1
|
Sang L, Guo X, Zhao Y, Shi J, Niu Z, Wu Z, Hou S, Fan H, Lv Q. Protective Effect of Nebulized Heparin in the Animal Models of Smoke Inhalation Injury: A Meta-analysis and Systematic Review of Experimental Studies. J Burn Care Res 2023; 44:42-52. [PMID: 36269755 DOI: 10.1093/jbcr/irac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 01/14/2023]
Abstract
The pathophysiological mechanism of abnormal coagulation can result from smoke inhalation injury (SII). Heparin nebulization is a common treatment for lung disorders. This study aimed to use meta-analysis in animal models to examine the effectiveness of atomized heparin on SII. For our online searches, we used the Cochrane Central Register of Controlled Trials, PubMed, Web of Science, Chinese National Knowledge Infrastructure, Chinese BioMedical Literature Database, and Wanfang Database up to January 2022. Data for SII were retrieved and compared to control animals. The studies' findings were determined by combining standardized mean difference (SMD) analysis with 95% confidence intervals (CIs). The findings showed that as compared to the control group, the heparin-treated group had a lower death rate (relative risk 0.42; 95% CI 0.22, 0.80; p < .05). The meta-analysis demonstrated favorable changes in lung physiology, including PaO2/FiO2 (SMD 1.04; 95% CI 0.65, 1.44; p < .001), lung wet-to-dry weight ratio (SMD -1.83; 95% CI -2.47, -1.18; p < .001), and pulmonary shunt Qs/Qt (SMD -0.69; 95% CI -1.29, -0.08; p < .05) after heparin nebulization for lung injury. The present data indicated that pulmonary artery mean pressure in the heparin therapy group was significantly lowered after 24 and 48 hours of therapy, suggesting that the cardiovascular system could recover following heparin treatment. As a result, heparin nebulization appeared to be more effective against SII and improved cardiopulmonary function compared to the control group. Graphical Abstract.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Yuchen Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Zhenlong Wu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
2
|
Amini S, Rezabakhsh A, Hashemi J, Saghafi F, Azizi H, Sureda A, Habtemariam S, Khayat Kashani HR, Hesari Z, Sahebnasagh A. Pharmacotherapy consideration of thrombolytic medications in COVID-19-associated ARDS. J Intensive Care 2022; 10:38. [PMID: 35908022 PMCID: PMC9338522 DOI: 10.1186/s40560-022-00625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which is responsible for coronavirus disease (COVID-19), was identified as the new pathogen to lead pneumonia in Wuhan, China, which has spread all over the world and developed into a pandemic. Despite the over 1 year of pandemic, due to the lack of an effective treatment plan, the morbidity and mortality of COVID-19 remains high. Efforts are underway to find the optimal management for this viral disease. MAIN BODY SARS-CoV-2 could simultaneously affect multiple organs with variable degrees of severity, from mild to critical disease. Overproduction of pro-inflammatory mediators, exacerbated cellular and humoral immune responses, and coagulopathy such as Pulmonary Intravascular Coagulopathy (PIC) contributes to cell injuries. Considering the pathophysiology of the disease and multiple microthrombi developments in COVID-19, thrombolytic medications seem to play a role in the management of the disease. Beyond the anticoagulation, the exact role of thrombolytic medications in the management of patients with COVID-19-associated acute respiratory distress syndrome (ARDS) is not explicit. This review focuses on current progress in underlying mechanisms of COVID-19-associated pulmonary intravascular coagulopathy, the historical use of thrombolytic drugs in the management of ARDS, and pharmacotherapy considerations of thrombolytic therapy, their possible benefits, and pitfalls in COVID-19-associated ARDS. CONCLUSIONS Inhaled or intravenous administration of thrombolytics appears to be a salvage therapy for severe ARDS associated with COVID-19 by prompt attenuation of lung injury. Considering the pathogenesis of COVID-19-related ARDS and mechanism of action of thrombolytic agents, thrombolytics appear attractive options in stable patients without contraindications.
Collapse
Affiliation(s)
- Shahideh Amini
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Sureda
- Research Group On Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent, ME4 4TB UK
| | | | - Zahra Hesari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
3
|
Livingstone SA, Wildi KS, Dalton HJ, Usman A, Ki KK, Passmore MR, Li Bassi G, Suen JY, Fraser JF. Coagulation Dysfunction in Acute Respiratory Distress Syndrome and Its Potential Impact in Inflammatory Subphenotypes. Front Med (Lausanne) 2021; 8:723217. [PMID: 34490308 PMCID: PMC8417599 DOI: 10.3389/fmed.2021.723217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The Acute Respiratory Distress Syndrome (ARDS) has caused innumerable deaths worldwide since its initial description over five decades ago. Population-based estimates of ARDS vary from 1 to 86 cases per 100,000, with the highest rates reported in Australia and the United States. This syndrome is characterised by a breakdown of the pulmonary alveolo-epithelial barrier with subsequent severe hypoxaemia and disturbances in pulmonary mechanics. The underlying pathophysiology of this syndrome is a severe inflammatory reaction and associated local and systemic coagulation dysfunction that leads to pulmonary and systemic damage, ultimately causing death in up to 40% of patients. Since inflammation and coagulation are inextricably linked throughout evolution, it is biological folly to assess the two systems in isolation when investigating the underlying molecular mechanisms of coagulation dysfunction in ARDS. Although the body possesses potent endogenous systems to regulate coagulation, these become dysregulated and no longer optimally functional during the acute phase of ARDS, further perpetuating coagulation, inflammation and cell damage. The inflammatory ARDS subphenotypes address inflammatory differences but neglect the equally important coagulation pathway. A holistic understanding of this syndrome and its subphenotypes will improve our understanding of underlying mechanisms that then drive translation into diagnostic testing, treatments, and improve patient outcomes.
Collapse
Affiliation(s)
- Samantha A Livingstone
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Karin S Wildi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Cardiovascular Research Institute Basel (CRIB), Basel, Switzerland
| | | | - Asad Usman
- Department of Anesthesiology and Critical Care, The University of Pennsylvania, Philadelphia, PA, United States
| | - Katrina K Ki
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Margaret R Passmore
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.,Department of Pulmonology and Critical Care, Hospital Clínic de Barcelona, Universitad de Barcelona and IDIBAPS, CIBERES, Barcelona, Spain
| | - Jacky Y Suen
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
4
|
van Haren FMP, Page C, Laffey JG, Artigas A, Camprubi-Rimblas M, Nunes Q, Smith R, Shute J, Carroll M, Tree J, Carroll M, Singh D, Wilkinson T, Dixon B. Nebulised heparin as a treatment for COVID-19: scientific rationale and a call for randomised evidence. Crit Care 2020; 24:454. [PMID: 32698853 PMCID: PMC7374660 DOI: 10.1186/s13054-020-03148-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/16/2022] Open
Abstract
Nebulised unfractionated heparin (UFH) has a strong scientific and biological rationale and warrants urgent investigation of its therapeutic potential, for COVID-19-induced acute respiratory distress syndrome (ARDS). COVID-19 ARDS displays the typical features of diffuse alveolar damage with extensive pulmonary coagulation activation resulting in fibrin deposition in the microvasculature and formation of hyaline membranes in the air sacs. Patients infected with SARS-CoV-2 who manifest severe disease have high levels of inflammatory cytokines in plasma and bronchoalveolar lavage fluid and significant coagulopathy. There is a strong association between the extent of the coagulopathy and poor clinical outcomes.The anti-coagulant actions of nebulised UFH limit fibrin deposition and microvascular thrombosis. Trials in patients with acute lung injury and related conditions found inhaled UFH reduced pulmonary dead space, coagulation activation, microvascular thrombosis and clinical deterioration, resulting in increased time free of ventilatory support. In addition, UFH has anti-inflammatory, mucolytic and anti-viral properties and, specifically, has been shown to inactivate the SARS-CoV-2 virus and prevent its entry into mammalian cells, thereby inhibiting pulmonary infection by SARS-CoV-2. Furthermore, clinical studies have shown that inhaled UFH safely improves outcomes in other inflammatory respiratory diseases and also acts as an effective mucolytic in sputum-producing respiratory patients. UFH is widely available and inexpensive, which may make this treatment also accessible for low- and middle-income countries.These potentially important therapeutic properties of nebulised UFH underline the need for expedited large-scale clinical trials to test its potential to reduce mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Frank M P van Haren
- Australian National University, Medical School, Canberra, Australia.
- Intensive Care Unit, the Canberra Hospital, Canberra, Australia.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, and Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, Galway, Ireland
- Department of Anaesthesia, University Hospital Galway, Saolta Hospital Group, Galway, Ireland
| | - Antonio Artigas
- Critical Center, Corporació Sanitaria Parc Tauli , CIBER Enfermedades Respiratorias, Autonomous University of Barcelona, Sabadell, Spain
| | - Marta Camprubi-Rimblas
- Institut d'Investigació I Innovació Parc Tauli (I3PT), CIBER de Enfermedades Respiratorias, Sabadell, Spain
| | - Quentin Nunes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Roger Smith
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Janis Shute
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Mary Carroll
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Julia Tree
- National Infection Service, Public Health England, Porton Down, UK
| | - Miles Carroll
- National Infection Service, Public Health England, Porton Down, UK
| | - Dave Singh
- Medicines Evaluation Unit, University of Manchester, Manchester, UK
| | - Tom Wilkinson
- Department of Respiratory Medicine, University of Southampton, Southampton, UK
| | - Barry Dixon
- Department of Critical Care Medicine, St Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
5
|
Camprubí-Rimblas M, Tantinyà N, Guillamat-Prats R, Bringué J, Puig F, Gómez MN, Blanch L, Artigas A. Effects of nebulized antithrombin and heparin on inflammatory and coagulation alterations in an acute lung injury model in rats. J Thromb Haemost 2020; 18:571-583. [PMID: 31755229 PMCID: PMC9906372 DOI: 10.1111/jth.14685] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND During acute respiratory distress syndrome, proinflammatory mediators inhibit natural anticoagulant factors, which alter the normal balance between coagulation and fibrinolysis leading to a procoagulant state. We hypothesize that pulmonary administration of anticoagulants might be beneficial to treat acute respiratory distress syndrome for their anticoagulant and antiinflammatory effects and reduce the risk of systemic bleeding. OBJECTIVES Our aim is to study the effects of nebulized antithrombin (AT) and combined AT and heparin in an animal model of acute lung injury. METHODS Acute lung injury was induced in rats by the intratracheal administration of hydrochloric acid and lipopolysaccharide. AT alone (500 IU/kg body weight) or combined with heparin (1000 IU/kg body weight) were nebulized after the injury. Control groups received saline instead. Blood, lung tissue, bronchoalveolar lavage, and alveolar macrophages (AM) isolated from bronchoalveolar lavage were collected after 48 hours and analyzed. RESULTS Nebulized anticoagulant treatments reduced protein concentration in the lungs and decreased injury-mediated coagulation factors (tissue factor, plasminogen activator inhibitor-1, plasminogen, and fibrinogen degradation product) and inflammation (tumor necrosis factor α and interleukin 1β) in the alveolar space without affecting systemic coagulation and no bleeding. AT alone reduced fibrin deposition and edema in the lungs. Heparin did not potentiate AT coagulant effect but promoted the reduction of macrophages infiltration into the alveolar compartment. Anticoagulants reduced nuclear factor-kB downstream effectors in AM. CONCLUSIONS Nebulized AT and heparin attenuate lung injury through decreasing coagulation and inflammation without altering systemic coagulation and no bleeding. However, combined AT and heparin did not produce a synergistic effect.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Neus Tantinyà
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Ferranda Puig
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Lluís Blanch
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Antonio Artigas
- Institut d' Investigació i Innovació Parc Taulí (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| |
Collapse
|
6
|
Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis 2019; 13:1753466619847901. [PMID: 31068086 PMCID: PMC6515845 DOI: 10.1177/1753466619847901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smoke-inhalation-induced acute lung injury (SI-ALI) is a leading cause of morbidity and mortality in victims of fire tragedies. SI-ALI contributes to an estimated 30% of burn-caused patient deaths, and recently, more attention has been paid to the specific interventions for this devastating respiratory illness. In the last decade, much progress has been made in the understanding of SI-ALI patho-mechanisms and in the development of new therapeutic strategies in both preclinical and clinical studies. This article reviews the recent progress in the treatment of SI-ALI, based on pathophysiology, thermal damage, airway obstruction, the nuclear-factor kappa-B signaling pathway, and oxidative stress. Preclinical therapeutic strategies include use of mesenchymal stem cells, hydrogen sulfide, peroxynitrite decomposition catalysts, and proton-pump inhibitors. Clinical interventions include high-frequency percussive ventilation, perfluorohexane, inhaled anticoagulants, and nebulized epinephrine. The animal model, dose, clinical application, and pharmacology of these medications are summarized. Future directions and further needs for developing innovative therapies are discussed.
Collapse
Affiliation(s)
- Bingxin Guo
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yana Ma
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Cong Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Song Wang
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jiaxing Dong
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
7
|
Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:36. [PMID: 29430453 PMCID: PMC5799142 DOI: 10.21037/atm.2018.01.08] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/28/2017] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) presents a complex pathophysiology characterized by pulmonary activated coagulation and reduced fibrinolysis. Despite advances in supportive care of this syndrome, morbidity and mortality remains high, leading to the need of novel therapies to combat this disease. Focus these therapies in the inhibition of ARDS development pathophysiology is essential. Beneficial effects of anticoagulants in ARDS have been proved in preclinical and clinical trials, thanks to its anticoagulant and anti-inflammatory properties. Moreover, local administration by nebulization in the alveolar compartment increases local efficacy and does not produce systemic bleeding. In this review the coagulation and fibrinolytic pathway and its pharmacological targets to treat ARDS are summarized.
Collapse
Affiliation(s)
- Marta Camprubí-Rimblas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Neus Tantinyà
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Josep Bringué
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Guillamat-Prats
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Antonio Artigas
- Institut d’Investigació i Innovació Parc Tauli (I3PT), Sabadell, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Critical Care Center, Corporació Sanitària Universitaria Parc Taulí, Sabadell, Spain
| |
Collapse
|
8
|
Chimenti L, Camprubí-Rimblas M, Guillamat-Prats R, Gomez MN, Tijero J, Blanch L, Artigas A. Nebulized Heparin Attenuates Pulmonary Coagulopathy and Inflammation through Alveolar Macrophages in a Rat Model of Acute Lung Injury. Thromb Haemost 2017; 117:2125-2134. [PMID: 29202212 PMCID: PMC6328369 DOI: 10.1160/th17-05-0347] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective
Alveolar macrophages play a key role in the development and resolution of acute respiratory distress syndrome (ARDS), modulating the inflammatory response and the coagulation cascade in lungs. Anti-coagulants may be helpful in the treatment of ARDS. This study investigated the effects of nebulized heparin on the role of alveolar macrophages in limiting lung coagulation and inflammatory response in an animal model of acute lung injury (ALI).
Methods
Rats were randomized to four experimental groups. In three groups, ALI was induced by intratracheal instillation of lipopolysaccharide (LPS) and heparin was nebulized at constant oxygen flow: the LPS/Hep group received nebulized heparin 4 and 8 hours after injury; the Hep/LPS/Hep group received nebulized heparin 30 minutes before and 4 and 8 hours after LPS-induced injury; the LPS/Sal group received nebulized saline 4 and 8 hours after injury. The control group received only saline. Animals were exsanguinated 24 hours after LPS instillation. Lung tissue, bronchoalveolar lavage fluid (BALF) and alveolar macrophages isolated from BALF were analysed.
Results
LPS increased protein concentration, oedema and neutrophils in BALF as well as procoagulant and proinflammatory mediators in lung tissue and alveolar macrophages. In lung tissue, nebulized heparin attenuated ALI through decreasing procoagulant (tissue factor, thrombin–anti-thrombin complexes, fibrin degradation products) and proinflammatory (interleukin 6, tumour necrosis factor alpha) pathways. In alveolar macrophages, nebulized heparin reduced expression of procoagulant genes and the effectors of transforming growth factor beta (Smad 2, Smad 3) and nuclear factor kappa B (p-selectin, CCL-2). Pre-treatment resulted in more pronounced attenuation.
Conclusion
Nebulized heparin reduced pulmonary coagulopathy and inflammation without producing systemic bleeding, partly by modulating alveolar macrophages.
Collapse
Affiliation(s)
- Laura Chimenti
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
| | - Marta Camprubí-Rimblas
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Raquel Guillamat-Prats
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Maria Nieves Gomez
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
| | - Jessica Tijero
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain
| | - Lluis Blanch
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Critical Care Center, Corporació Sanitària i Universitària Parc Taulí-UAB, Sabadell, Catalonia, Spain
| | - Antonio Artigas
- Institut d'Investigació i Innovació Parc Taulí (I3PT), Sabadell, Catalonia, Spain.,Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Critical Care Center, Corporació Sanitària i Universitària Parc Taulí-UAB, Sabadell, Catalonia, Spain
| |
Collapse
|