1
|
Chen N, Belcher DA, Savla C, Palmer AF, Berthiaume F. Biocompatibility of the oxygen carrier polymerized human hemoglobin towards HepG2/C3A cells. Heliyon 2023; 9:e15878. [PMID: 37215914 PMCID: PMC10192743 DOI: 10.1016/j.heliyon.2023.e15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Hemoglobin (Hb) based oxygen carriers (HBOCs) are designed to minimize the toxicity of extracellular Hb, while preserving its high oxygen-carrying capacity for oxygen delivery to cells. Polymerized human Hb (PolyHb) is a novel type of nanosized HBOC synthesized via glutaraldehyde-mediated crosslinking of free Hb, and which preserves the predominant quaternary state during the crosslinking reaction (low oxygen affinity tense (T) quaternary state PolyHb is synthesized at 0% Hb oxygen saturation, and high oxygen affinity relaxed (R) quaternary state PolyHb is synthesized at 100% Hb oxygen saturation). Major potential applications for PolyHbs, and HBOCs in general, include oxygenation of bioreactor systems containing large liver cell masses, and ex-vivo perfusion preservation of explanted liver grafts. The toxicity of these compounds toward liver cells must be evaluated before testing their use in these complex systems for oxygen delivery. Herein, we characterized the effect of PolyHbs on the hepatoma cell line HepG2/C3A, used as a model hepatocyte and as a cell line used in some investigational bioartificial liver support devices. HepG2/C3A cells were incubated in cell culture media containing PolyHbs or unmodified Hb at concentrations up to 50 mg/mL and for up to 6 days. PolyHbs were well tolerated at a dose of 10 mg/mL, with no significant decrease in cell viability; however, proliferation was inhibited as much as 10-fold after 6 days of exposure at 50 mg/mL. Secretion of albumin, and urea, as well as glucose and ammonia removal were measured in presence of 10 mg/mL of PolyHbs or unmodified Hb. In addition, methoxy- and ethoxy-resorufin deacetylase (MROD and EROD) activities, which reflect cytochrome P450 metabolism, were measured. R-state PolyHb displayed improved or intact activity in 3 out of 7 functions compared to unmodified Hb. T-state PolyHb displayed improved or intact activity in 4 out of 7 functions compared to unmodified Hb. Thus, PolyHbs, both in the R-state and T-state, are safer to use at a concentration of 10 mg/mL as compared to unmodified Hb in static culture liver-related applications.
Collapse
Affiliation(s)
- Nuozhou Chen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Chintan Savla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
2
|
Jahr JS. Blood substitutes: Basic science, translational studies and clinical trials. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:989829. [PMID: 36062262 PMCID: PMC9433579 DOI: 10.3389/fmedt.2022.989829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jonathan S. Jahr
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Cao M, Zhao Y, He H, Yue R, Pan L, Hu H, Ren Y, Qin Q, Yi X, Yin T, Ma L, Zhang D, Huang X. New Applications of HBOC-201: A 25-Year Review of the Literature. Front Med (Lausanne) 2021; 8:794561. [PMID: 34957164 PMCID: PMC8692657 DOI: 10.3389/fmed.2021.794561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/05/2021] [Indexed: 01/10/2023] Open
Abstract
If not cured promptly, tissue ischemia and hypoxia can cause serious consequences or even threaten the life of the patient. Hemoglobin-based oxygen carrier-201 (HBOC-201), bovine hemoglobin polymerized by glutaraldehyde and stored in a modified Ringer's lactic acid solution, has been investigated as a blood substitute for clinical use. HBOC-201 was approved in South Africa in 2001 to treat patients with low hemoglobin (Hb) levels when red blood cells (RBCs) are contraindicated, rejected, or unavailable. By promoting oxygen diffusion and convective oxygen delivery, HBOC-201 may act as a direct oxygen donor and increase oxygen transfer between RBCs and between RBCs and tissues. Therefore, HBOC-201 is gradually finding applications in treating various ischemic and hypoxic diseases including traumatic hemorrhagic shock, hemolysis, myocardial infarction, cardiopulmonary bypass, perioperative period, organ transplantation, etc. However, side effects such as vasoconstriction and elevated methemoglobin caused by HBOC-201 are major concerns in clinical applications because Hbs are not encapsulated by cell membranes. This study summarizes preclinical and clinical studies of HBOC-201 applied in various clinical scenarios, outlines the relevant mechanisms, highlights potential side effects and solutions, and discusses the application prospects. Randomized trials with large samples need to be further studied to better validate the efficacy, safety, and tolerability of HBOC-201 to the extent where patient-specific treatment strategies would be developed for various clinical scenarios to improve clinical outcomes.
Collapse
Affiliation(s)
- Min Cao
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhao
- Anesthesiology, Southwest Medicine University, Luzhou, China
| | - Hongli He
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruiming Yue
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingai Pan
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Hu
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingjie Ren
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Qin
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xueliang Yi
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Yin
- Surgical Department, Chengdu Second People's Hospital, Chengdu, China
| | - Lina Ma
- Health Inspection and Quarantine, Chengdu Medical College, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Kuang L, Zhu Y, Wu Y, Tian K, Peng X, Xue M, Xiang X, Lau B, Tzang FC, Liu L, Li T. A Novel Cross-Linked Hemoglobin-Based Oxygen Carrier, YQ23, Extended the Golden Hour for Uncontrolled Hemorrhagic Shock in Rats and Miniature Pigs. Front Pharmacol 2021; 12:652716. [PMID: 34054533 PMCID: PMC8149754 DOI: 10.3389/fphar.2021.652716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Hypotensive resuscitation is widely applied for trauma and war injury to reduce bleeding during damage-control resuscitation, but the treatment time window is limited in order to avoid hypoxia-associated organ injury. Whether a novel hemoglobin-based oxygen carrier (HBOC), YQ23 in this study, could protect organ function, and extend the Golden Hour for treatment is unclear. Method: Uncontrolled hemorrhagic shock rats and miniature pigs were infused with 0.5, 2, and 5% YQ23 before bleeding was controlled, while Lactate Ringer's solution (LR) and fresh whole blood plus LR (WB + LR) were set as controls. During hypotensive resuscitation the mean blood pressure was maintained at 50-60 mmHg for 60 min. Hemodynamics, oxygen delivery and utilization, blood loss, fluid demand, organ function, animal survival as well as side effects were observed. Besides, in order to observe whether YQ23 could extend the Golden Hour, the hypotensive resuscitation duration was extended to 180 min and animal survival was observed. Results: Compared with LR, infusion of YQ23 in the 60 min pre-hospital hypotensive resuscitation significantly reduced blood loss and the fluid demand in both rats and pigs. Besides, YQ23 could effectively stabilize hemodynamics, and increase tissue oxygen consumption, increase the cardiac output, reduce liver and kidney injury, which helped to reduce the early death and improve animal survival. In addition, the hypotensive resuscitation duration could be extended to 180 min using YQ23. Side effects such as vasoconstriction and renal injury were not observed. The beneficial effects of 5% YQ23 are equivalent to similar volume of WB + LR. Conclusion: HBOC, such as YQ23, played vital roles in damage-control resuscitation for emergency care and benefited the uncontrolled hemorrhagic shock in the pre-hospital treatment by increasing oxygen delivery, reducing organ injury. Besides, HBOC could benefit the injured and trauma patients by extending the Golden Hour.
Collapse
Affiliation(s)
- Lei Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kunlun Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Billy Lau
- New Beta Innovation Limited, Chevalier Commercial Center, Kowloon Bay, Hong Kong, China
| | - Fei Chuen Tzang
- New Beta Innovation Limited, Chevalier Commercial Center, Kowloon Bay, Hong Kong, China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Shock and Transfusion, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
5
|
Belcher DA, Munoz C, Pires IS, Williams AT, Cabrales P, Palmer AF. Apohemoglobin-haptoglobin complexes attenuate the hypertensive response to low-molecular-weight polymerized hemoglobin. Blood Adv 2020; 4:2739-2750. [PMID: 32559292 PMCID: PMC7322967 DOI: 10.1182/bloodadvances.2020002045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
Polymerized hemoglobin (PolyHb) is a promising hemoglobin (Hb)-based oxygen carrier currently undergoing development as a red blood cell substitute. Unfortunately, commercially developed products are composed of low-molecular-weight (LMW) PolyHb molecules, which extravasate, scavenge nitric oxide, and result in vasoconstriction and hypertension. The naturally occurring Hb-scavenging species haptoglobin (Hp), combined with the purified heme-scavenging species apohemoglobin (apoHb), is a potential candidate to alleviate the pressor effect of PolyHb. This study evaluated the protective activity of administering the apoHb-Hp complex to mitigate the vasoactive response induced by the transfusion of LMW PolyHb. Hp binding to PolyHb was characterized in vitro. The effectiveness of apoHb-Hp administration on reducing the vasoconstriction and pressor effects of PolyHb was assessed by measuring systemic and microcirculatory hemodynamics. Transfusion of LMW PolyHb to vehicle control pretreated animals increased mean arterial pressure while decreasing arteriole diameter and functional capillary density. However, transfusion of LMW PolyHb to apoHb-Hp pretreated animals prevented changes in mean arterial pressure, heart rate, arteriole diameter, blood flow, and functional capillary density relative to before transfusion. These results indicate that the increased size of PolyHb after binding to the apoHb-Hp complex may help compartmentalize PolyHb in the vascular space and thus reduce extravasation, nitric oxide scavenging, and toxicity responsible for vasoconstriction and systemic hypertension.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | - Carlos Munoz
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| | | | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH; and
| |
Collapse
|
6
|
Zhang N, Wei MY, Ma Q. Nanomedicines: A Potential Treatment for Blood Disorder Diseases. Front Bioeng Biotechnol 2019; 7:369. [PMID: 31850329 PMCID: PMC6892756 DOI: 10.3389/fbioe.2019.00369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 12/31/2022] Open
Abstract
Blood disorder diseases (BDDs), also known as hematologic, is one of the diseases owing to hematopoietic system disorder. Chemotherapy, bone marrow transplantation, and stem cells therapy have been used to treat BDDs. However, the cure rates are still low due to the availability of the right type of bone marrow and the likelihood of recurrence and infection. With the rapid development of nanotechnology in the field of biomedicine, artificial blood or blood substitute has shown promising features for the emergency treatment of BDDs. Herein, we surveyed recent advances in the development of artificial blood components: gas carrier components (erythrocyte substitutes), immune response components (white blood cell substitutes), and hemostasis-responsive components (platelet substitutes). Platelet-inspired nanomedicines for cancer treatment were also discussed. The challenges and prospects of these treatment options in future nanomedicine development are discussed.
Collapse
Affiliation(s)
- Nan Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Ming-Yuan Wei
- Texas Commission on Environmental Quality, Austin, TX, United States
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
7
|
Kuang L, Zhu Y, Zhang J, Wu Y, Tian K, Chen X, Xue M, Tzang FC, Lau B, Wong BL, Liu L, Li T. A novel cross-linked haemoglobin-based oxygen carrier is beneficial to sepsis in rats. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1496-1504. [PMID: 30983419 DOI: 10.1080/21691401.2019.1602049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathological hypoxia-induced organ dysfunction contributes to the high mortality of sepsis. Because of the microcirculation dysfunction following severe sepsis, it is difficult for erythrocytes to transport oxygen to hypoxic tissues. Haemoglobin-based oxygen carriers (HBOCs) are capable of delivering oxygen to hypoxic tissues. The aim of this study is to observe the potential benefits of a novel bovine-derived, non-polymerized, cell-free HBOC solution, YQ23, on sepsis in rats. Cecum ligation and puncture was performed to induce sepsis in Sprague-Dawley rats. Effects of Lactate Ringer's solution (LR), YQ23, and whole blood on oxygen delivery and consumption, mitochondrial function, organ protection and animal survival were observed. LR failed to restore oxygen delivery and the therapeutic effects were limited, whereas low dosage of YQ23 and whole blood significantly increased the tissue oxygen delivery and consumption, improved the mitochondrial function of heart, liver, kidney and intestine, prevented the vital organs injuries and improved the animal survival. The effects of 0.15 g·kg-1 YQ23 resembled that of the whole blood. In addition, YQ23 did not induce renal toxicity, severe oxidative effect and acute vasoconstriction. Thus, YQ23 is a safe and effective resuscitation fluid for sepsis.
Collapse
Affiliation(s)
- Lei Kuang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Yu Zhu
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Jie Zhang
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Yue Wu
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Kunlun Tian
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Xiangyun Chen
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Mingying Xue
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | | | - Billi Lau
- b New B Innovation Limited , Kowloon Bay , Hong Kong
| | - Bing Lou Wong
- b New B Innovation Limited , Kowloon Bay , Hong Kong
| | - Liangming Liu
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| | - Tao Li
- a State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital , Third Military Medical University (Army Medical University) , Chongqing , P.R. China
| |
Collapse
|
8
|
Estep TN. Haemoglobin-based oxygen carriers and myocardial infarction. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:593-601. [PMID: 30849245 DOI: 10.1080/21691401.2019.1573181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The incidence of investigator diagnosed myocardial infarction (MI) is greater in patients treated with haemoglobin-based oxygen carriers (HBOCs) than controls. Clinical trials and literature pertaining to possible HBOC toxicity mechanisms have been analyzed in order to identify possible reasons for this imbalance. MI diagnosis is hampered by potential interference of troponin assays by haemoglobin, haemolysis and bilirubin. Nevertheless, insofar as the reported incidence correlates with actual occurrence, there is a positive relationship between MI and HBOC dose and size. Preclinical and clinical data suggest that direct cardiac toxicity and coronary vasoconstriction are unlikely. More probable are detrimental intravascular interactions between HBOCs and components of the coagulation cascade, particularly dysfunctional endothelium. Elucidation of mechanisms is impeded by a lack of clinical data. Measurement of relevant biomarkers would be extremely useful in this regard and in improving patient selection criteria. Conduct of clinical trials in carefully selected patient populations after the development of improved protocols for MI diagnosis, along with concomitant biomarker data collection, is recommended.
Collapse
|
9
|
Gekka M, Abumiya T, Komatsu T, Funaki R, Kurisu K, Shimbo D, Kawabori M, Osanai T, Nakayama N, Kazumata K, Houkin K. Novel Hemoglobin-Based Oxygen Carrier Bound With Albumin Shows Neuroprotection With Possible Antioxidant Effects. Stroke 2018; 49:1960-1968. [DOI: 10.1161/strokeaha.118.021467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Gekka
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Takeo Abumiya
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan (R.F., T.K.)
| | - Ryosuke Funaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, Tokyo, Japan (R.F., T.K.)
| | - Kota Kurisu
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Daisuke Shimbo
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Masato Kawabori
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Toshiya Osanai
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Naoki Nakayama
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Ken Kazumata
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| | - Kiyohiro Houkin
- From the Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan (M.G., T.A., K.K., D.S., M.K., T.O., N.N., K.K., K.H.)
| |
Collapse
|
10
|
Belcher DA, Ju JA, Baek JH, Yalamanoglu A, Buehler PW, Gilkes DM, Palmer AF. The quaternary state of polymerized human hemoglobin regulates oxygenation of breast cancer solid tumors: A theoretical and experimental study. PLoS One 2018; 13:e0191275. [PMID: 29414985 PMCID: PMC5802857 DOI: 10.1371/journal.pone.0191275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/02/2018] [Indexed: 11/19/2022] Open
Abstract
A major constraint in the treatment of cancer is inadequate oxygenation of the tumor mass, which can reduce chemotherapeutic efficacy. We hypothesize that polymerized human hemoglobin (PolyhHb) can be transfused into the systemic circulation to increase solid tumor oxygenation, and improve chemotherapeutic outcomes. By locking PolyhHb in the relaxed (R) quaternary state, oxygen (O2) offloading at low O2 tensions (<20 mm Hg) may be increased, while O2 offloading at high O2 tensions (>20 mm Hg) is facilitated with tense (T) state PolyhHb. Therefore, R-state PolyhHb may deliver significantly more O2 to hypoxic tissues. Biophysical parameters of T and R-state PolyhHb were used to populate a modified Krogh tissue cylinder model to assess O2 transport in a tumor. In general, we found that increasing the volume of transfused PolyhHb decreased the apparent viscosity of blood in the arteriole. In addition, we found that PolyhHb transfusion decreased the wall shear stress at large arteriole diameters (>20 μm), but increased wall shear stress for small arteriole diameters (<10 μm). Therefore, transfusion of PolyhHb may lead to elevated O2 delivery at low pO2. In addition, transfusion of R-state PolyhHb may be more effective than T-state PolyhHb for O2 delivery at similar transfusion volumes. Reduction in the apparent viscosity resulting from PolyhHb transfusion may result in significant changes in flow distributions throughout the tumor microcirculatory network. The difference in wall shear stress implies that PolyhHb may have a more significant effect in capillary beds through mechano-transduction. Periodic top-load transfusions of PolyhHb into mice bearing breast tumors confirmed the oxygenation potential of both PolyhHbs via reduced hypoxic volume, vascular density, tumor growth, and increased expression of hypoxia inducible genes. Tissue section analysis demonstrated primary PolyhHb clearance occurred in the liver and spleen indicating a minimal risk for renal damage.
Collapse
Affiliation(s)
- Donald A. Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| | - Julia A. Ju
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
| | - Jin Hyen Baek
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Ayla Yalamanoglu
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Paul W. Buehler
- Division of Blood Components and Devices, Laboratory of Biochemistry and Vascular Biology, FDA/CBER, Silver Spring, MD, United States of America
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
11
|
Alayash AI. Hemoglobin-Based Blood Substitutes and the Treatment of Sickle Cell Disease: More Harm than Help? Biomolecules 2017; 7:biom7010002. [PMID: 28054978 PMCID: PMC5372714 DOI: 10.3390/biom7010002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 01/17/2023] Open
Abstract
Intense efforts have been made by both industry and academia over the last three decades to produce viable hemoglobin (Hb)-based oxygen carriers (HBOCs), also known as “blood substitutes”. Human trials conducted so far by several manufactures in a variety of clinical indications, including trauma, and elective surgeries have failed and no product has gained the Food and Drug Administration approval for human use. Safety concerns due to frequent incidences of hemodynamic, cardiac events, and even death led to the termination of some of these trials. Several second generation HBOC products that have been chemically and/or genetically modified (or in some cases ligated with carbon monoxide (CO)) found a new clinical application in conditions as complex as sickle cell disease (SCD). By virtue of higher oxygen affinity (P50) (R-state), and smaller size, HBOCs may be able to reach the microvasculature unload of oxygen to reverse the cycles of sickling/unsickling of the deoxy-sickle cell Hb (HbS) (T-state), thus preventing vaso-occlusion, a central event in SCD pathophysiology. However, biochemically, it is thought that outside the red blood cell (due to frequent hemolysis), free HbS or infused HBOCs are capable of interfering with a number of oxidative and signaling pathways and may, thus, negate any benefit that HBOCs may provide. This review discusses the advantages and disadvantages of using HBOCs in SCD.
Collapse
Affiliation(s)
- Abdu I Alayash
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20993, USA.
| |
Collapse
|
12
|
Li T, Yang G, Zhu Y, Tzang FC, Lau SH, Kwok SY, Wong BL, Liu L. Beneficial effects of novel cross-linked hemoglobin YQ23 on hemorrhagic shock in rats and pigs. J Surg Res 2016; 210:213-222. [PMID: 28457331 DOI: 10.1016/j.jss.2016.11.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND To overcome the problems of previously reported hemoglobin-based oxygen carriers, we developed a stabilized nonpolymeric cross-linked tetrameric hemoglobin solution (YQ23). The aims of this study were to investigate the oxygen carrying and releasing properties of this novel hemoglobin-based oxygen carrier and to determine whether it has beneficial effects for hemorrhagic shock. METHODS Using a hemorrhagic shock model in Sprague-Dawley rats and mini-pigs, we tested the effects of infusing 0.1, 0.3, and 0.5 g/kg YQ23 on animal survival, tissue oxygen delivery (DO2) and consumption (VO2), hemodynamics parameters, and liver, renal, and cardiac function. RESULTS YQ23 infusion increased the survival rate of rats and pigs with severe hemorrhagic shock in a dose-dependent manner. Moreover, it improved the hemodynamic parameters, cardiac output, DO2 and VO2, and the mitochondrial respiratory function of vital organs. Among the three doses of YQ23, 0.5 gHb/kg YQ23 achieved a similar beneficial effect as whole blood. CONCLUSIONS This study indicated that the novel cross-linked tetrameric hemoglobin YQ23 has good oxygen carrying and releasing properties and exhibits beneficial effects on hemorrhagic shock in rats and pigs by improving the oxygen carrying and delivery function of blood, which maintains organ function.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Guangming Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R. China
| | | | | | - Sui-Yi Kwok
- New B Innovation Limited, Hong Kong, P.R. China
| | - Bing L Wong
- New B Innovation Limited, Hong Kong, P.R. China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.
| |
Collapse
|
13
|
Mer M, Hodgson E, Wallis L, Jacobson B, Levien L, Snyman J, Sussman MJ, James M, van Gelder A, Allgaier R, Jahr JS. Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion 2016; 56:2631-2636. [DOI: 10.1111/trf.13726] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/28/2016] [Accepted: 05/28/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Mervyn Mer
- Charlotte Maxeke Johannesburg Academic Hospital, University of Witwatersrand; Gauteng South Africa
| | - Eric Hodgson
- Nkosi Albert Luthuli Hospital, Nelson R. Mandela School of Medicine; Durban South Africa
| | - Lee Wallis
- University of Cape Town, Stellenbosch University; Stellenbosch South Africa
| | - Barry Jacobson
- National Health Laboratory Service; Johannesburg Hospital; Johannesburg South Africa
| | | | - Jacques Snyman
- Steve Biko Academic Hospital, University of Pretoria; Pretoria South Africa
| | | | - Mike James
- Department of Anesthesia; Groote Schuur Hospital, University of Cape Town; Cape Town South Africa
| | - Antoine van Gelder
- Steve Biko Academic Hospital, University of Pretoria; Pretoria South Africa
| | - Rachel Allgaier
- Division of Emergency Medicine; University of Cape Town and Stellenbosch University; Stellenbosch South Africa
| | - Jonathan S. Jahr
- Department of Anesthesiology and Perioperative Medicine; David Geffen School of Medicine at UCLA; Los Angeles California
| |
Collapse
|
14
|
Multicenter, Randomized, Placebo-Controlled Phase III Study of Pyridoxalated Hemoglobin Polyoxyethylene in Distributive Shock (PHOENIX)*. Crit Care Med 2015; 43:57-64. [DOI: 10.1097/ccm.0000000000000554] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Dose-Dependent Hemodynamic, Biochemical, and Tissue Oxygen Effects of OC99 following Severe Oxygen Debt Produced by Hemorrhagic Shock in Dogs. Crit Care Res Pract 2014; 2014:864237. [PMID: 25405028 PMCID: PMC4227330 DOI: 10.1155/2014/864237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 09/21/2014] [Accepted: 09/30/2014] [Indexed: 01/14/2023] Open
Abstract
We determined the dose-dependent effects of OC99, a novel, stabilized hemoglobin-based oxygen-carrier, on hemodynamics, systemic and pulmonary artery pressures, surrogates of tissue oxygen debt (arterial lactate 7.2 ± 0.1 mM/L and arterial base excess -17.9 ± 0.5 mM/L), and tissue oxygen tension (tPO2) in a dog model of controlled severe oxygen-debt from hemorrhagic shock. The dose/rate for OC99 was established from a pilot study conducted in six bled dogs. Subsequently twenty-four dogs were randomly assigned to one of four groups (n = 6 per group) and administered: 0.0, 0.065, 0.325, or 0.65 g/kg of OC99 combined with 10 mL/kg lactated Ringers solution administered in conjunction with 20 mL/kg Hextend IV over 60 minutes. The administration of 0.325 g/kg and 0.65 g/kg OC99 produced plasma hemoglobin concentrations of 0.63 ± 0.01 and 1.11 ± 0.02 g/dL, respectively, improved systemic hemodynamics, enhanced tPO2, and restored lactate and base excess values compared to 0.0 and 0.065 g/kg OC99. The administration of 0.65 g/kg OC99 significantly elevated pulmonary artery pressure. Plasma hemoglobin concentrations of OC99 ranging from 0.3 to 1.1 g/dL, in conjunction with colloid based fluid resuscitation, normalized clinical surrogates of tissue oxygen debt, improved tPO2, and avoided clinically relevant increases in pulmonary artery pressure.
Collapse
|
16
|
Are Hemoglobin-Based Oxygen Carriers Being Withheld Because of Regulatory Requirement for Equivalence to Packed Red Blood Cells? Am J Ther 2014; 22:e115-21. [PMID: 25285795 DOI: 10.1097/mjt.0000000000000009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Song BK, Nugent WH, Moon-Massat PF, Pittman RN. Effects of a hemoglobin-based oxygen carrier (HBOC-201) and derivatives with altered oxygen affinity and viscosity on systemic and microcirculatory variables in a top-load rat model. Microvasc Res 2014; 95:124-30. [PMID: 25046829 DOI: 10.1016/j.mvr.2014.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 07/10/2014] [Accepted: 07/11/2014] [Indexed: 02/01/2023]
Abstract
The effects of a polymerized bovine hemoglobin-based oxygen carrier (HBOC) and two derivatives on arteriolar vasoactivity and tissue oxygen tension were explored by administering HBOC in a dose-response fashion to normovolemic rats. The effect of oxygen affinity (P50) and viscosity was also explored, where the P50 and viscosity of the parent compound (HBOC-201) and its modifications (MP50 and LP50A) were as follows: 40mmHg and 3.0cP (HBOC-20l); 18mmHg and 4.4cP (MP50); and 17mmHg and 12.1cP (LP50A). Anesthetized male Sprague-Dawley rats (N=32) were randomized to receive one of the HBOC solutions, and were administered four infusions that increased in concentration for each dose (2, 22, 230 and 780mg/kg, IV). Data were compared to rats receiving an equivalent volume for each of the four infusions (0.4, 0.4, 3.8, 13.1ml/kg, IV) of iso-oncotic 5.9% human serum albumin (HSA). Increasing doses of either HBOC solutions or HSA were associated with increasing MAP. Doses 3 and 4 of HBOC-201, MP50 and HSA produced significant increases in MAP, whereas similar increases began at a lower dose (Dose 2) with LP50A. There were no significant changes in arteriolar diameters at any dose for any group. Interstitial partial pressure of oxygen (ISF PO2) remained unchanged for HBOC-201, MP50 and HSA, but LP50A caused a significant decrease in ISF PO2 compared to baseline after Doses 3 and 4. In conclusion, there was no evidence that HBOC-201 would perform better with increased oxygen affinity (40 to 18mmHg) or viscosity (3.0 to 4.4cP).
Collapse
Affiliation(s)
- Bjorn Kyungsuck Song
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - William H Nugent
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | - Roland N Pittman
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Andre F. Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210;
| | - Marcos Intaglietta
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
19
|
Leme Silva P, Pelosi P, Gama de Abreu M. Impact of intravascular volume replacement and transfusion on outcome: where are we now? Best Pract Res Clin Anaesthesiol 2013; 26:485-97. [PMID: 23351235 DOI: 10.1016/j.bpa.2012.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 11/14/2012] [Indexed: 10/27/2022]
Abstract
Intravenous fluid administration is often required to counteract haemodynamic instability during emergency and elective surgeries, as well as in the intensive care unit. However, the best type and the amount of fluid required are controversial. A recent meta-analysis suggested that there is no difference among different types of colloids on outcome. Furthermore, colloids and crystalloids seem to be comparable in terms of efficiency in reverting haemodynamic instability, as well as morbidity and mortality. The interpretation of the results of different randomised controlled trials is somewhat difficult - the context must be always kept in mind. For example, results may differ in septic as compared to non-septic patient populations. Another important aspect concerns the effects on the macro- versus microcirculation. More recent studies emphasise that the microcirculation has to be taken into account when studying and interpreting the interaction between fluid therapy and the underlying disease. Nevertheless, the macrocirculation and clinical parameters have to be considered as well. Given that red blood cells remain the most important oxygen carriers, recent evidence regarding blood age may stimulate new studies according to the actual range for blood storage. Artificial oxygen carriers may play a role in specific situations, where the transfusion is indicated but the access to blood is problematic, but there is doubt that they may replace blood transfusion.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Pulmonary Engineering Group, Department of Anesthesiology and Intensive Care Therapy, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | | | | |
Collapse
|
20
|
Abstract
The development of oxygen (O2)-carrying blood substitutes has evolved from the goal of replicating blood O2 transport properties to that of preserving microvascular and organ function, reducing the inherent or potential toxicity of the material used to carry O2, and treating pathologies initiated by anemia and hypoxia. Furthermore, the emphasis has shifted from blood replacement fluid to "O2 therapeutics" that restore tissue oxygenation to specific tissues regions. This review covers the different alternatives, potential and limitations of hemoglobin-based O2 carriers (HBOCs) and perfluorocarbon-based O2 carriers (PFCOCs), with emphasis on the physiologic conditions disturbed in the situation that they will be used. It describes how concepts learned from plasma expanders without O2-carrying capacity can be applied to maintain O2 delivery and summarizes the microvascular responses due to HBOCs and PFCOCs. This review also presents alternative applications of HBOCs and PFCOCs namely: 1) How HBOC O2 affinity can be engineered to target O2 delivery to hypoxic tissues; and 2) How the high gas solubility of PFCOCs provides new opportunities for carrying, dissolving, and delivering gases with biological activity. It is concluded that the development of current blood substitutes has amplified their applications horizon by devising therapeutic functions for O2 carriers requiring limited O2 delivery capacity restoration. Conversely, full, blood-like O2-carrying capacity reestablishment awaits the control of O2 carrier toxicity.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412, USA.
| | | |
Collapse
|
21
|
Abstract
SIGNIFICANCE There has been a striking advancement in our understanding of red cell substitutes over the past decade. Although regulatory oversight has influenced many aspects of product development in this period, those who have approached the demonstration of efficacy of red cell substitutes have failed to understand their implication at the level of the microcirculation, where blood interacts closely with tissue. RECENT ADVANCES The understanding of the adverse effects of acellular hemoglobin (Hb)-based oxygen carriers (HBOCs) has fortunately expanded from Hb-induced renal toxicity to a more complete list of biochemical mechanism. In addition, various unexpected adverse reactions were seen in early clinical studies. The effects of the presence of acellular Hb in plasma are relatively unique because of the convergence of mechanical and biochemical natures. CRITICAL ISSUES Controlling the variables using genetic engineering and chemical modification to change specific characteristics of the Hb molecule may allow for solving the complex multivariate problems of acellular Hb vasoactivity. HBOCs may never be rendered free of negative effects; however, quantifying the nature and extent of microvascular complications establishes a platform for designing new ameliorative therapies. FUTURE DIRECTIONS It is time to leave behind the study of vasoactivity and toxicity based on bench-top measurements of biochemical changes and those based solely on systemic parameters in vivo, and move to a more holistic analysis of the mechanisms creating the problems, complemented with meaningful studies of efficacy.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Haak CE, Rudloff E, Kirby R. Comparison of Hb-200 and 6% hetastarch 450/0.7 during initial fluid resuscitation of 20 dogs with gastric dilatation-volvulus. J Vet Emerg Crit Care (San Antonio) 2013; 22:201-10. [PMID: 23016811 DOI: 10.1111/j.1476-4431.2012.00726.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To compare the use of polymerized stroma-free bovine hemoglobin (Hb-200) and 6% hetastarch 450/0.7 (HES 450/0.7) in 0.9% saline during fluid resuscitation of dogs with gastric dilatation-volvulus (GDV). DESIGN Prospective, randomized clinical case series. SETTING Private specialty and referral clinic. ANIMALS Twenty client-owned dogs presenting with GDV. INTERVENTIONS Dogs presenting with GDV and abnormal perfusion parameters first received rapid IV infusion of a buffered isotonic replacement crystalloid (15 mL/kg) and IV opioids. Patients were then randomized to receive either Hb-200 (N = 10) or HES 450/0.7 (N = 10). Balanced isotonic replacement crystalloids (10-20 mL/kg IV) were rapidly infused along with either Hb-200 or HES in 5 mL/kg IV aliquots to meet resuscitation end points. MEASUREMENTS AND MAIN RESULTS Resuscitation was defined as meeting at least 2 of 3 criteria: (1) capillary refill time 1-2 seconds, pink mucous membrane color, strong femoral pulse quality; (2) heart rate (HR) ≤ 150/min; or (3) indirect arterial systolic blood pressure (SBP) > 90 mm Hg. HR, SBP, packed cell volume, hemoglobin, glucose, venous pH, bicarbonate, base excess, anion gap, and colloid osmotic pressure were compared at hospital entry and within 30 minutes post-resuscitation. Compared to the HES group, the Hb-200 group required significantly less colloid (4.2 versus 18.4 mL/kg) and crystalloid (31.3 versus 48.1 mL/kg) to reach resuscitation end points (P = 0.001). Time to resuscitation was significantly shorter in the Hb-200 group (12.5 versus 52.5 min). CONCLUSIONS Dogs with GDV receiving Hb-200 during initial resuscitation required smaller volumes of both crystalloid and colloid fluids and reached resuscitation end points faster than dogs receiving HES 450/0.7 (P = 0.02).
Collapse
Affiliation(s)
- Carol E Haak
- Animal Emergency Center and Specialty Services, Silver Spring Drive, Glendale, WI, 53209, USA.
| | | | | |
Collapse
|
23
|
The use of the Revised Trauma Score as an entry criterion in traumatic hemorrhagic shock studies: data from the DCLHb clinical trials. Prehosp Disaster Med 2012; 27:330-44. [PMID: 22840198 DOI: 10.1017/s1049023x12000970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The Revised Trauma Score (RTS) has been proposed as an entry criterion to identify patients with mid-range survival probability for traumatic hemorrhagic shock studies. HYPOTHESIS/PROBLEM Determination of which of four RTS strata (1-3.99, 2-4.99, 1-4.99, and 2-5.99) identifies patients with predicted and actual mortality rates near 50% for use as an entry criterion in traumatic hemorrhagic shock clinical trials. METHODS Existing database analysis in which demographic and injury severity data from two prior international Diaspirin Cross-Linked Hemoglobin (DCLHb) clinical trials were used to identify an RTS range that could be an optimal entry criterion in order to find the population of trauma patients with mid-range predicted and actual mortality rates. RESULTS Of 208 study patients, the mean age was 37 years, 65% sustained blunt trauma, 49% received DCLHb, and 57% came from the European Union study arm. The mean values were: ISS, 31 (SD = 18); RTS, 5.6 (SD = 1.8); and Glasgow Coma Scale (GCS), 10.4 (SD = 4.8). The mean TRISS-predicted mortality was 34% and the actual 28-day mortality was 35%. The initially proposed 1-3.99 RTS range (n = 41) had the highest predicted (79%) and actual (71%) mortality rates. The 2-5.99 RTS range (n = 79) had a 62% predicted and 53% actual mortality, and included 76% blunt trauma patients. Removal of GCS <5 patients from this RTS 2-5.99 subgroup caused a 48% further reduction in eligible patients, leaving 41 patients (20% of 208 total patients), 66% of whom sustained a blunt trauma injury. This subgroup had 54% predicted and 49% actual mortality rates. Receiver operator curve (ROC) analysis found the GCS to be as predictive of mortality as the RTS, both in the total patient population and in the RTS 2-5.99 subgroup. CONCLUSION The use of an RTS 2-5.99 inclusion criterion range identifies a traumatic hemorrhagic shock patient subgroup with predicted and actual mortality that approach the desired 50% rate. The exclusion of GCS <5 from this RTS 2-5.99 subgroup patients yields a smaller, more uniform patient subgroup whose mortality is more likely related to hemorrhagic shock than traumatic brain injury. Future studies should examine whether the RTS or other physiologic criteria such as the GCS score are most useful as traumatic hemorrhagic shock study entry criteria.
Collapse
|
24
|
|
25
|
Arnaud F, Scultetus AH, Haque A, Saha B, Kim B, Auker C, Moon-Massat P, McCarron R, Freilich D. Sodium nitroprusside ameliorates systemic but not pulmonary HBOC-201-induced vasoconstriction: an exploratory study in a swine controlled haemorrhage model. Resuscitation 2012; 83:1038-45. [PMID: 22286048 DOI: 10.1016/j.resuscitation.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 01/07/2012] [Accepted: 01/12/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Vasoconstriction is a side effect that may prevent the use of haemoglobin based oxygen carrier (HBOC) as blood substitute. Therefore, we tested the hypothesis that the NO donor, sodium nitroprusside (SNP), would mitigate systemic and pulmonary hypertension associated with HBOC-201 in a simple controlled haemorrhage swine model. METHODS After 55% estimated blood volume withdrawal through a venous catheter, invasively anesthetized and instrumented animals were resuscitated with three 10 ml/kg infusions of either HBOC-201 or Hextend (HEX) with or without 0.8 μg/kg/min SNP (infused concomitantly via different lines). Haemodynamics, direct and indirect measures of tissue oxygenation, and coagulation were measured for 2h. RESULTS Haemorrhage caused a state of shock manifested by hypotension and base deficit. HBOC-201 resuscitation resulted in higher systemic (p<0.0001) and pulmonary (p<0.002) blood pressure than with HEX. Elevation of systemic (p<0.0001) but not pulmonary (p>0.05) arterial pressure was attenuated by co-infusion of SNP, without significant group differences in haemodynamics, tissue oxygenation, platelet function, coagulation, methaemoglobin, or survival (p>0.05). CONCLUSION In swine with haemorrhagic shock, co-administration of the NO donor, SNP, effectively and safely reduces HBOC-201-related systemic but not pulmonary vasoactivity. Interestingly, co-administration of the vasodilator SNP with HEX had no deleterious effects in comparison with HEX alone.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, NeuroTrauma Department, Silver Spring, MD 20910-7500, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou Y, Cabrales P, Palmer AF. Simulation of NO and O2 transport facilitated by polymerized hemoglobin solutions in an arteriole that takes into account wall shear stress-induced NO production. Biophys Chem 2012; 162:45-60. [PMID: 22285312 DOI: 10.1016/j.bpc.2011.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 12/20/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
Abstract
A mathematical model was developed to study nitric oxide (NO) and oxygen (O(2)) transport in an arteriole and surrounding tissues exposed to a mixture of red blood cells (RBCs) and hemoglobin (Hb)-based O(2) carriers (HBOCs). A unique feature of this model is the inclusion of blood vessel wall shear stress-induced production of endothelial-derived NO, which is very sensitive to the viscosity of the RBC and HBOC mixture traversing the blood vessel lumen. Therefore in this study, a series of polymerized bovine Hb (PolyHb) solutions with high viscosity, varying O(2) affinities, NO dioxygenation rate constants and O(2) dissociation rate constants that were previously synthesized and characterized by our group was evaluated via mathematical modeling, in order to investigate the effect of these biophysical properties on the transport of NO and O(2) in an arteriole and its surrounding tissues subjected to anemia with the commercial HBOC Oxyglobin® and cell-free bovine Hb (bHb) serving as appropriate controls. The computer simulation results indicated that transfusion of high viscosity PolyHb solutions promoted blood vessel wall shear stress dependent generation of the vasodilator NO, especially in the blood vessel wall and should transport enough NO inside the smooth muscle layer to activate vasodilation compared to the commercial HBOC Oxyglobin® and cell-free bHb. However, NO scavenging in the arteriole lumen was unavoidable due to the intrinsic high NO dioxygenation rate constant of the HBOCs being studied. This study also observed that all PolyHbs could potentially improve tissue oxygenation under hypoxic conditions, while low O(2) affinity PolyHbs were more effective in oxygenating tissues under normoxic conditions compared with high O(2) affinity PolyHbs. In addition, all ultrahigh molecular weight PolyHbs displayed higher O(2) transfer rates than the commercial HBOC Oxyglobin® and cell-free bHb. Therefore, these results suggest that ultrahigh molecular weight PolyHb solutions could be used as safe and efficacious O(2) carriers for use in transfusion medicine. It also suggests that future generations of PolyHb solutions should possess lower NO dioxygenation reaction rate constants in order to reduce NO scavenging, while maintaining high solution viscosity to take advantage of wall shear stress-induced NO production. Taken together, we suggest that this mathematical model can be used to predict the vasoactivity of HBOCs and help guide the design and optimization of the next generation of HBOCs for use in transfusion medicine.
Collapse
Affiliation(s)
- Yipin Zhou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
27
|
Safo MK, Ahmed MH, Ghatge MS, Boyiri T. Hemoglobin-ligand binding: understanding Hb function and allostery on atomic level. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:797-809. [PMID: 21396487 DOI: 10.1016/j.bbapap.2011.02.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
The major physiological function of hemoglobin (Hb) is to bind oxygen in the lungs and deliver it to the tissues. This function is regulated and/or made efficient by endogenous heterotropic effectors. A number of synthetic molecules also bind to Hb to alter its allosteric activity. Our purpose is to review the current state of Hb structure and function that involves ensemble of tense and relaxed hemoglobin states and the dynamic equilibrium of the multistate due to the binding of endogenous heterotropic or synthetic allosteric effectors. The review also discusses the atomic interactions of synthetic ligands with the function or altered allosteric function of Hb that could be potentially harnessed for the treatment of diseases. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Martin K Safo
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA 23219, USA.
| | | | | | | |
Collapse
|
28
|
Zhang N, Jia Y, Chen G, Cabrales P, Palmer AF. Biophysical properties and oxygenation potential of high-molecular-weight glutaraldehyde-polymerized human hemoglobins maintained in the tense and relaxed quaternary states. Tissue Eng Part A 2011; 17:927-40. [PMID: 20979534 DOI: 10.1089/ten.tea.2010.0353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent clinical evaluation of commercial glutaraldehyde-polymerized hemoglobins (PolyHbs) as transfusion solutions has demonstrated several adverse side effects. Chief among these is the hypertensive effect. Fortunately, previous studies have shown that the hypertensive effect can be attenuated by removing free hemoglobin (Hb) and low-molecular-weight (low-MW) PolyHbs from the PolyHb mixture. In this work, polymerized human Hb (PolyhHb) solutions were synthesized in two distinct quaternary states with high MW and subjected to extensive diafiltration to remove free Hb and low-MW PolyhHb components (<500 kDa). The resultant PolyhHb solutions possessed high MW, distinct quaternary state, distinct reactivities with O(2) and CO, similar NO deoxygenating rate constants, distinct autoxidation rate constants, high viscosity, and low colloid osmotic pressure. To preliminarily assess the ability of PolyhHb solutions to oxygenate surrounding tissues fed by a blood vessel, we evaluated the ability of PolyhHbs to transport O(2) to cultured hepatocytes in a mathematical model of a hollow fiber bioreactor. The structure of individual hollow fibers in the bioreactor is similar to that of a blood vessel and provides an easy way to assess the oxygenation potential of PolyhHbs without the need for expensive and time-consuming animal studies. It was observed that PolyhHbs with low O(2) affinities were more effective in oxygenating cultured hepatocytes inside the bioreactor than high O(2) affinity PolyhHbs. Taken together, our results show that it is possible to synthesize high-MW PolyhHbs with no free Hb and low-MW PolyhHb components that are capable of transporting O(2) to cultured cells/tissues.
Collapse
Affiliation(s)
- Ning Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
29
|
Arnaud F, Scultetus AH, Kim B, Haque A, Saha B, Nigam S, Moon-Massat P, Auker C, McCarron R, Freilich D. Dose response of sodium nitrite on vasoactivity associated with HBOC-201 in a swine model of controlled hemorrhage. ACTA ACUST UNITED AC 2010; 39:195-205. [PMID: 21133651 DOI: 10.3109/10731199.2010.533126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sodium nitrite (NaNO(2)) was evaluated in a 55% EBV hemorrhage swine model to mitigate the increased blood pressure due to HBOC-201. Animals were resuscitated by three 10 ml/kg infusions of either HBOC-201 or Hextend with and without NaNO(2). All vital signs, coagulation and blood chemistry were measured for 2 hr. HBOC-201-vasoconstriction was attenuated only after the first 10.8 μmol/kg NaNO(2) infusion. Complete abolition was obtained with the highest 3 NaNO(2) dose, but side effects were observed. There was no reduction in platelet function due to NaNO(2). NaNO(2) ability to reduce HBOC-201 vasoactivity was transient and 10.8 μmol/kg NaNO(2) seems an acceptable dose for further investigation.
Collapse
Affiliation(s)
- Françoise Arnaud
- Naval Medical Research Center, Operational and Undersea Medicine, NeuroTrauma Department, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cabrales P, Han G, Nacharaju P, Friedman AJ, Friedman JM. Reversal of hemoglobin-induced vasoconstriction with sustained release of nitric oxide. Am J Physiol Heart Circ Physiol 2010; 300:H49-56. [PMID: 21057038 DOI: 10.1152/ajpheart.00665.2010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Erythrocyte free hemoglobin (Hb) induces vasoconstriction due to nitric oxide (NO) scavenging, limiting the NO available for vascular smooth muscle. The central objective of this study was to restore NO bioavailability using long-lived circulating NO-releasing nanoparticles (NO-np) to reverse the vasoconstriction and hypertension induced by polymerized bovine Hb (PBH) NO scavenging. PBH (13 g/dl) was infused in a volume equal to 10% of the animal blood volume. Intravascular NO supplementation was provided with an infusion of NO-np (10 and 20 mg/kg body wt). This study was performed using the hamster window chamber model to concurrently access systemic and microvascular hemodynamics. Infusion of PBH increased blood pressure and induced vasoconstriction. Treatment with 10 and 20 mg/kg NO-np reduced the blood pressure and vasoconstriction induced by PBH. Moreover, the higher dose of NO-np decreased blood pressure and induced vasodilation compared with baseline, respectively. Treatment with NO-np to decrease PBH-induced vasoconstriction increased methemoglobin levels and plasma nitrite and nitrate. In conclusion, NO-np counteracted both systemic hypertension and decreased the vasoconstrictor effects of PBH infusion, improving systemic and microvascular function. Based on the observed physiological properties, NO-np has clear potential as a therapeutic agent to replenish NO in situations where NO production is impaired, insufficient, or consumed, thereby preventing vascular complications.
Collapse
Affiliation(s)
- Pedro Cabrales
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA.
| | | | | | | | | |
Collapse
|
31
|
Zhang N, Palmer AF. Polymerization of human hemoglobin using the crosslinker 1,11-bis(maleimido)triethylene glycol for use as an oxygen carrier. Biotechnol Prog 2010; 26:1481-5. [DOI: 10.1002/btpr.467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Buehler PW, Zhou Y, Cabrales P, Jia Y, Sun G, Harris DR, Tsai AG, Intaglietta M, Palmer AF. Synthesis, biophysical properties and pharmacokinetics of ultrahigh molecular weight tense and relaxed state polymerized bovine hemoglobins. Biomaterials 2010; 31:3723-35. [PMID: 20149433 DOI: 10.1016/j.biomaterials.2010.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 01/13/2010] [Indexed: 10/19/2022]
Abstract
Hemoglobin-based oxygen carriers (HBOC) are currently being developed as red blood cell (RBC) substitutes for use in transfusion medicine. Despite significant commercial development, late stage clinical results of polymerized hemoglobin (PolyHb) solutions hamper development. We synthesized two types of PolyHbs with ultrahigh molecular weights: tense (T) state PolyHb (M(W)=16.59 MDa and P(50)=41 mmHg) and relaxed (R) state PolyHb (M(W)=26.33 MDa and P(50)=0.66 mmHg). By maintaining Hb in either the T- or R-state during the polymerization reaction, we were able to synthesize ultrahigh molecular weight PolyHbs in distinct quaternary states with no tetrameric Hb, high viscosity, low colloid osmotic pressure and the ability to maintain O(2) dissociation, CO association and NO dioxygenation reactions. The PolyHbs elicited some in vitro RBC aggregation that was less than 6% dextran (500 kDa) but more than 5% human serum albumin. In vitro, T-state PolybHb autoxidized faster than R-state PolybHb as expected from previously reported studies, conversely, when administered to guinea pigs as a 20% exchange transfusion, R-state PolybHb oxidized faster and to a greater extent than T-state PolybHb, suggesting a more complex oxidative processes in vivo. Our findings also demonstrate that T-state PolybHb exhibited a longer circulating half-life, slower clearance and longer systemic exposure time compared to R-state PolybHb.
Collapse
Affiliation(s)
- Paul W Buehler
- Laboratory of Biochemistry and Vascular Biology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Clinical practice guideline: Red blood cell transfusion in adult trauma and critical care*. Crit Care Med 2009; 37:3124-57. [DOI: 10.1097/ccm.0b013e3181b39f1b] [Citation(s) in RCA: 364] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|