1
|
Bian Y, Dong J, Zhou Z, Zhou H, Xu Y, Zhang Q, Chen C, Pi J. The spatiotemporal and paradoxical roles of NRF2 in renal toxicity and kidney diseases. Redox Biol 2025; 79:103476. [PMID: 39724848 PMCID: PMC11732127 DOI: 10.1016/j.redox.2024.103476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Over 10% of the global population is at risk to kidney disorders. Nuclear factor erythroid-derived 2-related factor 2 (NRF2), a pivotal regulator of redox homeostasis, orchestrates antioxidant response that effectively counters oxidative stress and inflammatory response in a variety of acute pathophysiological conditions, including acute kidney injury (AKI) and early stage of renal toxicity. However, if persistently activated, NRF2-induced transcriptional cascade may disrupt normal cell signaling and contribute to numerous chronic pathogenic processes such as fibrosis. In this concise review, we assembled experimental evidence to reveal the cell- and pathophysiological condition-specific roles of NRF2 in renal chemical toxicity, AKI, and chronic kidney disease (CKD), all of which are closely associated with oxidative stress and inflammation. By incorporating pertinent research findings on NRF2 activators, we dissected the spatiotemporal roles of NRF2 in distinct nephrotoxic settings and kidney diseases. Herein, NRF2 exhibits diverse expression patterns and downstream gene profiles across distinct kidney regions and cell types, and during specific phases of nephropathic progression. These changes are directly or indirectly connected to altered antioxidant defense, damage repair, inflammatory response, regulated cell death and fibrogenesis, culminating ultimately in either protective or deleterious outcomes. The spatiotemporal and paradoxical characteristics of NRF2 in mitigating nephrotoxicity suggest that translational application of NRF2 activation strategy for prevention and interventions of kidney injury are unlikely to be straightforward - right timing and spatial precision must be taken into consideration.
Collapse
Affiliation(s)
- Yiying Bian
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jize Dong
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Zhengsheng Zhou
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Group of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, GA, 30322, USA
| | - Chengjie Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| | - Jingbo Pi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), China; Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic (China Medical University), China; Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
2
|
Khalaf MM, Mahmoud HM, Kandeil MA, Mahmoud HA, Salama AA. Fumaric acid protects rats from ciprofloxacin-provoked depression through modulating TLR4, Nrf-2, and p190-rho GTP. Drug Chem Toxicol 2024; 47:897-908. [PMID: 39563658 DOI: 10.1080/01480545.2024.2310641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/21/2024]
Abstract
Depression is a persistent illness affecting health, behavior, and performance in life. Worldwide morbidity and mortality are caused by depression. The current study intended to explore fumaric acid's potential protective effect against ciprofloxacin-provoked depression in rats and to determine its mechanism of action by studying its antioxidant and anti-inflammatory properties. Five groups of male Wistar albino rats (120 g ± 20) were employed; the first group received physiological saline, the second group received fumaric acid (80 mg/kg/day; orally) for 3 weeks, the third group was administered ciprofloxacin (50 mg/kg/day; orally) for 3 weeks to induce depression, the fourth group received a daily low dose of fumaric acid (40 mg/kg; orally) concurrent with ciprofloxacin and the fifth group received a daily high dose of fumaric acid (80 mg/kg; orally) concurrent with ciprofloxacin for 21 days. Then, behavior tests, oxidative stress indicators, inflammatory biomarkers, neurotransmitters, p190 Rho GTP, and histopathological examination were evaluated. Ciprofloxacin significantly increased oxidative stress biomarkers [malondialdehyde (MDA) as a lipid peroxidation marker and nitric oxide (NO)] and biomarkers of inflammation [Toll-like receptor4 (TLR-4)] and tumor necrosis factor-alpha (TNF-α) with reduction in the activities of the nuclear factor erythroid 2-related factor 2 (Nrf-2) and catalase as well as brain contents of neurotransmitters and P190-RHO GTP. In addition, it causes necrosis of neurons and mild loss of Purkinje cells. Fumaric acid eliminates these effects of ciprofloxacin. Fumaric acid has beneficial effects as an anti-depressant in Wistar albino male rats that received ciprofloxacin.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Heba M Mahmoud
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Abeer A Salama
- Department of Pharmacology, National Research Centre, Giza, Egypt
| |
Collapse
|
3
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Lin DW, Hsu YC, Chang CC, Hsieh CC, Lin CL. Insights into the Molecular Mechanisms of NRF2 in Kidney Injury and Diseases. Int J Mol Sci 2023; 24:6053. [PMID: 37047024 PMCID: PMC10094034 DOI: 10.3390/ijms24076053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Redox is a constant phenomenon in organisms. From the signaling pathway transduction to the oxidative stress during the inflammation and disease process, all are related to reduction-oxidation (redox). Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor targeting many antioxidant genes. In non-stressed conditions, NRF2 maintains the hemostasis of redox with housekeeping work. It expresses constitutively with basal activity, maintained by Kelch-like-ECH-associated protein 1 (KEAP1)-associated ubiquitination and degradation. When encountering stress, it can be up-regulated by several mechanisms to exert its anti-oxidative ability in diseases or inflammatory processes to protect tissues and organs from further damage. From acute kidney injury to chronic kidney diseases, such as diabetic nephropathy or glomerular disease, many results of studies have suggested that, as a master of regulating redox, NRF2 is a therapeutic option. It was not until the early termination of the clinical phase 3 trial of diabetic nephropathy due to heart failure as an unexpected side effect that we renewed our understanding of NRF2. NRF2 is not just a simple antioxidant capacity but has pleiotropic activities, harmful or helpful, depending on the conditions and backgrounds.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Internal Medicine, St. Martin de Porres Hospital, Chiayi 600, Taiwan;
| | - Yung-Chien Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Cheng-Chih Chang
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Ching-Chuan Hsieh
- Department of Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (C.-C.C.); (C.-C.H.)
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
5
|
Dimethyl Fumarate Attenuates Di-(2-Ethylhexyl) Phthalate-Induced Nephrotoxicity Through the Nrf2/HO-1 and NF-κB Signaling Pathways. Inflammation 2023; 46:453-467. [PMID: 36195817 DOI: 10.1007/s10753-022-01746-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
This study aimed to clarify the nephroprotective effect of dimethyl fumarate (DMF) against Di (2-ethylhexyl) phthalate (DEHP)-induced nephrotoxicity in both in vitro and in vivo models. The HEK-293 cells were exposed to different concentrations of DMF plus IC50 concentration of monoethylhexyl phthalate (MEHP) (the main metabolite of DEHP). Then, some of the oxidative stress parameters including ROS, MDA, and GSH, and cytotoxicity (MTT assay) were determined in treated cells. For in vivo evaluation, rats were divided into 7 groups (n = 6 per group). Corn oil group (gavage), DEHP group (200 mg/kg dissolved in corn oil, gavage), DMF (15, 30, and 60 mg/kg, gavage) plus DEHP (200 mg/kg) groups, DMF (60 mg/kg, gavage) alone, and vitamin E (20 mg/kg, intraperitoneal (IP)) plus DEHP (200 mg/kg) group. This treatment continued for 45 days. Then, BUN and creatinine were evaluated by a commercial kit based on the urease enzymatic method and the Jaffe method, respectively. Mitochondrial oxidative stress and mitochondrial dysfunction parameters were evaluated using appropriate reagents, and gene expression of the p65 nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), nuclear factor E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were evaluated by real-time PCR method. High concentrations of DMF significantly increased cell viability, and GSH content and significantly decreased ROS and MDA levels compared with the MEHP group in HEK-293 cells. DMF (60 mg/kg) significantly decreased BUN and creatinine levels compared with the DEHP group. Mitochondrial function and mitochondrial swelling were significantly improved in DMF group (60 mg/kg) compared with the DEHP group. DMF (30 and 60 mg/kg) significantly improved MMP collapse compared with the DEHP group. DMF (30 and 60 mg/kg) significantly decreased ROS levels compared with the DEHP group in isolated kidney mitochondria. DMF (60 mg/kg) significantly decreased MDA levels and significantly increased GSH content compared with DEHP group in isolated kidney mitochondria. The mRNA expression levels of Nrf2 and HO-1 were significantly reduced in the DEHP group compared to the control group and were significantly increased in the DMF group compared to the DEHP group. p65NF-κB and TNFα mRNA expression levels were significantly increased in the DEHP group compared to the control group. However, DMF significantly decreased p65NF-κB and TNFα mRNA expression compared to the DEHP group. DMF can act as a nephroprotective agent against DEHP partly through modulation of oxidative stress, mitochondrial function, and inflammation.
Collapse
|
6
|
Takasu C, Chen S, Gao L, Saito Y, Morine Y, Ikemoto T, Yamada S, Shimad M. Role of Nrf2 signaling in development of hepatocyte-like cells. THE JOURNAL OF MEDICAL INVESTIGATION 2023; 70:343-349. [PMID: 37940517 DOI: 10.2152/jmi.70.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1:day 1-6, Step2:day 6-11, Step3:day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC. J. Med. Invest. 70 : 343-349, August, 2023.
Collapse
Affiliation(s)
- Chie Takasu
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Shuhai Chen
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Luping Gao
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Shinichiro Yamada
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| | - Mitsu Shimad
- Department of Surgery, Institute of Health Biosciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
7
|
Theofilis P, Vordoni A, Kalaitzidis RG. Oxidative Stress Management in Cardiorenal Diseases: Focus on Novel Antidiabetic Agents, Finerenone, and Melatonin. Life (Basel) 2022; 12:1663. [PMID: 36295098 PMCID: PMC9605243 DOI: 10.3390/life12101663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress is characterized by excessive production of reactive oxygen species together with exhausted antioxidant defenses. This constitutes a main pathophysiologic process that is implicated in cardiovascular and renal diseases. In particular, enhanced oxidative stress may lead to low-density lipoprotein accumulation and oxidation, endothelial cell activation, adhesion molecule overexpression, macrophage activation, and foam cell formation, promoting the development and progression of atherosclerosis. The deleterious kidney effects of oxidative stress are numerous, including podocytopathy, mesangial enlargement, renal hypertrophy, tubulointerstitial fibrosis, and glomerulosclerosis. The prominent role of oxidative mechanisms in cardiorenal diseases may be counteracted by recently developed pharmacotherapies such as novel antidiabetic agents and finerenone. These agents have demonstrated significant antioxidant activity in preclinical and clinical studies. Moreover, the use of melatonin as a treatment in this field has been experimentally investigated, with large-scale clinical studies being awaited. Finally, clinical implications and future directions in this field are presented.
Collapse
Affiliation(s)
| | | | - Rigas G. Kalaitzidis
- Center for Nephrology “G. Papadakis”, General Hospital of Nikaia-Piraeus Agios Panteleimon, 18454 Piraeus, Greece
| |
Collapse
|
8
|
Eguchi N, Damyar K, Alexander M, Dafoe D, Lakey JRT, Ichii H. Anti-Oxidative Therapy in Islet Cell Transplantation. Antioxidants (Basel) 2022; 11:1038. [PMID: 35739935 PMCID: PMC9219662 DOI: 10.3390/antiox11061038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Islet cell transplantation has become a favorable therapeutic approach in the treatment of Type 1 Diabetes due to the lower surgical risks and potential complications compared to conventional pancreas transplantation. Despite significant improvements in islet cell transplantation outcomes, several limitations hamper long-term graft survival due to tremendous damage and loss of islet cells during the islet cell transplantation process. Oxidative stress has been identified as an omnipresent stressor that negatively affects both the viability and function of isolated islets. Furthermore, it has been established that at baseline, pancreatic β cells exhibit reduced antioxidative capacity, rendering them even more susceptible to oxidative stress during metabolic stress. Thus, identifying antioxidants capable of conferring protection against oxidative stressors present throughout the islet transplantation process is a valuable approach to improving the overall outcomes of islet cell transplantation. In this review we discuss the potential application of antioxidative therapy during each step of islet cell transplantation.
Collapse
Affiliation(s)
- Natsuki Eguchi
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Kimia Damyar
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Donald Dafoe
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
- Department of Biomedical Engineering, University of California, Irvine, CA 92686, USA
| | - Hirohito Ichii
- Department of Surgery, University of California, Irvine, CA 92697, USA; (N.E.); (K.D.); (M.A.); (D.D.); (J.R.T.L.)
| |
Collapse
|
9
|
Jiao D, Qi L, Hu L, Hu D, Li X, Li G, Li Z, Liu S, Zhao C, Wu H. Changes in aging-induced kidney dysfunction in mice based on a metabolomics analysis. Front Endocrinol (Lausanne) 2022; 13:959311. [PMID: 36157455 PMCID: PMC9492839 DOI: 10.3389/fendo.2022.959311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney dysfunction is particularly important in systemic organ injuries caused by aging. Metabolomics are utilized in this study to explore the mechanism of kidney dysfunction during aging by the identification of metabolites and the characterization of metabolic pathways. We analyzed the serum biochemistry and kidney histopathology of male Kunming mice aged 3 months and 24 months and found that the aged mice had inflammatory lesions, aggravated fibrosis, and functional impairment. A high-resolution untargeted metabolomics analysis revealed that the endogenous metabolites in the kidneys and urine of the mice were significantly changed by 25 and 20 metabolites, respectively. A pathway analysis of these differential metabolites revealed six key signaling pathways, namely, D-glutamine and D-glutamate metabolism, purine metabolism, the citrate cycle [tricarboxylic acid (TCA) cycle], histidine metabolism, pyruvate metabolism, and glyoxylate and dicarboxylate metabolism. These pathways are involved in amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism, and these can lead to immune regulation, inflammatory responses, oxidative stress damage, cellular dysfunction, and bioenergy disorders, and they are closely associated with aging and kidney insufficiency. We also screened nine types of sensitive metabolites in the urine as potential biomarkers of kidney dysfunction during the aging process to confirm their therapeutic targets in senior-induced kidney dysfunction and to improve the level of risk assessment for senile kidney injury.
Collapse
Affiliation(s)
- Danli Jiao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Hu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guona Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheying Li
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shimin Liu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Chen Zhao, ; Huangan Wu,
| |
Collapse
|
10
|
Kim JW, Nam SA, Seo E, Lee JY, Kim D, Ju JH, Lim SW, Kim HL, Kim HW, Yang CW, Kim J, Kim DS, Kim YK. Human kidney organoids model the tacrolimus nephrotoxicity and elucidate the role of autophagy. Korean J Intern Med 2021; 36:1420-1436. [PMID: 32972120 PMCID: PMC8588988 DOI: 10.3904/kjim.2020.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIMS Tacrolimus has been used as an immunosuppressive agent in organ transplantation. Despite the therapeutic benefits, tacrolimus's use is limited due to its nephrotoxicity. To reduce tacrolimus nephrotoxicity, effective humanized experimental models may be helpful. Here, we modeled tacrolimus nephrotoxicity using kidney organoids derived from human inducible pluripotent stem cells (iPSCs) in vitro. METHODS Kidney organoids were differentiated from the CMC11 iPSC cell line, re-seeded in 96-well plates, and treated with tacrolimus at doses of 0, 30, or 60 μM for 24 hours. This in vitro model was compared to a mouse model of tacrolimus nephrotoxicity and the associated mechanisms were investigated. RESULTS The size of the kidney organoids and cell viability decreased in dose-dependent manners after treatment with tacrolimus. The number of tubular cells decreased with a loss of polarity, similar to the effects seen in mouse tacrolimus nephrotoxicity. Ultrastructural analysis showed numerous vacuoles in the proximal tubular cells of the kidney organoids treated with tacrolimus. Tacrolimus treatment induced oxidative stress and mitochondrial dysfunction, and autophagic activity was enhanced in the kidney organoids. Rapamycin, an autophagy inducer, accelerated cell death in the kidney organoid model of tacrolimus nephrotoxicity, which was attenuated by treatment with 3-methyladenine, an autophagy inhibitor. These findings indicate that the augmentation of autophagy by rapamycin treatment accelerated tacrolimus nephrotoxicity. CONCLUSION Our data suggest that human kidney organoids are an effective in vitro model of tacrolimus nephrotoxicity and that autophagy plays a critical role in tacrolimus nephrotoxicity.
Collapse
Affiliation(s)
- Jin Won Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Sun Ah Nam
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eunjeong Seo
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Lee
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dohui Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, and Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Woo Lim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung Wook Kim
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Yong Kyun Kim
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Involvement of Tricarboxylic Acid Cycle Metabolites in Kidney Diseases. Biomolecules 2021; 11:biom11091259. [PMID: 34572472 PMCID: PMC8465464 DOI: 10.3390/biom11091259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are complex organelles that orchestrate several functions in the cell. The primary function recognized is energy production; however, other functions involve the communication with the rest of the cell through reactive oxygen species (ROS), calcium influx, mitochondrial DNA (mtDNA), adenosine triphosphate (ATP) levels, cytochrome c release, and also through tricarboxylic acid (TCA) metabolites. Kidney function highly depends on mitochondria; hence mitochondrial dysfunction is associated with kidney diseases. In addition to oxidative phosphorylation impairment, other mitochondrial abnormalities have been described in kidney diseases, such as induction of mitophagy, intrinsic pathway of apoptosis, and releasing molecules to communicate to the rest of the cell. The TCA cycle is a metabolic pathway whose primary function is to generate electrons to feed the electron transport system (ETS) to drives energy production. However, TCA cycle metabolites can also release from mitochondria or produced in the cytosol to exert different functions and modify cell behavior. Here we review the involvement of some of the functions of TCA metabolites in kidney diseases.
Collapse
|
12
|
Gendy A, Soubh A, Al-Mokaddem A, Kotb El-Sayed M. Dimethyl fumarate protects against intestinal ischemia/reperfusion lesion: Participation of Nrf2/HO-1, GSK-3β and Wnt/β-catenin pathway. Biomed Pharmacother 2021; 134:111130. [PMID: 33348309 DOI: 10.1016/j.biopha.2020.111130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Dimethyl fumarate (DMFU), a known Nrf2 activator, has proven its positive effect in different organs against ischemia/reperfusion (Is/Re) injury. Nevertheless, its possible impact to modulate intestinal Is/Re-induced injury has not been previously demonstrated before. Hence, this study aimed to investigate DMFU mechanistic maneuver against intestinal Is/Re. METHODS To accomplish this goal, Wistar rats were allocated into four groups; Sham-operated (SOP), intestinal Is/Re (1 h/6 h), and 14 days pre-treated DMFU (15 and 25 mg/kg/day, p.o). RESULTS The mechanistic maneuver divulged that DMFU safeguarded the intestine partly via amplifying the expression/content of Nrf2 along with enhancing its downstream, HO-1 expression/content. In addition, DMFU lessened GSK-3β expression/content accompanied by enriching β-catenin expression/content. The antioxidant action was affirmed by enhancing total antioxidant capacity, besides reducing MDA, iNOS, and its by-product, NOx. The DMFU action entailed anti-inflammatory character manifested by down-regulation of expression/content NF-κB with subsequent rebating the contents of TNF-α, IL-1β, and P-selectin, as well as MPO activity. Moreover, DMFU had anti-apoptotic nature demonstrated through enriching Bcl-2 level and diminishing that of caspase-3. CONCLUSION DMFU purveyed tenable novel protective mechanisms and mitigated events associated with intestinal Is/Re mischief either in the lower or the high dose partly by amending of oxidative stress and inflammation through the modulation of Nrf2/HO-1, GSK-3β, and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Abdallah Gendy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt.
| | - Ayman Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| | - Asmaa Al-Mokaddem
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Helwan, 11790, Egypt
| |
Collapse
|
13
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
14
|
The dual reno- and neuro-protective effects of dimethyl fumarate against uremic encephalopathy in a renal ischemia/reperfusion model. Pharmacol Rep 2020; 72:969-983. [DOI: 10.1007/s43440-020-00076-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022]
|
15
|
Protection of Male Rat Offspring against Hypertension Programmed by Prenatal Dexamethasone Administration and Postnatal High-Fat Diet with the Nrf2 Activator Dimethyl Fumarate during Pregnancy. Int J Mol Sci 2019; 20:ijms20163957. [PMID: 31416234 PMCID: PMC6719242 DOI: 10.3390/ijms20163957] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/03/2023] Open
Abstract
Hypertension can originate from early-life exposure to oxidative stress. As reported, dimethyl fumarate (DMF) activates nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and protects against oxidative stress damage. We examined whether maternal DMF therapy protects adult offspring against hypertension programmed by prenatal dexamethasone (DEX) and postnatal high-fat (HF) diet exposure. We examined male Sprague Dawley rat offspring at 4 months of age from five groups (n = 11-13/group): control, DEX (0.1mg/kg i.p. from gestational day 16 to 22), HF (D12331 diet from weaning to 16 weeks of age), DEX+HF, and DEX+HF+DMF (50mg/kg/day via gastric gavage for 3 weeks during pregnancy). Maternal DMF therapy prevented male offspring against hypertension programmed by combined DEX and HF exposures. The protective effects of maternal DMF include reduced oxidative stress, decreased plasma asymmetric dimethylarginine (ADMA) levels, downregulated the renin-angiotensin system (i.e. Ren, Agt, Ace, and Agtr1a), increased renal protein levels of certain nutrient-sensing signals, and promoted autophagy. In conclusion, maternal Nrf2 activation by DMF protects male adult offspring against hypertension programmed by combined DEX and HF exposures. Our results cast a new light on the therapeutic potential of targeting Nrf2 signaling pathway as reprogramming strategies to prevent programmed hypertension in children exposed to antenatal corticosteroids and postnatally excessive consumption of fat.
Collapse
|
16
|
El-Sheikh AAK, Morsy MA, Abdel-Latif RG. Modulation of eNOS/iNOS by nebivolol protects against cyclosporine A-mediated nephrotoxicity through targeting inflammatory and apoptotic pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 69:26-35. [PMID: 30927701 DOI: 10.1016/j.etap.2019.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate effect of nitric oxide (NO) modulation on possible nephroprotective mechanisms of nebivolol (NEB) in cyclosporine A (CsA)-induced nephrotoxicity. Rats were treated with 20 mg/kg/day s.c. of CsA for 21 days, with NEB alone (10 mg/kg/day orally) or together with a NOS inhibitor, L-NAME (10 mg/kg/day i.p.). NEB conferred nephroprotection against CsA-induced toxicity, significantly decreasing serum kidney function tests and improving renal histopathology. NEB showed antioxidant effects, by significantly decreasing renal malondialdehyde levels, while increasing reduced glutathione levels and catalase activity. NEB showed anti-inflammatory and anti-apoptotic effects; reducing renal expression NF-κB and fas ligand. NEB also reversed CsA-induced effects on NO system; increasing renal NO level, with up-regulation of eNOS and down-regulation of iNOS expression. Administering L-NAME with NEB reversed all beneficial effects of NEB. Thus, NEB's modulation of NO system in CsA-induced nephrotoxicity might be the triggering mechanism controlling NEB's nephroprotective effect.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Basic Health Sciences Department, Faculty of Medicine, Princess Nourah bint Abdulrahman University, 11671 Riyadh, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt.
| | - Mohamed A Morsy
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 El-Minia, Egypt; Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
| | - Rania G Abdel-Latif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, 61511 El-Minia, Egypt
| |
Collapse
|
17
|
Dimethylfumarate ameliorates hepatic injury and fibrosis induced by carbon tetrachloride. Chem Biol Interact 2019; 302:53-60. [DOI: 10.1016/j.cbi.2019.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 01/25/2019] [Indexed: 01/17/2023]
|
18
|
Nour OA, Shehatou GS, Rahim MA, El-Awady MS, Suddek GM. Antioxidant and anti-inflammatory effects of dimethyl fumarate in hypercholesterolemic rabbits. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Omnia A. Nour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - George S.G. Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mona Abdel Rahim
- Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed S. El-Awady
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M. Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
19
|
Yamawaki K, Kanda H, Shimazaki R. Nrf2 activator for the treatment of kidney diseases. Toxicol Appl Pharmacol 2018; 360:30-37. [PMID: 30248418 DOI: 10.1016/j.taap.2018.09.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 01/13/2023]
Abstract
Kidney diseases are highly prevalent worldwide, and significantly reduce the quality of life of patients, creating an urgent need for effective therapeutic modalities. Despite this significant unmet medical need, none of the drugs launched to date have demonstrated promising potential to cure kidney diseases. This is likely due to the structural complexity of the kidney as well as difficulties in setting appropriate endpoints for clinical trials and identifying appropriate therapeutic targets. Recently, an alternative endpoint for clinical trials (i.e., a 30% or 40% reduction in estimated glomerular filtration rate [eGFR] from baseline following 2-3 years of observation) has been considered in the United States, European Union, and Japan, and is expected to contribute to the progress of drug development for kidney diseases. Further, oxidative stress and inflammation are currently thought to be key factors in the progression of kidney diseases, prompting more research on drugs targeting the mechanisms related to these factors for treatment. The Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2 (Keap1-Nrf2) system has drawn much attention in recent years for its anti-oxidative and anti-inflammatory properties, and its pharmacological potential for treatment of kidney diseases is being widely investigated in both clinical and non-clinical studies. This review summarizes the current issues in the treatment of kidney diseases, including clinical endpoints, Nrf2 activators as treatment options, and perspectives on pharmaceutical applications of Nrf2 activators.
Collapse
Affiliation(s)
- Kengo Yamawaki
- Kyowa Hakko Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hironori Kanda
- Kyowa Hakko Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryutaro Shimazaki
- Kyowa Hakko Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan.
| |
Collapse
|
20
|
Ahmed AA, Ahmed AAE, El Morsy EM, Nofal S. Dimethyl fumarate interferes with MyD88-dependent toll-like receptor signalling pathway in isoproterenol-induced cardiac hypertrophy model. J Pharm Pharmacol 2018; 70:1521-1530. [DOI: 10.1111/jphp.13000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/04/2018] [Indexed: 01/17/2023]
Abstract
Abstract
Objectives
To investigate the effect of dimethyl fumarate (DMF) on Toll-like receptor (TLR) signalling pathway in isoproterenol (ISO)-induced cardiac hypertrophy in rats.
Methods
Sixty adult male Sprague-Dawley rats were randomly allocated into three groups. group I: rats received the vehicles only; group II: rats were treated with ISO (5 mg/kg per day S.C.) to induce cardiac hypertrophy for 7 days; and group III: rats were given DMF (25 mg/kg per 12 h P.O.) for 28 days, and at the last 7 days, they were treated with ISO (5 mg/kg per day S.C.).
Key findings
Pretreatment with DMF decreased heart-to-body weight ratio, heart rate and blood pressure and improved the electrocardiographic patterns when compared with ISO group. DMF exhibited cardioprotective effect as evidenced by the reduction in cardiac troponin I, creatine kinase-MB and atrial natriuretic peptide levels. Moreover, DMF alleviated the changed oxidative stress and inflammatory biochemical markers through its anti-inflammatory and antioxidant effects. DMF interfered with TLR signalling pathway, evidenced by decreased levels of the TLR adaptor protein MyD88 and p-ERK1/2 and increased p-Akt level.
Conclusions
Dimethyl fumarate exerted cardioprotective effect against ISO-induced cardiac hypertrophy. This effect is suggested to be through interfering with TLR signalling pathway.
Collapse
Affiliation(s)
- Asmaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Engy M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| | - Shahira Nofal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Egypt
| |
Collapse
|
21
|
Kim H, Thompson J, Ji G, Ganapathy V, Neugebauer V. Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain 2018; 158:2376-2385. [PMID: 28832396 DOI: 10.1097/j.pain.0000000000001042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). Stereotaxic administration of MMF into the CeA by microdialysis also inhibited vocalizations but had a limited effect on mechanosensitivity, suggesting a differential contribution to emotional-affective vs sensory pain aspects. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| |
Collapse
|
22
|
Early Postweaning Treatment with Dimethyl Fumarate Prevents Prenatal Dexamethasone- and Postnatal High-Fat Diet-Induced Programmed Hypertension in Male Rat Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5343462. [PMID: 29636848 PMCID: PMC5832129 DOI: 10.1155/2018/5343462] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/18/2022]
Abstract
Prenatal dexamethasone (DEX) exposure, postnatal high-fat (HF) intake, and oxidative stress are closely related to the development of hypertension. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2) regulates oxidative stress. Dimethyl fumarate (DMF) reportedly activates Nrf2 and protects against oxidative stress damage. We examined a 4-month-old male rat offspring from five groups (n = 8 for each group): control, DEX (0.1 mg/kg i.p. from a gestational age of 16 to 22 days), HF (D12331 diet from weaning to 4 months of age), and DEX + HF, DEX + HF + DMF (50 mg/kg/day via gastric gavage for 3 weeks after weaning). We found that postnatal HF intake aggravated prenatal DEX-induced hypertension in adult male offspring, which could be prevented by DMF treatment. The beneficial effects of DMF treatment include an increase in renal Nrf2 gene expression, reduction of oxidative stress, decrease in plasma asymmetric dimethylarginine (ADMA) and renal soluble epoxide hydrolase protein levels, increase in the l-arginine-to-ADMA ratio, and activation of genes related to nutrient sensing and autophagy (e.g., Pparb, Pparg, Ppargc1a, Ulk1, and Atg5). In conclusion, better understanding of the impact of the Nrf2 signaling pathway in the two-hit model will aid in protecting children exposed to antenatal corticosteroids and a postnatal HF diet from programmed hypertension.
Collapse
|
23
|
Oey O, Rao P, Luciuk M, Mannix C, Rogers NM, Sagar P, Wong A, Rangan G. Effect of dimethyl fumarate on renal disease progression in a genetic ortholog of nephronophthisis. Exp Biol Med (Maywood) 2018; 243:428-436. [PMID: 29436846 DOI: 10.1177/1535370218759313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dimethyl fumarate is an FDA-approved oral immunomodulatory drug with anti-inflammatory properties that induces the upregulation of the anti-oxidant transcription factor, nuclear factor erythroid-derived factor 2. The aim of this study was to determine the efficacy of dimethyl fumarate on interstitial inflammation and renal cyst growth in a preclinical model of nephronophthisis. Four-week-old female Lewis polycystic kidney disease (a genetic ortholog of human nephronophthisis-9) rats received vehicle (V), 10 mg/kg (D10) or 30 mg/kg (D30) ( n = 8-9 each) dimethyl fumarate in drinking water for eight weeks. Age-matched Lewis control rats were also studied ( n = 4 each). Nuclear factor erythroid-derived factor 2 was quantified by whole-slide image analysis of kidney sections. Renal nuclear factor erythroid-derived factor 2 activation was partially reduced in vehicle-treated Lewis polycystic kidney disease rats compared to Lewis control (21.4 ± 1.7 vs. 27.0 ± 1.6%, mean ± SD; P < 0.01). Dimethyl fumarate upregulated nuclear factor erythroid-derived factor 2 in both Lewis Polycystic Kidney Disease (D10: 35.9 ± 3.8; D30: 33.6 ± 3.4%) and Lewis rats (D30: 34.4 ± 1.3%) compared to vehicle-treated rats ( P < 0.05). Dimethyl fumarate significantly reduced CD68+ cell accumulation in Lewis polycystic kidney disease rats (V: 31.7 ± 2.4; D10: 23.0 ± 1.1; D30: 21.5 ± 1.9; P < 0.05). In Lewis polycystic kidney disease rats, dimethyl fumarate did not alter the progression of kidney enlargement (V: 6.4 ± 1.6; D10: 6.9 ± 1.2; D30: 7.3 ± 1.3%) and the percentage cystic index (V: 59.1 ± 2.7; D10: 55.7 ± 3.5; D30: 58.4 ± 2.9%). Renal dysfunction, as determined by the serum creatinine (Lewis + V: 26 ± 4 vs. LPK + V: 60 ± 25 P < 0.01; LPK + D10: 47 ± 7; LPK + D30: 47 ± 9 µmol/L), and proteinuria were also unaffected by dimethyl fumarate treatment. In conclusion, the upregulation of nuclear factor erythroid-derived factor 2 by dimethyl fumarate reduced renal macrophage infiltration in nephronophthisis without adverse effects, suggesting that it could potentially be used in combination with other therapies that reduce the rate of renal cyst growth. Impact statement This is the first study to investigate the effects of dimethyl fumarate in a model of cystic kidney disease. The study assessed the therapeutic efficacy of dimethyl fumarate in upregulating renal nuclear factor erythroid-derived factor 2 expression, reducing macrophage accumulation and cyst progression in a Lewis polycystic kidney disease rat model. This study demonstrates that dimethyl fumarate significantly upregulated renal nuclear factor erythroid-derived factor 2 expression and attenuates renal macrophage infiltration, but had no effect on renal cyst progression, cardiac enlargement, and improving renal function.
Collapse
Affiliation(s)
- Oliver Oey
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Padmashree Rao
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Magdalena Luciuk
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Carly Mannix
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Natasha M Rogers
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Priyanka Sagar
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Annette Wong
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| | - Gopala Rangan
- 1 Centre for Transplant and Renal Research, 107640 Westmead Institute for Medical Research , The University of Sydney, Westmead 2145, NSW, Australia.,2 Department of Renal Medicine, Westmead Hospital, Western Sydney Local Health District, Westmead 2145, NSW, Australia
| |
Collapse
|