease in the aged burn group compared with young sham mice (p < 0.05). CONCLUSION Aged burn animals exhibit severe liver damage from heightened lipid peroxidation and inadequate antioxidative response. The increased peroxidation is associated with abundant lipid deposits in hepatic tissue postburn and a weak antioxidative response due to hepatic glutathione peroxidase downregulation. Further studies will focus on the functional significance of these findings concerning hepatic homeostasis.
Collapse
Affiliation(s)
- Juan-Pablo Idrovo
- From the Division of G.I., Trauma, and Endocrine Surgery, (J.-P.I., D.M.B. S.K., T.W., R.H.M., E.J.K.), Division of Burn Research, Department of Surgery (D.M.B., T.W., R.H.M., E.J.K.), Department of Immunology and Microbiology (D.M.B., T.W., E.J.K.), Division of Alcohol Research, Department of Surgery (R.H.M., E.J.K.), University of Colorado, Aurora, Colorado
| | | | | | | | | | | |
Collapse
|
6
|
Chi Y, Liu X, Chai J. A narrative review of changes in microvascular permeability after burn. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:719. [PMID: 33987417 PMCID: PMC8106041 DOI: 10.21037/atm-21-1267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective We aimed to review and discuss some of the latest research results related to post-burn pathophysiological changes and provide some clues for future study. Background Burns are one of the most common and serious traumas and consist of a series of pathophysiological changes of thermal injury. Accompanied by thermal damage to skin and soft tissues, inflammatory mediators are released in large quantities. Changes in histamine, bradykinin, and cytokines such as vascular endothelial growth factor (VEGF), metabolic factors such as adenosine triphosphate (ATP), and activated neutrophils all affect the body’s vascular permeability. Methods We searched articles with subject words “microvascular permeability”, “burn” “endothelium”, and “endothelial barrier” in PubMed in English published from the beginning of database to Dec, 2020. Conclusions The essence of burn shock is the rapid and extensive fluid transfer in burn and non-burn tissue. After severe burns, the local and systemic vascular permeability increase, causing intravascular fluid extravasation, leading to a progressive decrease in effective circulation volume, an increase in systemic vascular resistance, a decrease in cardiac output, peripheral tissue edema, multiple organ failure, and even death. There are many cells, tissues, mediators and structures involved in the pathophysiological process of the damage to vascular permeability. Ulinastatin is a promising agent for this problem.
Collapse
Affiliation(s)
- Yunfei Chi
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Xiangyu Liu
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| | - Jiake Chai
- Burn Institute, The Fourth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Boyko T, Marin C, Furnari G, Flynn W, Lukan JK. Safety profile of atorvastatin in the role of burn wound injury conversion. Am J Surg 2020; 220:1323-1326. [PMID: 32660698 DOI: 10.1016/j.amjsurg.2020.06.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Atorvastatin could be beneficial in the treatment of burn patients to prevent burn wound progression from partial to full thickness. Our primary aim is to evaluate the safety of atorvastatin in burn patients. METHODS Single center retrospective chart review of burn patients receiving atorvastatin during admission May 2016-May 2019 with historic controls was performed. Demographics, burn total body surface area, atorvastatin doses, creatinine phosphokinase, aspartate aminotransferase levels and adverse events were analyzed. RESULTS 48 burn patients received atorvastatin during admission. Nine patients experienced elevated CK or AST levels during admission, but did not correlate with timing of atorvastatin administration and were comparable to levels in control patients. No adverse events associated with atorvastatin were identified. CONCLUSIONS Atorvastatin administered to patients with burn injuries was not associated with any adverse events or attributable lab abnormalities. We believe that atorvastatin is safe to use in patients with burns and can be safely studied to determine the drug's effect on the prevention of burn wound conversion.
Collapse
Affiliation(s)
- Tatiana Boyko
- University at Buffalo - State University of New York, Department of Surgery, Buffalo, NY, USA.
| | - Chelsea Marin
- University at Buffalo - State University of New York, School of Medicine, Buffalo, NY, USA
| | - Graziella Furnari
- Erie County Medical Center, Department of Surgesry, Buffalo, NY, USA
| | - William Flynn
- University at Buffalo - State University of New York, Department of Surgery, Buffalo, NY, USA; Erie County Medical Center, Department of Surgesry, Buffalo, NY, USA
| | - James K Lukan
- University at Buffalo - State University of New York, Department of Surgery, Buffalo, NY, USA; Erie County Medical Center, Department of Surgesry, Buffalo, NY, USA.
| |
Collapse
|
8
|
Atef MM, Hafez YM, Alshenawy HA, Emam MN. Ameliorative effects of autophagy inducer, simvastatin on alcohol-induced liver disease in a rat model. J Cell Biochem 2019; 120:7679-7688. [PMID: 30417426 DOI: 10.1002/jcb.28042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
Alcoholic liver disease (ALD) encompasses a variety of liver injuries with various underlying mechanisms but still no effective treatment. So we aimed to monitor the influence of simvastatin on alcohol-induced liver injury and elucidate the underlying mechanisms of its cytoprotective effect. Thirty male albino rats were randomly divided into five equal groups. Group 1 (control): received a standard diet; group 2: received simvastatin (10 mg kg-1 day -1 ) once a day orally for 8 weeks; group 3: received 20% ethanol (7.9 g kg -1 day -1 ) daily orally for 8 weeks; group 4: received 20% ethanol along with same simvastatin dose daily for 8 weeks; group 5: received 20% ethanol orally for 8 weeks then received the same simvastatin dose for the next 8 weeks. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were measured. Liver tissue malondialdehyde, reduced glutathione levels, and superoxide dismutase activity were estimated. B-cell lymphoma 2 and C/EBP homologous protein levels were evaluated by enzyme linked immunosorbent assay (ELISA). Light chain 3-II and peroxisome proliferation-activated receptor gamma messenger RNA expression was assessed by real-time polymerase chain reaction. Immunohistochemical staining was performed using anti-rat tumor necrosis factor-alpha antibody. Our results revealed that simvastatin treatment was able to ameliorate alcohol-induced liver damage; the improved biochemical data were confirmed by histopathological evaluation. Simvastatin being an autophagy inducer was able to prevent and reverse alcohol-induced liver changes via induction of autophagy, attenuation of oxidative stress, inflammation, and endoplasmic reticulum stress-induced apoptosis. Therefore, our findings suggest that treatment with simvastatin may be a useful approach in the management strategy of ALD.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Yasser Mostafa Hafez
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Marwa Nagy Emam
- Physiology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Nežić L, Amidžić L, Škrbić R, Gajanin R, Nepovimova E, Vališ M, Kuča K, Jaćević V. Simvastatin Inhibits Endotoxin-Induced Apoptosis in Liver and Spleen Through Up-Regulation of Survivin/NF-κB/p65 Expression. Front Pharmacol 2019; 10:54. [PMID: 30828299 PMCID: PMC6384256 DOI: 10.3389/fphar.2019.00054] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/18/2019] [Indexed: 12/20/2022] Open
Abstract
Endotoxemia is associated by dysregulated apoptosis of immune and non-immune cells. We investigated whether simvastatin has anti-apoptotic effects, and induces hepatocytes and lymphocytes survival signaling in endotoxin-induced liver and spleen injuries. Wistar rats were divided into the groups pretreated with simvastatin (20 or 40 mg/kg, orally) prior to a non-lethal dose of lipopolysaccharide (LPS), the LPS group, and the control. The severity of tissue inflammatory injuries was expressed as hepatic damage scores (HDS) and spleen damage scores (SDS), respectively. The apoptotic cell was detected by TUNEL (Terminal deoxynucleotidyl transferase dUTP Nick End Labeling) and immunohistochemical staining (expression of cleaved caspase-3, and anti-apoptotic Bcl-xL, survivin and NF-κB/p65). Simvastatin dose-dependently abolished HDS and SDS induced by LPS (p < 0.01), respectively. Simvastatin 40 mg/kg significantly decreased apoptotic index and caspase-3 cleavage in hepatocytes and lymphocytes (p < 0.01 vs. LPS group, respectively), while Bcl-XL markedly increased accordingly with simvastatin doses. In the simvastatin, groups were determined markedly increased cytoplasmic expression of survivin associated with nuclear positivity of NF-κB, in both hepatocytes and lymphocytes (p < 0.01 vs. LPS group). Cell-protective effects of simvastatin against LPS seemed to be mediated by up-regulation of survivin, which leads to reduced caspase-3 activation and inhibition of hepatocytes and lymphocytes apoptosis.
Collapse
Affiliation(s)
- Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ljiljana Amidžić
- Institute of Pathology, University Clinical Center of Republic of Srpska, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Ranko Škrbić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Radoslav Gajanin
- Institute of Pathology, University Clinical Center of Republic of Srpska, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Martin Vališ
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Kralove, Czechia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia.,Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Vesna Jaćević
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia.,Department of Experimental Toxicology and Pharmacology, National Poison Control Center, Military Medical Academy, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defense in Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Gong Y, Long X, Xu H, Yang X, Guo Q. The changes and prognostic value of liver function in young adults with severe burn: A retrospective observational study. Medicine (Baltimore) 2018; 97:e13721. [PMID: 30572508 PMCID: PMC6320172 DOI: 10.1097/md.0000000000013721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022] Open
Abstract
To analyze the changes in liver functions and the relationship between alterations in liver function and mortality risk in young adults with third-degree burn wounds on over 90% of the total body surface area (TBSA).A total of 23 fatally burned factory workers in an inflammable dust explosion and fire were enrolled from 2 intensive care units. Clinical data, particularly the laboratory tests for liver function, were retrospectively analyzed and compared between the survivor and non-survivor groups.Compared to survivors, non-survivors had significantly higher total bilirubin (TBIL), glutamate-pyruvate transaminase (GPT), glutamic-oxaloacetic transaminase, alkaline phosphatase, prothrombin time, and activated partial thromboplastin time (APTT) at the terminal point of this study (P <.05). In addition, the peak values of TBIL, GPT, and longer APTT were higher in non-survivors than in survivors during hospital course, and the peak values of TBIL was one of major prognostic factors for mortality risk. Furthermore, at the first 2 weeks, the cumulative survival rates were significantly lower in patients with liver dysfunction than those without liver dysfunction (P <.01).Our findings show that the great changes in liver function occurred in first 2 weeks after severe burns. Liver dysfunction may have an effect on clinical outcomes of post-burn. Measures to protect liver function and prevent from deterioration could be beneficial in improvement survival rate, especially during the first 2 weeks.
Collapse
Affiliation(s)
- Yan Gong
- Department of Rehabilitation medicine, The Affiliated Suzhou Hospital of Nanjing Medical University
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University
| | - Xianming Long
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hua Xu
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University
| | - Xinjing Yang
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University
| | - Qiang Guo
- Department of Emergency and Critical Care Medicine, The First Affiliated Hospital of Soochow University
| |
Collapse
|
11
|
Liang H, Feng Y, Cui R, Qiu M, Zhang J, Liu C. Simvastatin protects against acetaminophen-induced liver injury in mice. Biomed Pharmacother 2018; 98:916-924. [PMID: 29421861 DOI: 10.1016/j.biopha.2017.12.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to investigate the effect of simvastatin on acetaminophen (APAP) hepatotoxicity in a mouse model. Male C57BL/6 mice were allocated into the following groups: control, APAP, APAP+SIM10, APAP+SIM20, APAP+SIM100 and APAP+SIM200 groups. The mice in the APAP group were treated with saline intraperitoneally (i.p.) 72 h before and 24 h or 72 h after APAP challenge (i.p., 400 mg/kg of APAP). The simvastatin-treated groups were treated with different doses of simvastatin i.p. (10, 20, 100 and 200 mg/kg/day) as in the APAP group. After 24 h or 72 h of APAP challenge, blood and liver samples were collected to detect hepatic injury and liver regeneration. The results showed that low doses of simvastatin (10 and 20 mg/kg) could significantly reverse the histological change and decrease hepatic injury. Simvastatin also reduced the serum cytokine levels and transcriptional levels of tumor necrosis factor-α and interleukin-6 in the liver. The malonyldialdehyde and myeloperoxidase levels significantly decreased in the simvastatin treatment groups compared with the APAP group. Simvastatin restored the decrease in superoxide dismutase, catalase, glutathione and glutathione peroxidase activities induced by APAP hepatotoxicity. In addition, simvastatin inhibited hepatic C/EBP-homologous protein expression and hepatocyte apoptosis. However, simvastatin had no effect on liver regeneration after APAP hepatotoxicity. Moreover, high doses could aggravate APAP-induced liver injury. In conclusion, low doses of simvastatin had a significant therapeutic effect in APAP-induced liver injury by inhibiting oxidative stress, inflammation and apoptosis. However, high doses of simvastatin had adverse hepatotoxicity.
Collapse
Affiliation(s)
- Huan Liang
- Emergency Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Yang Feng
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang Shaanxi 712046, People's Republic of China
| | - Ruixia Cui
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of ICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China
| | - Minglong Qiu
- Xi'an Jiaotong University Health Science Center, Xi'an Shaanxi 710061, People's Republic of China
| | - Jingyao Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China; Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi 710061, People's Republic of China.
| |
Collapse
|
12
|
Al-Ghoul WM, Kim MS, Fazal N, Azim AC, Ali A. Evidence for simvastatin anti-inflammatory actions based on quantitative analyses of NETosis and other inflammation/oxidation markers. RESULTS IN IMMUNOLOGY 2014; 4:14-22. [PMID: 24809006 PMCID: PMC4009405 DOI: 10.1016/j.rinim.2014.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/21/2014] [Accepted: 03/21/2014] [Indexed: 12/25/2022]
Abstract
Simvastatin (SMV) has been shown to exhibit promising anti-inflammatory properties alongside its classic cholesterol lowering action. We tested these emerging effects in a major thermal injury mouse model (3rd degree scald, ~20% TBSA) with previously documented, inflammation-mediated intestinal defects. Neutrophil extracellular traps (NETs) inflammation measurement methods were used alongside classic gut mucosa inflammation and leakiness measurements with exogenous melatonin treatment as a positive control. Our hypothesis is that simvastatin has protective therapeutic effects against early postburn gut mucosa inflammation and leakiness. To test this hypothesis, we compared untreated thermal injury (TI) adult male mice with TI littermates treated with simvastatin (0.2 mg/kg i.p., TI + SMV) immediately following burn injury and two hours before being sacrificed the day after; melatonin-treated (Mel) (1.86 mg/kg i.p., TI + Mel) mice were compared as a positive control. Mice were assessed for the following: (1) tissue oxidation and neutrophil infiltration in terminal ileum mucosa using classic carbonyl, Gr-1, and myeloperoxidase immunohistochemical or biochemical assays, (2) NETosis in terminal ileum and colon mucosa homogenates and peritoneal and fluid blood samples utilizing flow cytometric analyses of the surrogate NETosis biomarkers, picogreen and Gr-1, and (3) transepithelial gut leakiness as measured in terminal ileum and colon with FITC-dextran and transepithelial electrical resistance (TEER). Our results reveal that simvastatin and melatonin exhibit consistently comparable therapeutic protective effects against the following: (1) gut mucosa oxidative stress as revealed in the terminal ileum by markers of protein carbonylation as well as myeloperoxidase (MPO) and Gr-1 infiltration, (2) NETosis as revealed in the gut milieu, peritoneal lavage and plasma utilizing picogreen and Gr-1 flow cytometry and microscopy, and (3) transepithelial gut leakiness as assessed in the ileum and colon by FITC-dextran leakiness and TEER. Thus, simvastatin exhibits strong acute anti-inflammatory actions associated with marked decreases in gut tissue and systemic NETosis and decreased gut mucosa leakiness.
Collapse
Affiliation(s)
- Walid M. Al-Ghoul
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Margarita S. Kim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Nadeem Fazal
- Department of Pharmaceutical Sciences, College of Pharmacy, Chicago State University, Chicago, IL, USA
| | - Anser C. Azim
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| | - Ashraf Ali
- Department of Biological Sciences, Chicago State University, Chicago, IL, USA
| |
Collapse
|
13
|
Zhao G, Yu YM, Shoup TM, Elmaleh DR, Bonab AA, Tompkins RG, Fischman AJ. Membrane potential-dependent uptake of 18F-triphenylphosphonium--a new voltage sensor as an imaging agent for detecting burn-induced apoptosis. J Surg Res 2014; 188:473-9. [PMID: 24582214 DOI: 10.1016/j.jss.2014.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/12/2013] [Accepted: 01/07/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mitochondrial dysfunction has been closely related to many pathologic processes, such as cellular apoptosis. Alterations in organelle membrane potential are associated with mitochondrial dysfunction. A fluorine-18 labeled phosphonium compound: (18)F-triphenylphosphonium ((18)F-TPP) was prepared to determine its potential use as a mitochondria-targeting radiopharmaceutical to evaluate cellular apoptosis. METHODS Studies were conducted in both ex vivo cell lines and in vivo using a burned animal model. Uptake of (18)F-TPP was assessed in PC-3 cells by gamma counting under the following conditions: graded levels of extracellular potassium concentrations, incubation with carbonyl cyanide m-chlorophenylhydrazone and staurosporine. Apoptosis was studied in a burn animal model using terminal deoxynucleotidyl transferase dUTP nick end labeling staining and simultaneous assessment of (18)F-TPP uptake by biodistribution. RESULTS We found that stepwise membrane depolarization by potassium (K) resulted in a linear decrease in (18)F-TPP uptake, with a slope of 0.62 ± 0.08 and a correlation coefficient of 0.936 ± 0.11. Gradually increased concentrations of m-chlorophenylhydrazone lead to decreased uptake of (18)F-TPP. Staurosporine significantly decreased the uptake of (18)F-TPP in PC-3 cells from 14.2 ± 3.8% to 5.6 ± 1.3% (P < 0.001). Burn-induced significant apoptosis (sham: 4.4 ± 1.8% versus burn: 24.6 ± 6.7 %; P < 0.005) and a reduced uptake of tracer in the spleens of burn-injured animals as compared with sham burn controls (burn: 1.13 ± 0.24% versus sham: 3.28 ± 0.67%; P < 0.005). Biodistribution studies demonstrated that burn-induced significant reduction in (18)F-TPP uptake in spleen, heart, lung, and liver, which were associated with significantly increased apoptosis. CONCLUSIONS (18)F-TPP is a promising new voltage sensor for detecting mitochondrial dysfunction and apoptosis in various tissues.
Collapse
Affiliation(s)
- Gaofeng Zhao
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Yong-Ming Yu
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Timothy M Shoup
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - David R Elmaleh
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Ali A Bonab
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Ronald G Tompkins
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts
| | - Alan J Fischman
- Department of Surgery, Massachusetts General Hospital, Shriners Hospitals for Children, and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|