1
|
Tybirk L, Hviid CVB, Knudsen CS, Parkner T. Serum GFAP - pediatric reference interval in a cohort of Danish children. Clin Chem Lab Med 2023; 61:2041-2045. [PMID: 37195150 DOI: 10.1515/cclm-2023-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVES Glial fibrillary acidic protein (GFAP) in blood is an emerging biomarker of brain injury and neurological disease. Its clinical use in children is limited by the lack of a reference interval (RI). Thus, the aim of the present study was to establish an age-dependent continuous RI for serum GFAP in children. METHODS Excess serum from routine allergy testing of 391 children, 0.4-17.9 years of age, was measured by a single-molecule array (Simoa) assay. A continuous RI was modelled using non-parametric quantile regression and presented both graphically and tabulated as discrete one-year RIs based on point estimates from the model. RESULTS Serum GFAP showed a strong age-dependency with declining levels and variability from infants to adolescents. The estimated median level decreased 66 % from four months to five years of age and another 65 % from five years to 17.9 years of age. No gender difference was observed. CONCLUSIONS The study establishes an age-dependent RI for serum GFAP in children showing high levels and variability in the first years of life.
Collapse
Affiliation(s)
- Lea Tybirk
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Tina Parkner
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol 2022; 13:835597. [PMID: 35386417 PMCID: PMC8977512 DOI: 10.3389/fneur.2022.835597] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Traumatic brain injury (TBI) is a major global health issue, with outcomes spanning from intracranial bleeding, debilitating sequelae, and invalidity with consequences for individuals, families, and healthcare systems. Early diagnosis of TBI by testing peripheral fluids such as blood or saliva has been the focus of many research efforts, leading to FDA approval for a bench-top assay for blood GFAP and UCH-L1 and a plasma point-of-care test for GFAP. The biomarker S100B has been included in clinical guidelines for mTBI (mTBI) in Europe. Despite these successes, several unresolved issues have been recognized, including the robustness of prior data, the presence of biomarkers in tissues beyond the central nervous system, and the time course of biomarkers in peripheral body fluids. In this review article, we present some of these issues and provide a viewpoint derived from an analysis of existing literature. We focus on two astrocytic proteins, S100B and GFAP, the most commonly employed biomarkers used in mTBI. We also offer recommendations that may translate into a broader acceptance of these clinical tools.
Collapse
Affiliation(s)
- Damir Janigro
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States.,FloTBI, Cleveland, OH, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Jussi P Posti
- Department of Neurosurgery, Neurocenter, Turku Brain Injury Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Johan Unden
- Department of Operation and Intensive Care, Hallands Hospital Halmstad, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Whitehouse DP, Vile AR, Adatia K, Herlekar R, Roy AS, Mondello S, Czeiter E, Amrein K, Büki A, Maas AIR, Menon DK, Newcombe VFJ. Blood Biomarkers and Structural Imaging Correlations Post-Traumatic Brain Injury: A Systematic Review. Neurosurgery 2022; 90:170-179. [PMID: 34995235 DOI: 10.1227/neu.0000000000001776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Blood biomarkers are of increasing importance in the diagnosis and assessment of traumatic brain injury (TBI). However, the relationship between them and lesions seen on imaging remains unclear. OBJECTIVE To perform a systematic review of the relationship between blood biomarkers and intracranial lesion types, intracranial lesion injury patterns, volume/number of intracranial lesions, and imaging classification systems. METHODS We searched Medical Literature Analysis and Retrieval System Online, Excerpta Medica dataBASE, and Cumulative Index to Nursing and Allied Health Literature from inception to May 2021, and the references of included studies were also screened. Heterogeneity in study design, biomarker types, imaging modalities, and analyses inhibited quantitative analysis, with a qualitative synthesis presented. RESULTS Fifty-nine papers were included assessing one or more biomarker to imaging comparisons per paper: 30 assessed imaging classifications or injury patterns, 28 assessed lesion type, and 11 assessed lesion volume or number. Biomarker concentrations were associated with the burden of brain injury, as assessed by increasing intracranial lesion volume, increasing numbers of traumatic intracranial lesions, and positive correlations with imaging classification scores. There were inconsistent findings associating different biomarkers with specific imaging phenotypes including diffuse axonal injury, cerebral edema, and intracranial hemorrhage. CONCLUSION Blood-based biomarker concentrations after TBI are consistently demonstrated to correlate burden of intracranial disease. The relation with specific injury types is unclear suggesting a lack of diagnostic specificity and/or is the result of the complex and heterogeneous nature of TBI.
Collapse
Affiliation(s)
- Daniel P Whitehouse
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | | | - Krishma Adatia
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Rahul Herlekar
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Akangsha Sur Roy
- School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Endre Czeiter
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Krisztina Amrein
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
- Neurotrauma Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrew I R Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - David K Menon
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Virginia F J Newcombe
- Department of Medicine, University Division of Anaesthesia, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Chmielewska N, Szyndler J, Makowska K, Wojtyna D, Maciejak P, Płaźnik A. Looking for novel, brain-derived, peripheral biomarkers of neurological disorders. Neurol Neurochir Pol 2018; 52:318-325. [PMID: 29478670 DOI: 10.1016/j.pjnns.2018.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 11/29/2022]
Abstract
The role of blood brain barrier (BBB) is to preserve a precisely regulated environment for proper neuronal signaling. In many of the central nervous system (CNS) pathologies, the function of BBB is altered. Thus, there is a necessity to evaluate a fast, noninvasive and reliable method for monitoring of BBB condition. It seems that revealing the peripheral diagnostic biomarker whose release pattern (concentration, dynamics) will be correlated with clinical symptoms of neurological disorders offers significant hope. It could help with faster diagnosis and efficient treatment monitoring. In this review we summarize the recent data concerning exploration of potential new serum biomarkers appearing in the peripheral circulation following BBB disintegration, with an emphasis on epilepsy, traumatic brain injury (TBI) and stroke. We consider the application of well-known proteins (S100β and GFAP) as serum indicators in the light of recently obtained results. Furthermore, the utility of molecules like MMP-9, UCHL-1, neurofilaments, BDNF, and miRNA, which are newly recognized as a potential serum biomarkers, will also be discussed.
Collapse
Affiliation(s)
- Natalia Chmielewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Karolina Makowska
- Student of Second Faculty of Medicine, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland
| | - Dawid Wojtyna
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland
| | - Piotr Maciejak
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, Warsaw 02-957, Poland; Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
5
|
Luoto TM, Raj R, Posti JP, Gardner AJ, Panenka WJ, Iverson GL. A Systematic Review of the Usefulness of Glial Fibrillary Acidic Protein for Predicting Acute Intracranial Lesions following Head Trauma. Front Neurol 2017; 8:652. [PMID: 29255443 PMCID: PMC5722790 DOI: 10.3389/fneur.2017.00652] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/20/2017] [Indexed: 01/09/2023] Open
Abstract
Background The extensive use of computed tomography (CT) after acute head injury is costly and carries potential iatrogenic risk. This systematic review examined the usefulness of blood-based glial fibrillary acidic protein (GFAP) for predicting acute trauma-related CT-positive intracranial lesions following head trauma. The main objective was to summarize the current evidence on blood-based GFAP as a potential screening test for acute CT-positive intracranial lesions following head trauma. Methods We screened MEDLINE, EMBASE, PsychInfo, CINAHL, Web of Science, the Cochrane Database, Scopus, Clinical Trials, OpenGrey, ResearchGate, and the reference lists of eligible publications for original contributions published between January 1980 and January 2017. Eligibility criteria included: (i) population: human head and brain injuries of all severities and ages; (ii) intervention: blood-based GFAP measurement ≤24 h post-injury; and (iii) outcome: acute traumatic lesion on non-contrast head CT ≤24 h post-injury. Three authors completed the publication screening, data extraction, and quality assessment of eligible articles. Results The initial search identified 4,706 articles, with 51 eligible for subsequent full-text assessment. Twenty-seven articles were ultimately included. Twenty-four (89%) studies reported a positive association between GFAP level and acute trauma-related intracranial lesions on head CT. The area under the receiver operating characteristic curve for GFAP prediction of intracranial pathology ranged from 0.74 to 0.98 indicating good to excellent discrimination. GFAP seemed to discriminate mass lesions and diffuse injury, with mass lesions having significantly higher GFAP levels. There was considerable variability between the measured GFAP averages between studies and assays. No well-designed diagnostic studies with specific GFAP cutoff values predictive of acute traumatic intracranial lesions have been published. Conclusion Intracranial CT-positive trauma lesions were associated with elevated GFAP levels in the majority of studies. Methodological heterogeneity in GFAP assessments and the lack of well-designed diagnostic studies with commercially validated GFAP platforms hinder the level of evidence, and variability in levels of GFAP with no clearly established cutoff for abnormality limit the clinical usefulness of the biomarker. However, blood-based GFAP holds promise as a means of screening for acute traumatic CT-positive lesion following head trauma.
Collapse
Affiliation(s)
- Teemu M Luoto
- Department of Neurosurgery, Tampere University Hospital, Tampere, Finland
| | - Rahul Raj
- Department of Neurosurgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Jussi P Posti
- Division of Clinical Neurosciences, Department of Neurosurgery, and Turku Brain Injury Centre, Turku University Hospital, and University of Turku, Turku, Finland
| | - Andrew J Gardner
- Priority Research Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Sports Concussion Program, Hunter New England Local Health District, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - William J Panenka
- British Columbia Neuropsychiatry Program, Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, MassGeneral Hospital for Children™ Sports Concussion Program, Boston, MA, United States
| |
Collapse
|
6
|
El Rahman HAA, Salama M, Gad El-Hak SA, El-Harouny MA, ElKafrawy P, Abou-Donia MB. A Panel of Autoantibodies Against Neural Proteins as Peripheral Biomarker for Pesticide-Induced Neurotoxicity. Neurotox Res 2017; 33:316-336. [PMID: 28875469 DOI: 10.1007/s12640-017-9793-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/21/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
In the present study, we screened the sera of subjects chronically exposed to mixtures of pesticides (composed mainly of organophosphorus compounds (OPs) and others) and developed neurological symptoms for the presence of autoantibodies against cytoskeletal neural proteins. OPs have a well-characterized clinical profile resulting from acute cholinergic crisis. However, some of these compounds cause neuronal degeneration and demyelination known as organophosphorus compound-induced delayed neurotoxicity (OPIDN) and/or organophosphorus compound-induced chronic neurotoxicity (OPICN). Studies from our group have demonstrated the presence of autoantibodies to essential neuronal and glial proteins against cytoskeletal neural proteins in patients with chemical-induced brain injury. In this study, we screened the serum of 50 pesticide-exposed subjects and 25 non-exposed controls, using Western blot analysis against the following proteins: neurofilament triplet proteins (NFPs), tubulin, microtubule-associated tau proteins (Tau), microtubule-associated protein-2 (MAP-2), myelin basic protein (MBP), myelin-associated glycoprotein (MAG), glial fibrillary acidic protein (GFAP), calcium-calmodulin kinase II (CaMKII), glial S100-B protein, and alpha-synuclein (SNCA). Serum reactivity was measured as arbitrary chemiluminescence units. As a group, exposed subjects had significantly higher levels of autoantibody reactivity in all cases examined. The folds of increase in of autoantibodies against neural proteins of the subjects compared to healthy humans in descending order were as follows: MBP, 7.67, MAG 5.89, CaMKII 5.50, GFAP 5.1, TAU 4.96, MAP2 4.83, SNCA 4.55, NFP 4.55, S-100B 2.43, and tubulin 1.78. This study has demonstrated the presence of serum autoantibodies to central nervous system-specific proteins in a group of farmers chronically exposed to pesticides who developed neurological signs and symptoms of neural injury. These autoantibodies can be used as future diagnostic/therapeutic target for OP-induced neurotoxicity.
Collapse
Affiliation(s)
- Heba Allah Abd El Rahman
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Salama
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Seham A Gad El-Hak
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona A El-Harouny
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Mohamed B Abou-Donia
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA.
| |
Collapse
|
7
|
Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander BM, Helmy A, Menon DK, Nelson DW. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review. Front Neurol 2017; 8:300. [PMID: 28717351 PMCID: PMC5494601 DOI: 10.3389/fneur.2017.00300] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The proteins S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), and neurofilament light (NF-L) have been serially sampled in serum of patients suffering from traumatic brain injury (TBI) in order to assess injury severity and tissue fate. We review the current literature of serum level dynamics of these proteins following TBI and used the term "effective half-life" (t1/2) in order to describe the "fall" rate in serum. MATERIALS AND METHODS Through searches on EMBASE, Medline, and Scopus, we looked for articles where these proteins had been serially sampled in serum in human TBI. We excluded animal studies, studies with only one presented sample and studies without neuroradiological examinations. RESULTS Following screening (10,389 papers), n = 122 papers were included. The proteins S100B (n = 66) and NSE (n = 27) were the two most frequent biomarkers that were serially sampled. For S100B in severe TBI, a majority of studies indicate a t1/2 of about 24 h, even if very early sampling in these patients reveals rapid decreases (1-2 h) though possibly of non-cerebral origin. In contrast, the t1/2 for NSE is comparably longer, ranging from 48 to 72 h in severe TBI cases. The protein GFAP (n = 18) appears to have t1/2 of about 24-48 h in severe TBI. The protein UCH-L1 (n = 9) presents a t1/2 around 7 h in mild TBI and about 10 h in severe. Frequent sampling of these proteins revealed different trajectories with persisting high serum levels, or secondary peaks, in patients with unfavorable outcome or in patients developing secondary detrimental events. Finally, NF-L (n = 2) only increased in the few studies available, suggesting a serum availability of >10 days. To date, automated assays are available for S100B and NSE making them faster and more practical to use. CONCLUSION Serial sampling of brain-specific proteins in serum reveals different temporal trajectories that should be acknowledged. Proteins with shorter serum availability, like S100B, may be superior to proteins such as NF-L in detection of secondary harmful events when monitoring patients with TBI.
Collapse
Affiliation(s)
- Eric Peter Thelin
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frederick Adam Zeiler
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Clinician Investigator Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ari Ercole
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - András Büki
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Neurosurgery, University of Pecs, Pecs, Hungary
- MTA-PTE Clinical Neuroscience MR Research Group, Pecs, Hungary
| | | | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David W. Nelson
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Rhine T, Babcock L, Zhang N, Leach J, Wade SL. Are UCH-L1 and GFAP promising biomarkers for children with mild traumatic brain injury? Brain Inj 2016; 30:1231-8. [PMID: 27416022 DOI: 10.1080/02699052.2016.1178396] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES To compare serum biomarker levels between children with mild traumatic brain injury (mTBI) and orthopaedic injury (OI), acutely following injury. Secondarily, to explore the association between biomarker levels and symptom burden over 1 month post-injury. METHODS This was a prospective cohort study of children aged 11-16 years who presented to the emergency department within 6 hours of sustaining mTBI or isolated extremity OI. Serum was drawn at the time of study enrollment and levels of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) and glial fibrillary acid protein (GFAP) were analysed. Symptom burden was assessed by the Post-Concussion Symptom Scale (PCSS) acutely following injury and at three subsequent time points over 1 month. RESULTS Twenty-five children with mTBI and 20 children with OI were enrolled. The average age for the overall cohort was 13 (± 1.6) years and the majority were male and injured playing sports. GFAP levels and PCSS scores were significantly higher acutely following mTBI vs OI (p < 0.01). There was not a significant group difference in UCH-L1 levels. Neither GFAP nor UCH-L1 were predictive of PCSS scores over the 1month post-injury. CONCLUSIONS GFAP may be a promising diagnostic tool for children with mTBI. Additional approaches are needed to predict symptom severity and persistence.
Collapse
Affiliation(s)
- Tara Rhine
- a Division of Pediatric Emergency Medicine
| | | | | | | | - Shari L Wade
- d Division of Physical Medicine and Rehabilitation Department of Pediatrics , Cincinnati Children's Hospital Medical Center , Cincinnati , OH , USA
| |
Collapse
|
9
|
Daoud H, Alharfi I, Alhelali I, Charyk Stewart T, Qasem H, Fraser DD. Brain injury biomarkers as outcome predictors in pediatric severe traumatic brain injury. Neurocrit Care 2015; 20:427-35. [PMID: 23943317 DOI: 10.1007/s12028-013-9879-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND To systematically review the literature on brain injury biomarkers, defined as any injury biomarker detected in cerebrospinal fluid (CSF) or blood injury biomarkers primarily expressed in the brain parenchyma, to determine outcome prediction in pediatric severe traumatic brain injury (sTBI). METHODS A search of MEDLINE(®), EMBASE(®), PsycINFO(®), Pubmed(®), and the Cochrane Database, as well as grey literature sources, personal contacts, hand searches, and reference lists. The search terms used were traumatic brain injury, biomarkers, prognosis, and children. No language, publication type, or publication date restrictions were imposed. All articles were critically reviewed by two clinicians independently. RESULTS A total of 7,150 articles were identified initially with 16 studies identified for review. Eighteen different biomarkers were examined; 11 in CSF and 7 in blood. Outcomes assessed included either in-hospital mortality or functional state (hospital discharge, 3-months or 6-months; Glasgow Outcome Scale or Pediatric Cerebral Performance Category). Significant correlations were established between sTBI outcomes and various biomarkers in CSF (IL-6, IL-8, IL-1β, S100β, NGF, NSE, DCX, ET-1, HMGB-1, cytochrome C) and blood (GFAP, NF-H, UCH-L1, SBDP-145, leptin). Mixed results were obtained for blood S100β. Outcome did not correlate with several biomarkers in either CSF (BDNF, GDNF, α-Syn) or blood (NSE, MBP). The Class of Evidence was considered II in 1 study and III in the remaining 15 studies. CONCLUSIONS Based on the status of current sTBI biomarker research, we recommend that future research should be directed at both novel biomarker discovery and validation of biomarker panels in large, well-designed longitudinal studies.
Collapse
Affiliation(s)
- Hani Daoud
- Department of Paediatrics, Western University, London, ON, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Augustine C, Cepinskas G, Fraser DD. Traumatic injury elicits JNK-mediated human astrocyte retraction in vitro. Neuroscience 2014; 274:1-10. [PMID: 24838066 DOI: 10.1016/j.neuroscience.2014.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/06/2014] [Accepted: 05/06/2014] [Indexed: 02/08/2023]
Abstract
Brain injury causes dysfunction of the blood-brain barrier (BBB). The BBB is comprised of perivascular astrocytes whose end-feet ensheath brain microvascular endothelial cells. We investigated trauma-induced morphological changes of human astrocytes (HA) and human cerebral microvascular endothelial cells (hCMEC/D3) in vitro, including the potential role of mitogen-activated protein kinase (MAPK) signal-transduction pathways. HA or hCMEC/D3 were grown on flexible culture membranes and subjected to single traumatic injury normalized to 20%, 30% or 55% membrane deformation. Cells were assayed for morphological changes (i.e. retraction) and MAPK phosphorylation and/or expression (c-Jun NH2-terminal kinase (JNK)1/2, extracellular signal-regulated kinase (ERK)1/2, and p38). HA retraction was rapidly elicited with a single traumatic injury (55% membrane deformation; p<0.01). Morphological recovery of HA was observed within 2h (p<0.05). Traumatic injuries increased phospho-JNK1/2 (p<0.05) in HA, indicating MAPK activation. Pre-treatment of HA with structurally distinct JNK inhibitors (25μM), either SP600125 or SU3327, reduced JNK phosphorylation (p<0.05) and trauma-induced HA retraction (P<0.05). In contrast to HA, traumatic injury failed to induce either morphological changes or MAPK activation in hCMEC/D3. In summary, traumatic injury induces JNK-mediated HA retraction in vitro, while sparing morphological changes in cerebral microvascular endothelial cells. Astrocyte retraction from microvascular endothelial cells in vivo may occur after brain trauma, resulting in cellular uncoupling and BBB dysfunction. JNK may represent a potential therapeutic target for traumatic brain injuries.
Collapse
Affiliation(s)
- C Augustine
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Children's Health Research Institute, London, ON, Canada; Center for Critical Illness Research, London, ON, Canada
| | - G Cepinskas
- Center for Critical Illness Research, London, ON, Canada; Department of Medical Biophysics, Western University, London, ON, Canada; Department of Medicine, Western University, London, ON, Canada
| | - D D Fraser
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Children's Health Research Institute, London, ON, Canada; Center for Critical Illness Research, London, ON, Canada; Department of Paediatrics, Western University, London, ON, Canada; Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| | | |
Collapse
|
11
|
Forde CT, Karri SK, Young AMH, Ogilvy CS. Predictive markers in traumatic brain injury: opportunities for a serum biosignature. Br J Neurosurg 2013; 28:8-15. [DOI: 10.3109/02688697.2013.815317] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 2013; 30:981-97. [PMID: 23268705 PMCID: PMC3684215 DOI: 10.1089/neu.2012.2699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
Collapse
Affiliation(s)
- Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- Department of Microbiology, Midwestern University School of Medicine, Glendale, Arizona
| | - Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Emma Rodriguez
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- National Institute of Cardiology, Mexico City, Mexico
| | - Walter Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| |
Collapse
|
13
|
Xing G, Ren M, O'Neill JT, Sharma P, Verma A, Watson WD. Pyruvate dehydrogenase phosphatase1 mRNA expression is divergently and dynamically regulated between rat cerebral cortex, hippocampus and thalamus after traumatic brain injury: a potential biomarker of TBI-induced hyper- and hypo-glycaemia and neuronal vulnerability. Neurosci Lett 2012; 525:140-5. [PMID: 22884618 DOI: 10.1016/j.neulet.2012.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/30/2012] [Accepted: 07/21/2012] [Indexed: 12/12/2022]
Abstract
Cerebral pyruvate depletion and lactate acidosis are common metabolic characteristics of patients with traumatic brain injury (TBI) and are associated with poor prognosis. Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme coupling glycolysis to mitochondrial tricarboxylic acid (TCA) cycle. Brain PDH activity is regulated by its phosphorylation status and other effectors. Phosphorylation of PDH E1α1 subunit by PDH kinase inhibits PDH activity while dephosphorylation of phosphorylated PDHE1α1 by PDH phosphatase (PDP1) restores PDH activity. In situ hybridization showed that PDP1 mRNA is highly expressed in the cerebral cortex, hippocampus and thalamus of rat. Controlled cortical impact (CCI) induced a significant increase in PDP1 mRNA expression in ipsilateral cerebral cortex at 4 h (P<0.05) and 24 h post CCI (P<0.01) that returned to basal level 72 h post CCI. PDP1 mRNA level increased transiently in ipsilateral hippocampal dentate gyrus and CA1-3 subfields 4 h post CCI (P<0.01) but decreased significantly 24 h and 72 h (P<0.01) post CCI, coinciding with a marked increase in neuronal apoptosis in ipsilateral hippocampus 24 h post CCI. PDP1 mRNA expression in thalamus and other subcortical regions decreased persistently post CCI. Contralateral CCI and craniotomy showed similar effects on PDP1 mRNA expression as ipsilateral CCI. Because GFAP mRNA expression was induced in brain regions where PDP1 expression was altered, further study should determine the potential relationship between astrocyte activation, PDP1 alteration, and pyruvate metabolism following TBI.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, USA.
| | | | | | | | | | | |
Collapse
|