1
|
Moyal A, Nazemian R, Colon EP, Zhu L, Benzar R, Palmer NR, Craycroft M, Hausladen A, Premont RT, Stamler JS, Klick J, Reynolds JD. Renal dysfunction in adults following cardiopulmonary bypass is linked to declines in S-nitroso hemoglobin: a case series. Ann Med Surg (Lond) 2024; 86:2425-2431. [PMID: 38694342 PMCID: PMC11060257 DOI: 10.1097/ms9.0000000000001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 05/04/2024] Open
Abstract
Background Impaired kidney function is frequently observed in patients following cardiopulmonary bypass (CPB). Our group has previously linked blood transfusion to acute declines in S-nitroso haemoglobin (SNO-Hb; the main regulator of tissue oxygen delivery), reductions in intraoperative renal blood flow, and postoperative kidney dysfunction. While not all CPB patients receive blood, kidney injury is still common. We hypothesized that the CPB procedure itself may negatively impact SNO-Hb levels leading to renal dysfunction. Materials and methods After obtaining written informed consent, blood samples were procured immediately before and after CPB, and on postoperative day (POD) 1. SNO-Hb levels, renal function (estimated glomerular filtration rate; eGFR), and plasma erythropoietin (EPO) concentrations were quantified. Additional outcome data were extracted from the patients' medical records. Results Twenty-seven patients were enroled, three withdrew consent, and one was excluded after developing bacteremia. SNO-Hb levels declined after surgery and were directly correlated with declines in eGFR (R=0.48). Conversely, plasma EPO concentrations were elevated and inversely correlated with SNO-Hb (R=-0.53) and eGFR (R=-0.55). Finally, ICU stay negatively correlated with SNO-Hb concentration (R=-0.32). Conclusion SNO-Hb levels are reduced following CPB in the absence of allogenic blood transfusion and are predictive of decreased renal function and prolonged ICU stay. Thus, therapies directed at maintaining or increasing SNO-Hb levels may improve outcomes in adult patients undergoing cardiac surgery.
Collapse
Affiliation(s)
| | - Ryan Nazemian
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Edwin Pacheco Colon
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Lin Zhu
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Ruth Benzar
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | | | | | - Alfred Hausladen
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
| | - Richard T. Premont
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - Jonathan S. Stamler
- Institute for Transformative Molecular Medicine
- Cardiology, School of Medicine Case Western Reserve University
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| | - John Klick
- Departments ofAnesthesiology & Perioperative Medicine
| | - James D. Reynolds
- Institute for Transformative Molecular Medicine
- Departments ofAnesthesiology & Perioperative Medicine
- Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
2
|
Nazemian R, Matta M, Aldamouk A, Zhu L, Awad M, Pophal M, Palmer NR, Armes T, Hausladen A, Stamler JS, Reynolds JD. S-Nitrosylated hemoglobin predicts organ yield in neurologically-deceased human donors. Sci Rep 2022; 12:6639. [PMID: 35459243 PMCID: PMC9033847 DOI: 10.1038/s41598-022-09933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
Current human donor care protocols following death by neurologic criteria (DNC) can stabilize macro-hemodynamic parameters but have minimal ability to preserve systemic blood flow and microvascular oxygen delivery. S-nitrosylated hemoglobin (SNO-Hb) within red blood cells (RBCs) is the main regulator of tissue oxygenation (StO2). Based on various pre-clinical studies, we hypothesized that brain death (BD) would decrease post-mortem SNO-Hb levels to negatively-impact StO2 and reduce organ yields. We tracked SNO-Hb and tissue oxygen in 61 DNC donors. After BD, SNO-Hb levels were determined to be significantly decreased compared to healthy humans (p = 0·003) and remained reduced for the duration of the monitoring period. There was a positive correlation between SNO-Hb and StO2 (p < 0.001). Furthermore, SNO-Hb levels correlated with and were prognostic for the number of organs transplanted (p < 0.001). These clinical findings provide additional support for the concept that BD induces a systemic impairment of S-nitrosylation that negatively impacts StO2 and reduces organ yield from DNC human donors. Exogenous S-nitrosylating agents are in various stages of clinical development. The results presented here suggest including one or more of these agents in donor support regimens could increase the number and quality of organs available for transplant.
Collapse
Affiliation(s)
- Ryan Nazemian
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Maroun Matta
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Pulmonology and Sleep Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Amer Aldamouk
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Lin Zhu
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Mohamed Awad
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Megan Pophal
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Nicole R Palmer
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Tonya Armes
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Alfred Hausladen
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Department of Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA.,Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, 4-128 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA
| | - James D Reynolds
- Institute for Transformative Molecular Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA. .,Department of Anesthesiology and Perioperative Medicine, School of Medicine Case Western Reserve University, Cleveland, OH, USA. .,Harrington Discovery Institute, University Hospitals-Cleveland Medical Center, 4-128 Wolstein Research Building, 2103 Cornell Road, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Premont RT, Singel DJ, Stamler JS. The enzymatic function of the honorary enzyme: S-nitrosylation of hemoglobin in physiology and medicine. Mol Aspects Med 2022; 84:101056. [PMID: 34852941 PMCID: PMC8821404 DOI: 10.1016/j.mam.2021.101056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at β-globin Cys93 (βCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.
Collapse
Affiliation(s)
- Richard T Premont
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - David J Singel
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59717, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
4
|
Abstract
OBJECTIVE To determine if addition of the S-nitrosylating agent ethyl nitrite (ENO) to the preservation solution can improve perfusion parameters in pumped human kidneys. BACKGROUND A significant percentage of actively stored kidneys experience elevations in resistance and decreases in flow rate during the ex vivo storage period. Preclinical work indicates that renal status after brain death is negatively impacted by inflammation and reduced perfusion-processes regulated by protein S-nitrosylation. To translate these findings, we added ENO to the preservation solution in an attempt to reverse the perfusion deficits observed in nontransplanted pumped human kidneys. METHODS After obtaining positive proof-of-concept results with swine kidneys, we studied donated human kidneys undergoing hypothermic pulsatile perfusion deemed unsuitable for transplantation. Control kidneys continued to be pumped a 4°C (ie, standard of care). In the experimental group, the preservation solution was aerated with 50 ppm ENO in nitrogen. Flow rate and perfusion were recorded for 10 hours followed by biochemical analysis of the kidney tissue. RESULTS In controls, perfusion was constant during the monitoring period (ie, flow rate remained low and resistance stayed high). In contrast, the addition of ENO produced significant and sustained reductions in resistance and increases in flow rate. ENO-treated kidneys had higher levels of cyclic guanosine monophosphate, potentially explaining the perfusion benefits, and increased levels of interleukin-10, suggestive of an anti-inflammatory effect. CONCLUSIONS S-Nitrosylation therapy restored the microcirculation and thus improved overall organ perfusion. Inclusion of ENO in the renal preservation solution holds promise to increase the number and quality of kidneys available for transplant.
Collapse
|
5
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
6
|
Perez-Protto SE, Reynolds JD, Nazemian R, You J, Hata JS, Latifi SQ, Lebovitz DJ. Peripheral tissue oxygenation and the number of organs transplanted per donor. Anaesth Intensive Care 2019; 46:601-607. [PMID: 30447670 DOI: 10.1177/0310057x1804600611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Current donor management practices target macrohaemodynamic parameters, but it is unclear if this leads to improvements in microvascular perfusion and tissue oxygenation; the latter may have more impact on organ status. In a recent preclinical study we determined that brain death impaired tissue perfusion and oxygen utilisation in swine while pharmacologic correction of these deficits improved organ function and reduced markers of tissue injury. As a first step in translating the preclinical findings, we conducted a prospective observational study to determine if there was an association between peripheral tissue oxygenation (measured by near-infrared spectroscopy) in deceased by neurological criteria human donors and the number of organs transplanted. In 60 donors, the mean time-weighted average of tissue oxygenation was 87.5% (standard deviation, SD, 5.2%) and the average number of organs transplanted was 3.5 (SD 2); there was a positive linear relationship between these two parameters. A 5% rise in tissue oxygenation was associated with an increase of 0.47 organs transplanted (95% confidence intervals 0.16 to 0.78) after adjusting for age (<i>P</i>=0.004). No such correlations were observed for the macrohaemodynamic or macro-oxygenation parameters (including arterial blood oxygenation). The results of this clinical trial are consistent with our preclinical work and support the postulate that targeting the microvasculature to improve tissue perfusion and tissue oxygen delivery in human donors has the potential to increase the quantity of organs suitable for transplant.
Collapse
Affiliation(s)
- S E Perez-Protto
- Departments of Critical Care; Outcomes Research, Anesthesiology Institute; Cleveland Clinic, Cleveland, Ohio, USA
| | - J D Reynolds
- Anesthesiology and Perioperative Medicine, Institute for Transformative Molecular Medicine/School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - R Nazemian
- Institute for Transformative Molecular Medicine; Department of Anesthesia & Perioperative Medicine, University Hospitals Case Medical Center; Cleveland, Ohio, USA
| | - J You
- Outcomes Research, Anesthesiology Institute; Department of Qualitative Health Sciences; Cleveland Clinic, Cleveland, Ohio, USA
| | - J S Hata
- Departments of Critical Care; Outcomes Research, Anesthesiology Institute; Cleveland Clinic, Cleveland, Ohio, USA
| | - S Q Latifi
- Department of Pediatric Critical Care, Cleveland Clinic Children's Hospital; Lifebanc; Cleveland, Ohio, USA
| | - D J Lebovitz
- Critical Care Medicine, Akron Children's Hospital, Akron; Lifebanc; Cleveland, Ohio, USA
| |
Collapse
|
7
|
Reynolds JD, Jenkins T, Matto F, Nazemian R, Farhan O, Morris N, Longphre JM, Hess DT, Moon RE, Piantadosi CA, Stamler JS. Pharmacologic Targeting of Red Blood Cells to Improve Tissue Oxygenation. Clin Pharmacol Ther 2018; 104:553-563. [PMID: 29238951 DOI: 10.1002/cpt.979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
Disruption of microvascular blood flow is a common cause of tissue hypoxia in disease, yet no therapies are available that directly target the microvasculature to improve tissue oxygenation. Red blood cells (RBCs) autoregulate blood flow through S-nitroso-hemoglobin (SNO-Hb)-mediated export of nitric oxide (NO) bioactivity. We therefore tested the idea that pharmacological enhancement of RBCs using the S-nitrosylating agent ethyl nitrite (ENO) may provide a novel approach to improve tissue oxygenation. Serial ENO dosing was carried out in sheep (1-400 ppm) and humans (1-100 ppm) at normoxia and at reduced fraction of inspired oxygen (FiO2 ). ENO increased RBC SNO-Hb levels, corrected hypoxia-induced deficits in tissue oxygenation, and improved measures of oxygen utilization in both species. No adverse effects or safety concerns were identified. Inasmuch as impaired oxygenation is a major cause of morbidity and mortality, ENO may have widespread therapeutic utility, providing a first-in-class agent targeting the microvasculature.
Collapse
Affiliation(s)
- James D Reynolds
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Anesthesiology & Perioperative Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Trevor Jenkins
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Division of Cardiology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Faisal Matto
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Division of Cardiology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Ryan Nazemian
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Department of Anesthesiology & Perioperative Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Obada Farhan
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Nathan Morris
- Department of Epidemiology and Biostatistics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - John M Longphre
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Douglas T Hess
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Division of Cardiology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Richard E Moon
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Claude A Piantadosi
- Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan S Stamler
- Institute for Transformative Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Division of Cardiology, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Abstract
Nitric oxide (NO) generated by endothelial cells to relax vascular smooth muscle is one of the most intensely studied molecules in the past 25 years. Much of what is known about NO regulation of NO is based on blockade of its generation and analysis of changes in vascular regulation. This approach has been useful to demonstrate the importance of NO in large scale forms of regulation but provides less information on the nuances of NO regulation. However, there is a growing body of studies on multiple types of in vivo measurement of NO in normal and pathological conditions. This discussion will focus on in vivo studies and how they are reshaping the understanding of NO's role in vascular resistance regulation and the pathologies of hypertension and diabetes mellitus. The role of microelectrode measurements in the measurement of [NO] will be considered because much of the controversy about what NO does and at what concentration depends upon the measurement methodology. For those studies where the technology has been tested and found to be well founded, the concept evolving is that the stresses imposed on the vasculature in the form of flow-mediated stimulation, chemicals within the tissue, and oxygen tension can cause rapid and large changes in the NO concentration to affect vascular regulation. All these functions are compromised in both animal and human forms of hypertension and diabetes mellitus due to altered regulation of endothelial cells and formation of oxidants that both damage endothelial cells and change the regulation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- Harold Glenn Bohlen
- Department of Cellular and Integrative Physiology, Indiana University Medical School, Indianapolis, Indiana, Indiana, USA
| |
Collapse
|
9
|
Wagner SJ, Glynn SA, Welniak LA. Research opportunities in optimizing storage of red blood cell products. Transfusion 2014; 54:483-94. [PMID: 23676138 PMCID: PMC3760974 DOI: 10.1111/trf.12244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 12/26/2022]
|
10
|
Roche CJ, Cassera MB, Dantsker D, Hirsch RE, Friedman JM. Generating S-nitrosothiols from hemoglobin: mechanisms, conformational dependence, and physiological relevance. J Biol Chem 2013; 288:22408-25. [PMID: 23775069 DOI: 10.1074/jbc.m113.482679] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vitro, ferrous deoxy-hemes in hemoglobin (Hb) react with nitrite to generate nitric oxide (NO) through a nitrite reductase reaction. In vivo studies indicate Hb with nitrite can be a source of NO bioactivity. The nitrite reductase reaction does not appear to account fully for this activity because free NO is short lived especially within the red blood cell. Thus, the exporting of NO bioactivity both out of the RBC and over a large distance requires an additional mechanism. A nitrite anhydrase (NA) reaction in which N2O3, a potent S-nitrosating agent, is produced through the reaction of NO with ferric heme-bound nitrite has been proposed (Basu, S., Grubina, R., Huang, J., Conradie, J., Huang, Z., Jeffers, A., Jiang, A., He, X., Azarov, I., Seibert, R., Mehta, A., Patel, R., King, S. B., Hogg, N., Ghosh, A., Gladwin, M. T., and Kim-Shapiro, D. B. (2007) Nat. Chem. Biol. 3, 785-794) as a possible mechanism. Legitimate concerns, including physiological relevance and the nature of the mechanism, have been raised concerning the NA reaction. This study addresses these concerns demonstrating NO and nitrite with ferric hemes under near physiological conditions yield an intermediate having the properties of the purported NA heme-bound N2O3 intermediate. The results indicate that ferric heme sites, traditionally viewed as a source of potential toxicity, can be functionally significant, especially for partially oxygenated/partially met-R state Hb that arises from the NO dioxygenation reaction. In the presence of low levels of nitrite and either NO or a suitable reductant such as L-cysteine, these ferric heme sites can function as a generator for the formation of S-nitrosothiols such as S-nitrosoglutathione and, as such, should be considered as a source of RBC-derived and exportable bioactive NO.
Collapse
Affiliation(s)
- Camille J Roche
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|