1
|
Biron E, Bédard F. Recent progress in the development of protein-protein interaction inhibitors targeting androgen receptor-coactivator binding in prostate cancer. J Steroid Biochem Mol Biol 2016. [PMID: 26196120 DOI: 10.1016/j.jsbmb.2015.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The androgen receptor (AR) is a key regulator for the growth, differentiation and survival of prostate cancer cells. Identified as a primary target for the treatment of prostate cancer, many therapeutic strategies have been developed to attenuate AR signaling in prostate cancer cells. While frontline androgen-deprivation therapies targeting either the production or action of androgens usually yield favorable responses in prostate cancer patients, a significant number acquire treatment resistance. Known as the castration-resistant prostate cancer (CRPC), the treatment options are limited for this advanced stage. It has been shown that AR signaling is restored in CRPC due to many aberrant mechanisms such as AR mutations, amplification or expression of constitutively active splice-variants. Coregulator recruitment is a crucial regulatory step in AR signaling and the direct blockade of coactivator binding to AR offers the opportunity to develop therapeutic agents that would remain effective in prostate cancer cells resistant to conventional endocrine therapies. Structural analyses of the AR have identified key surfaces involved in protein-protein interaction with coregulators that have been recently used to design and develop promising AR-coactivator binding inhibitors. In this review we will discuss the design and development of small-molecule inhibitors targeting the AR-coactivator interactions for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Eric Biron
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada.
| | - François Bédard
- Faculty of Pharmacy and Centre de recherche en endocrinologie moléculaire et oncologique et génomique humaine, Université Laval, Canada; Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1 V 4G2, Québec, QC, Canada
| |
Collapse
|
2
|
Klein D, Schmitz T, Verhelst V, Panic A, Schenck M, Reis H, Drab M, Sak A, Herskind C, Maier P, Jendrossek V. Endothelial Caveolin-1 regulates the radiation response of epithelial prostate tumors. Oncogenesis 2015; 4:e148. [PMID: 25985209 PMCID: PMC4450264 DOI: 10.1038/oncsis.2015.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/24/2015] [Accepted: 03/20/2015] [Indexed: 02/08/2023] Open
Abstract
The membrane protein caveolin-1 (Cav1) recently emerged as a novel oncogene involved in prostate cancer progression with opposed regulation in epithelial tumor cells and the tumor stroma. Here we examined the role of stromal Cav1 for growth and radiation response of MPR31-4 prostate cancer xenograft tumors using Cav1-deficient C57Bl/6 mice. Syngeneic MPR31-4 tumors grew faster when implanted into Cav1-deficient mice. Increased tumor growth on Cav1-deficient mice was linked to decreased integration of smooth muscle cells into the wall of newly formed blood vessels and thus with a less stabilized vessel phenotype compared with tumors from Cav1 wild-type animals. However, tumor growth delay of MPR31-4 tumors grown on Cav1 knockout mice to a single high-dose irradiation with 20 Gray was more pronounced compared with tumors grown on wild-type mice. Increased radiation-induced tumor growth delay in Cav1-deficient mice was associated with an increased endothelial cell apoptosis. In vitro studies using cultured endothelial cells (ECs) confirmed that the loss of Cav1 expression increases sensitivity of ECs to radiation-induced apoptosis and reduces their clonogenic survival after irradiation. Immunohistochemical analysis of human tissue specimen further revealed that although Cav1 expression is mostly reduced in the tumor stroma of advanced and metastatic prostate cancer, the vascular compartment still expresses high levels of Cav1. In conclusion, the radiation response of MPR31-4 prostate tumors is critically regulated by Cav1 expression in the tumor vasculature. Thus, Cav1 might be a promising therapeutic target for combinatorial therapies to counteract radiation resistance of prostate cancer at the level of the tumor vasculature.
Collapse
Affiliation(s)
- D Klein
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - T Schmitz
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - V Verhelst
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - A Panic
- 1] Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany [2] Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - M Schenck
- Department of Urology and Urooncology, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - H Reis
- Institute of Pathology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - M Drab
- 1] Institute of Immunology and Experimental Therapy, Wroclaw, Poland [2] Wroclaw Research Center EIT+, Wroclaw, Poland
| | - A Sak
- Department of Radiotherapy, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - C Herskind
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - P Maier
- Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - V Jendrossek
- Department of Molecular Cell Biology, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| |
Collapse
|
3
|
Mohler ML, Coss CC, Duke CB, Patil SA, Miller DD, Dalton JT. Androgen receptor antagonists: a patent review (2008-2011). Expert Opin Ther Pat 2012; 22:541-65. [PMID: 22583332 DOI: 10.1517/13543776.2012.682571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Androgen receptor (AR) antagonists are predominantly used as chemical castration to treat prostate cancer (i.e., in conjunction with androgen deprivation therapy (ADT)). Unfortunately, castration-resistant prostate cancer (CRPC) typically develops that is refractory to targeted therapy. Insights into CRPC biology have led to the emergence of a promising clinical candidate MDV3100 (1) and a resurgence in this field. A pipeline of preclinical competitive (C-terminally directed) antagonists was discovered using a variety of innovative screening paradigms. Some inhibit nuclear translocation, selectively downregulate or degrade AR (SARD), antagonize wild-type and escape mutant AR (pan-antagonists) and/or antagonize AR target organs in vivo. Separately, the N-terminal domain has emerged as a promising novel target for noncompetitive antagonists. AREAS COVERED AR antagonists whose patents published between 2008 and 2011 are reviewed. Antagonists are organized based on the screening paradigm reported as discussed above. EXPERT OPINION Novel mechanisms provide a more informed basis for selecting a competitive antagonist; however, high potency and favorable in vivo properties remain paramount. Noncompetitive antagonists have theoretical advantages suggestive of improved clinical efficacy, but no clinical proof of concept as of yet.
Collapse
Affiliation(s)
- Michael L Mohler
- Preclinical Research and Development, GTx, Inc., 3 North Dunlap Street, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
4
|
Haendler B, Cleve A. Recent developments in antiandrogens and selective androgen receptor modulators. Mol Cell Endocrinol 2012; 352:79-91. [PMID: 21704118 DOI: 10.1016/j.mce.2011.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/30/2022]
Abstract
The androgens testosterone and dihydrotestosterone play an essential role in the development and maintenance of primary and secondary male characteristics. Androgens bind to a specific androgen receptor (AR), a ligand-dependent transcription factor which controls the expression of a large number of downstream target genes. The AR is an essential player in early and late prostate cancer, and may also be involved in some forms of breast cancer. It also represents a drug target for the treatment of hypogonadism. Recent studies furthermore indicate that targeting the AR in pathologies such as frailty syndrome, cachexia or polycystic ovary syndrome may have clinical benefit. Numerous AR ligands with very different pharmacological properties have been identified in the last 40 years and helped to treat several of these diseases. However, progress still needs to be made in order to find compounds with an improved profile with regard to efficacy, differentiation and side-effects. This will only be achieved through a better understanding of the mechanisms involved in normal and aberrant AR signaling.
Collapse
Affiliation(s)
- Bernard Haendler
- TRG Oncology, Global Drug Discovery, Bayer HealthCare, D-13342 Berlin, Germany.
| | | |
Collapse
|
5
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Recent advances in second-line treatment of castration-resistant prostate cancer. Curr Opin Support Palliat Care 2011; 5:199-205. [PMID: 21734586 DOI: 10.1097/spc.0b013e32834903aa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Patients with metastatic castration-resistant prostate cancer (CRPC) no longer responsive to docetaxel have a poor prognosis, worsened quality-of-life, and traditionally few options for treatment. This review addresses promising and practice-changing developments for the treatment of CRPC in the second-line setting. RECENT FINDINGS Recent data for cabazitaxel, a novel taxane chemotherapy, and abiraterone acetate, a novel inhibitor of androgen synthesis, demonstrate significant improvements in the survival of patients with docetaxel-refractory CRPC. We review the mechanisms of action of these agents and data from phase III clinical trials, contextualizing their place in therapy. We also update other areas of investigation, including oral platinum analogues, vascular-endothelial growth factor receptor targeted therapy, inhibitors of chaperone proteins, and androgen receptor antagonists. SUMMARY Upon disease progression after first-line docetaxel chemotherapy, cabazitaxel and abiraterone improve survival of patients with CRPC and are important novel treatment options. Potential toxicity from cabazitaxel necessitates careful patient selection and supportive care. Both abiraterone and cabazitaxel are also being evaluated in the first-line setting, and therefore the optimal sequencing of therapies remains uncertain. Many other novel agents continue to be evaluated and promising classes of agents include antisense oligonucleotides against clusterin (custirsen) and androgen receptor antagonists (MDV3100).
Collapse
|
7
|
Bellmunt J, Oh WK. Castration-resistant prostate cancer: new science and therapeutic prospects. Ther Adv Med Oncol 2011; 2:189-207. [PMID: 21789134 DOI: 10.1177/1758834009359769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is a growing number of new therapies targeting different pathways that will revolutionize patient management strategies in castration-resistant prostate cancer (CRPC) patients. Today there are more clinical trial options for CRPC treatment than ever before, and there are many promising agents in late-stage clinical testing. The hypothesis that CRPC frequently remains driven by a ligand-activated androgen receptor (AR) and that CRPC tissues exhibit substantial residual androgen levels despite gonadotropin-releasing hormone therapy, has led to the evaluation of new oral compounds such as abiraterone and MDV 3100. Their results, coupled with promising recent findings in immunotherapy (eg sipuleucel-T) and with agents targeting angiogenesis (while awaiting the final results of the CALGB trial 90401) will most probably impact the management of patients with CRPC in the near future. Other new promising agents need further development. With our increased understanding of the biology of this disease, further trial design should incorporate improved patient selection so that patient populations are those who may be most likely to benefit from treatment.
Collapse
Affiliation(s)
- Joaquim Bellmunt
- University Hospital del Mar-IMIM Barcelona, Paseo Maritimo 25-29 Barcelona 08003, Spain
| | | |
Collapse
|
8
|
Abstract
Prostate cancer is the second most common cause of cancer-related death in US men. Along with initial therapy using surgery, radiotherapy, or cryotherapy, hormonal therapy is the mainstay of treatment. For men with advanced (metastatic) disease, docetaxel-based chemotherapy is US Food and Drug Administration (FDA)-approved, and provides a significant survival advantage. This relative paucity of treatment options drives an ongoing quest for additional treatment modalities; among these is immunotherapy. The concept that prostate cancer is a malignancy that can be targeted by the immune system may seem counterintuitive; certainly kidney cancer and melanoma are more traditionally thought of as immune responsive cancers. However, prostate cancer arises in a relatively unique organ and may express a number of proteins (antigens) against which an immune response can be generated. More importantly, several of these agents have now demonstrated a significant survival benefit in randomized controlled clinical trials, and one agent in particular (Sipuleucel-T, Dendreon Corporation, Seattle, WA) could be FDA-approved in 2010. This update summarizes recent clinical developments in the field of prostate cancer immunotherapy, with a focus on dendritic cell vaccines, virus-based vaccines, DNA-based vaccines, and cell-based vaccines. In addition, the notion of agents that target immune checkpoints is introduced. Enthusiasm for prostate cancer immunotherapy is founded upon its potential to mediate targeted, specific, tumor cell destruction without significant systemic toxicity; however, this has yet to be fully realized in the clinical arena.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Prostate cancer remains a medical dilemma and a major cause of morbidity and mortality in many western countries. It represents the most common cancer in US men, with an estimated 192 280 new cases diagnosed in 2009. The median survival for men with metastatic castrate-resistant prostate cancer is 1-2 years, with improvements in survival seen primarily with docetaxel-based therapies. The purpose of this article is to discuss developments of novel agents in the field of metastatic castration-resistant prostate cancer (CRPC), including new cytotoxic agents, immune-based therapies, circulating tumor markers and targeting agents. RECENT FINDINGS During this past year, several promising approaches yielded disappointing results in the phase III setting (GVAX); nonetheless, expectations for other agents (Abiraterone, MDV3100, Zibotentan, immunotherapy agents) still remain high. SUMMARY Systemic therapy options are limited in CRPC and survival benefit remains to be seen with the new therapies. Circulating tumor cells continue to provide important prognostic information and will likely become an important aspect of future clinical decision-making.
Collapse
Affiliation(s)
- Kiran Lassi
- Lombardi Comprehensive Cancer Center, Georgetown University Hospital, Washington, District of Columbia 20007, USA.
| | | |
Collapse
|
10
|
Li X, Liu Y, Tang Y, Roger P, Jeng MH, Kao C. Docetaxel increases antitumor efficacy of oncolytic prostate-restricted replicative adenovirus by enhancing cell killing and virus distribution. J Gene Med 2010; 12:516-27. [PMID: 20527044 PMCID: PMC9126185 DOI: 10.1002/jgm.1462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND We explored multiple molecular mechanisms of the combination of docetaxel and an oncolytic prostate-restricted replication competent adenovirus (Ad) (PRRA) in advanced prostate cancer (PCa) models. The combinational therapy has potential to overcome the therapeutic limitations of poor virus distribution inside solid tumors. METHODS We evaluated the effect of docetaxel on the antitumor efficacy and efficiency of virus transduction, transgene expression and virus distribution of PRRA in a prostate-specific antigen/prostate-specific membrane antigen-positive tumor xenograft model. We also evaluated the effect of docetaxel on apoptosis induction, cell killing and the efficiency of transgene expression and virus replication in vitro. RESULTS Tumor growth inhibition was significantly enhanced when docetaxel was administrated before intratumor injection of PRRA. In vivo dual-photon microscopy and ex vivo fluorescence microscopy and immunohistochemistry showed that docetaxel increased transgene expression and expanded virus distribution. The combination of docetaxel and PRRA also increased cell apoptosis. In vitro, docetaxel significantly increased cell killing in PRRA-treated PCa cells. Docetaxel significantly increased Ad-mediated trangene expression independent of Ad binding receptors and replication capability. Docetaxel increased the activity of cytomegalovirus (CMV) promoter but not of a chimeric prostate-specific enhancer, resulting in higher transgene expression. The enhanced CMV promoter activity resulted from activation of p38 mitogen-activated protein kinase (MAPK) because inhibition of p38 MAPK blocked the docetaxel-induced increase in CMV promoter activity. CONCLUSIONS Combining docetaxel with an oncolytic PRRA improved therapeutic potential by expanding virus distribution and enhancing cell apoptosis and killing. These studies suggested a novel mechanism for enhancing the effect of therapeutic genes delivered by a PRRA.
Collapse
Affiliation(s)
- Xiong Li
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Youhong Liu
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Yong Tang
- Medical College of Jinan University, Guangzhou, P.R.China
| | - Phipps Roger
- Maine Institute for Human Genetics and Health, Bangor, ME
| | - Meei-Huey Jeng
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| | - Chinghai Kao
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors. Mol Ther 2010; 18:929-35. [PMID: 20179676 DOI: 10.1038/mt.2010.26] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.
Collapse
|
12
|
Novel histone deacetylase inhibitors in clinical trials as anti-cancer agents. J Hematol Oncol 2010; 3:5. [PMID: 20132536 PMCID: PMC2827364 DOI: 10.1186/1756-8722-3-5] [Citation(s) in RCA: 327] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/04/2010] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (HDACs) can regulate expression of tumor suppressor genes and activities of transcriptional factors involved in both cancer initiation and progression through alteration of either DNA or the structural components of chromatin. Recently, the role of gene repression through modulation such as acetylation in cancer patients has been clinically validated with several inhibitors of HDACs. One of the HDAC inhibitors, vorinostat, has been approved by FDA for treating cutaneous T-cell lymphoma (CTCL) for patients with progressive, persistent, or recurrent disease on or following two systemic therapies. Other inhibitors, for example, FK228, PXD101, PCI-24781, ITF2357, MGCD0103, MS-275, valproic acid and LBH589 have also demonstrated therapeutic potential as monotherapy or combination with other anti-tumor drugs in CTCL and other malignancies. At least 80 clinical trials are underway, testing more than eleven different HDAC inhibitory agents including both hematological and solid malignancies. This review focuses on recent development in clinical trials testing HDAC inhibitors as anti-tumor agents.
Collapse
|
13
|
Droz JP, Balducci L, Bolla M, Emberton M, Fitzpatrick JM, Joniau S, Kattan MW, Monfardini S, Moul JW, Naeim A, van Poppel H, Saad F, Sternberg CN. Background for the proposal of SIOG guidelines for the management of prostate cancer in senior adults. Crit Rev Oncol Hematol 2010; 73:68-91. [PMID: 19836968 DOI: 10.1016/j.critrevonc.2009.09.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jean-Pierre Droz
- Department of Medical Oncology, Centre Léon-Bérard, 69008 Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Prostate cancer continues to represent a major health problem. It represents the most common cancer in US men, with an estimated 186 320 new cases diagnosed in 2008. It is the second leading cause of cancer death in men in the United States. Despite several attempts, the median survival for men with metastatic castrate-resistant prostate cancer is 1-2 years, with improvements in survival seen primarily with docetaxel-based therapies. Treatment options are limited, and there is a clear need for therapies that improve outcome. The purpose of this article is to discuss recent developments in the field of metastatic hormone-refractory prostate cancer, including new cytotoxic agents, antiproliferative agents, immune-based therapies, circulating tumor markers and antiangiogenic agents. RECENT FINDINGS During this last year, several promising approaches yielded disappointing results in the phase III setting (GVAX, satraplatin, DN-101); nonetheless, expectations for other agents (abiraterone, zibotentan, Provenge) still remain high. SUMMARY These new agents will need to demonstrate survival benefit for approval. Circulating tumor cells have been shown to provide important prognostic information and are anticipated to be incorporated in future clinical decision-making.
Collapse
|
15
|
Locke JA, Nelson CC, Adomat HH, Hendy SC, Gleave ME, Guns EST. Steroidogenesis inhibitors alter but do not eliminate androgen synthesis mechanisms during progression to castration-resistance in LNCaP prostate xenografts. J Steroid Biochem Mol Biol 2009; 115:126-36. [PMID: 19442514 DOI: 10.1016/j.jsbmb.2009.03.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/16/2022]
Abstract
In castration-resistant prostate cancer (CRPC) many androgen-regulated genes become re-expressed and tissue androgen levels increase despite low serum levels. We and others have recently reported that CRPC tumor cells can de novo synthesize androgens from adrenal steroid precursors or cholesterol and that high levels of progesterone exist in LNCaP tumors after castration serving perhaps as an intermediate in androgen synthesis. Herein, we compare androgen synthesis from [(3)H-progesterone] in the presence of specific steroidogenesis inhibitors and anti-androgens in steroid starved LNCaP cells and CRPC tumors. Similarly, we compare steroid profiles in LNCaP tumors at different stages of CRPC progression. Steroidogenesis inhibitors targeting CYP17A1 and SRD5A2 significantly altered but did not eliminate androgen synthesis from progesterone in steroid starved LNCaP cells and CRPC tumors. Upon exposure to inhibitors of steroidogenesis prostate cancer cells adapt gradually during CRPC progression to synthesize DHT in a compensatory manner through alternative feed-forward mechanisms. Furthermore, tumors obtained immediately after castration are significantly less efficient at metabolizing progesterone ( approximately 36%) and produce a different steroid profile to CRPC tumors. Optimal targeting of the androgen axis may be most effective when tumors are least efficient at synthesizing androgens. Confirmatory studies in humans are required to validate these findings.
Collapse
Affiliation(s)
- Jennifer A Locke
- The Prostate Centre at Vancouver General Hospital and Department of Urologic Sciences, University of British Columbia, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|