1
|
Rroji M, Figurek A, Spasovski G. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Expert Rev Proteomics 2024; 21:297-316. [PMID: 39133121 DOI: 10.1080/14789450.2024.2389829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Kidney transplantation significantly improves the lives of those with end-stage kidney disease, offering best alternative to dialysis. However, transplant success is threatened by the acute and chronic rejection mechanisms due to complex immune responses against the new organ. AREAS COVERED The ongoing research into biomarkers holds promise for revolutionizing the early detection and monitoring of the graft health. Liquid biopsy techniques offer a new avenue, with several diagnostic, predictive, and prognostic biomarkers showing promise in detecting and monitoring kidney diseases and an early and chronic allograft rejection. EXPERT OPINION Evaluating the protein composition related to kidney transplant results could lead to identifying biomarkers that provide insights into the graft functionality. Non-invasive proteomic biomarkers can drastically enhance clinical outcomes and change the way how kidney transplants are evaluated for patients and physicians if they succeed in this transition. Hence, the advancement in proteomic technologies, leads toward a significant improvement in understanding of the protein markers and molecular mechanisms linked to the outcomes of kidney transplants. However, the road from discovery to the use of such proteins in clinical practice is long, with a need for continuous validation and beyond the singular research team with comprehensive infrastructure and across research groups collaboration.
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, University Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Goce Spasovski
- Medical Faculty, University Department of Nephrology, University of Skopje, Skopje, Macedonia
| |
Collapse
|
2
|
Avello A, Guerrero-Mauvecin J, Sanz AB. Urine MMP7 as a kidney injury biomarker. Clin Kidney J 2024; 17:sfad233. [PMID: 38186894 PMCID: PMC10768779 DOI: 10.1093/ckj/sfad233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 01/09/2024] Open
Abstract
Matrix metalloproteinase 7 (MMP-7) is a secreted endopeptidase involved in the degradation of extracellular matrix components and the activation of cytokines and growth factors. The regulation of MMP-7 can be transcriptionally regulated by AP-1 or Wnt/β-catenin or post-translationally by proteolytic activation. MMP-7 expression is low or absent in the healthy kidney, but is significantly upregulated in kidney injury, including AKI and CKD. The function of MMP-7 in kidney disease may differ for CKD and AKI; it may have a profibrotic role in CKD and an anti-apoptotic and regenerative function in AKI. Additionally, the potential of MMP-7 as a biomarker has been studied in different kidney diseases, and the results are promising. Recently, combined unbiased kidney proteomics and transcriptomics approaches identified kidney MMP-7 as the protein having the strongest association with both fibrosis and eGFR and confirmed the predictive role of plasma MMP-7 levels for kidney function decline in over 11 000 individuals. Additionally, urinary MMP-7, combined with urinary cystatin C (CysC) and retinol binding protein (RBP) was reported to provide information on tubular injury in focal segmental glomerulosclerosis and minimal change disease. We now present an overview of research on MMP-7 expression and function in kidney diseases and discuss its potential as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Alejandro Avello
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | | | - Ana Belen Sanz
- Laboratory of Experimental Nephrology, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| |
Collapse
|
3
|
Huang CF, Su P, Fisher TD, Levitsky J, Kelleher NL, Forte E. Mass spectrometry-based proteomics for advancing solid organ transplantation research. FRONTIERS IN TRANSPLANTATION 2023; 2:1286881. [PMID: 38993855 PMCID: PMC11235370 DOI: 10.3389/frtra.2023.1286881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/13/2023] [Indexed: 07/13/2024]
Abstract
Scarcity of high-quality organs, suboptimal organ quality assessment, unsatisfactory pre-implantation procedures, and poor long-term organ and patient survival are the main challenges currently faced by the solid organ transplant (SOT) field. New biomarkers for assessing graft quality pre-implantation, detecting, and predicting graft injury, rejection, dysfunction, and survival are critical to provide clinicians with invaluable prediction tools and guidance for personalized patients' treatment. Additionally, new therapeutic targets are also needed to reduce injury and rejection and improve transplant outcomes. Proteins, which underlie phenotypes, are ideal candidate biomarkers of health and disease statuses and therapeutic targets. A protein can exist in different molecular forms, called proteoforms. As the function of a protein depends on its exact composition, proteoforms can offer a more accurate basis for connection to complex phenotypes than protein from which they derive. Mass spectrometry-based proteomics has been largely used in SOT research for identification of candidate biomarkers and therapeutic intervention targets by so-called "bottom-up" proteomics (BUP). However, such BUP approaches analyze small peptides in lieu of intact proteins and provide incomplete information on the exact molecular composition of the proteins of interest. In contrast, "Top-down" proteomics (TDP), which analyze intact proteins retaining proteoform-level information, have been only recently adopted in transplantation studies and already led to the identification of promising proteoforms as biomarkers for organ rejection and dysfunction. We anticipate that the use of top-down strategies in combination with new technological advancements in single-cell and spatial proteomics could drive future breakthroughs in biomarker and therapeutic target discovery in SOT.
Collapse
Affiliation(s)
- Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Pei Su
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
| | - Josh Levitsky
- Division of Gastroenterology and Hepatology, Comprehensive Transplant Center Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Chemistry, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
4
|
Rainey A, McKay GJ, English J, Thakkinstian A, Maxwell AP, Corr M. Proteomic analysis investigating kidney transplantation outcomes- a scoping review. BMC Nephrol 2023; 24:346. [PMID: 37993798 PMCID: PMC10666386 DOI: 10.1186/s12882-023-03401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Kidney transplantation is the optimal treatment option for most patients with end-stage kidney disease given the significantly lower morbidity and mortality rates compared to remaining on dialysis. Rejection and graft failure remain common in transplant recipients with limited improvement in long-term transplant outcomes despite therapeutic advances. There is an unmet need in the development of non-invasive biomarkers that specifically monitor graft function and predict transplant pathologies that affect outcomes. Despite the potential of proteomic investigatory approaches, up to now, no candidate biomarkers of sufficient sensitivity or specificity have translated into clinical use. The aim of this review was to collate and summarise protein findings and protein pathways implicated in the literature to date, and potentially flag putative biomarkers worth validating in independent patient cohorts. METHODS This review followed the Joanna Briggs' Institute Methodology for a scoping review. MedlineALL, Embase, Web of Science Core Collection, Scopus and Google Scholar databases were searched from inception until December 2022. Abstract and full text review were undertaken independently by two reviewers. Data was collated using a pre-designed data extraction tool. RESULTS One hundred one articles met the inclusion criteria. The majority were single-centre retrospective studies of small sample size. Mass spectrometry was the most used technique to evaluate differentially expressed proteins between diagnostic groups and studies identified various candidate biomarkers such as immune or structural proteins. DISCUSSION Putative immune or structural protein candidate biomarkers have been identified using proteomic techniques in multiple sample types including urine, serum and fluid used to perfuse donor kidneys. The most consistent findings implicated proteins associated with tubular dysfunction and immunological regulatory pathways such as leukocyte trafficking. However, clinical translation and adoption of candidate biomarkers is limited, and these will require comprehensive evaluation in larger prospective, multicentre trials.
Collapse
Affiliation(s)
- Anna Rainey
- Centre for Public Health- Queen's University Belfast, Belfast, UK
| | - Gareth J McKay
- Centre for Public Health- Queen's University Belfast, Belfast, UK
| | - Jane English
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ammarin Thakkinstian
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Michael Corr
- Centre for Public Health- Queen's University Belfast, Belfast, UK.
| |
Collapse
|
5
|
Ho J, Schaub S, Jackson AM, Balshaw R, Carroll R, Cun S, De Serres SA, Fantus D, Handschin J, Hönger G, Jevnikar AM, Kleiser M, Lee JH, Li Y, Nickerson P, Pei R, Pochinco D, Shih R, Trinh M, Wang J, Nguyen J, Knechtle S. Multicenter Validation of a Urine CXCL10 Assay for Noninvasive Monitoring of Renal Transplants. Transplantation 2023; 107:1630-1641. [PMID: 36949034 DOI: 10.1097/tp.0000000000004554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
BACKGROUND Urine CXCL10 (C-X-C motif chemokine ligand 10, interferon gamma-induced protein 10 [IP10]) outperforms standard-of-care monitoring for detecting subclinical and early clinical T-cell-mediated rejection (TCMR) and may advance TCMR therapy development through biomarker-enriched trials. The goal was to perform an international multicenter validation of a CXCL10 bead-based immunoassay (Luminex) for transplant surveillance and compare with an electrochemiluminescence-based (Meso Scale Discovery [MSD]) assay used in transplant trials. METHODS Four laboratories participated in the Luminex assay development and evaluation. Urine CXCL10 was measured by Luminex and MSD in 2 independent adult kidney transplant trial cohorts (Basel and TMCT04). In an independent test and validation set, a linear mixed-effects model to predict (log 10 -transformed) MSD CXCL10 from Luminex CXCL10 was developed to determine the conversion between assays. Net reclassification was determined after mathematical conversion. RESULTS The Luminex assay was precise, with an intra- and interassay coefficient of variation 8.1% and 9.3%; showed modest agreement between 4 laboratories (R 0.96 to 0.99, P < 0.001); and correlated with known CXCL10 in a single- (n = 100 urines, R 0.94 to 0.98, P < 0.001) and multicenter cohort (n = 468 urines, R 0.92, P < 0.001) but the 2 assays were not equivalent by Passing-Bablok regression. Linear mixed-effects modeling demonstrated an intercept of -0.490 and coefficient of 1.028, showing Luminex CXCL10 are slightly higher than MSD CXCL10, but the agreement is close to 1.0. After conversion of the biopsy thresholds, the decision to biopsy would be changed for only 6% (5/85) patients showing acceptable reclassification. CONCLUSIONS These data demonstrate this urine CXCL10 Luminex immunoassay is robust, reproducible, and accurate, indicating it can be readily translated into clinical HLA laboratories for serial posttransplant surveillance.
Collapse
Affiliation(s)
- Julie Ho
- Department of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Canada
- Transplant Manitoba, Shared Health Manitoba, Winnipeg, Canada
| | - Stefan Schaub
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Robert Balshaw
- George and Fay Yee Center for Healthcare Innovation, Manitoba, Canada
| | - Robert Carroll
- Royal Adelaide Hospital, University of Adelaide, SA, Australia
| | - Sylvia Cun
- Thermo Fisher Scientific, Los Angeles, CA
| | | | - Daniel Fantus
- Division of Nephrology, Department of Medicine, Centre Hospitalier de l'Université de Montréal (CHUM) and Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Joelle Handschin
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Gideon Hönger
- Transplantation Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | - Anthony M Jevnikar
- Department of Medicine, Western University and Multiorgan Transplant Program, London, ON, Canada
| | - Marc Kleiser
- HLA-Diagnostic and Immunogenetics, Department of Laboratory Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Yan Li
- Department of Surgery and Immunology, Duke University, Durham, NC
| | - Peter Nickerson
- Department of Internal Medicine and Immunology, University of Manitoba, Winnipeg, Canada
- Transplant Manitoba, Shared Health Manitoba, Winnipeg, Canada
- Canadian Blood Services HLA Laboratory, Diagnostic Services of Manitoba, Canada
| | - Rui Pei
- Thermo Fisher Scientific, Los Angeles, CA
| | - Denise Pochinco
- Canadian Blood Services HLA Laboratory, Diagnostic Services of Manitoba, Canada
| | - Remi Shih
- Terasaki Innovation Center, Los Angeles, CA
| | | | - Jason Wang
- Thermo Fisher Scientific, Los Angeles, CA
| | | | - Stuart Knechtle
- Department of Surgery and Immunology, Duke University, Durham, NC
| |
Collapse
|
6
|
Proteomics for Biomarker Discovery for Diagnosis and Prognosis of Kidney Transplantation Rejection. Proteomes 2022; 10:proteomes10030024. [PMID: 35893765 PMCID: PMC9326686 DOI: 10.3390/proteomes10030024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023] Open
Abstract
Renal transplantation is currently the treatment of choice for end-stage kidney disease, enabling a quality of life superior to dialysis. Despite this, all transplanted patients are at risk of allograft rejection processes. The gold-standard diagnosis of graft rejection, based on histological analysis of kidney biopsy, is prone to sampling errors and carries high costs and risks associated with such invasive procedures. Furthermore, the routine clinical monitoring, based on urine volume, proteinuria, and serum creatinine, usually only detects alterations after graft histologic damage and does not differentiate between the diverse etiologies. Therefore, there is an urgent need for new biomarkers enabling to predict, with high sensitivity and specificity, the rejection processes and the underlying mechanisms obtained from minimally invasive procedures to be implemented in routine clinical surveillance. These new biomarkers should also detect the rejection processes as early as possible, ideally before the 78 clinical outputs, while enabling balanced immunotherapy in order to minimize rejections and reducing the high toxicities associated with these drugs. Proteomics of biofluids, collected through non-invasive or minimally invasive analysis, e.g., blood or urine, present inherent characteristics that may provide biomarker candidates. The current manuscript reviews biofluids proteomics toward biomarkers discovery that specifically identify subclinical, acute, and chronic immune rejection processes while allowing for the discrimination between cell-mediated or antibody-mediated processes. In time, these biomarkers will lead to patient risk stratification, monitoring, and personalized and more efficient immunotherapies toward higher graft survival and patient quality of life.
Collapse
|
7
|
Shan MJ, Meng LB, Guo P, Zhang YM, Kong D, Liu YB. Screening and Identification of Key Biomarkers of Gastric Cancer: Three Genes Jointly Predict Gastric Cancer. Front Oncol 2021; 11:591893. [PMID: 34485109 PMCID: PMC8416116 DOI: 10.3389/fonc.2021.591893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers all over the world, causing high mortality. Gastric cancer screening is one of the effective strategies used to reduce mortality. We expect that good biomarkers can be discovered to diagnose and treat gastric cancer as early as possible. Methods We download four gene expression profiling datasets of gastric cancer (GSE118916, GSE54129, GSE103236, GSE112369), which were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) between gastric cancer and adjacent normal tissues were detected to explore biomarkers that may play an important role in gastric cancer. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of overlap genes were conducted by the Metascape online database; the protein-protein interaction (PPI) network was constructed by the STRING online database, and we screened the hub genes of the PPI network using the Cytoscape software. The survival curve analysis was conducted by km-plotter and the stage plots of hub genes were created by the GEPIA online database. PCR, WB, and immunohistochemistry were used to verify the expression of hub genes. A neural network model was established to quantify the predictors of gastric cancer. Results The relative expression level of cadherin-3 (CDH3), lymphoid enhancer-binding factor 1 (LEF1), and matrix metallopeptidase 7 (MMP7) were significantly higher in gastric samples, compared with the normal groups (p<0.05). Receiver operator characteristic (ROC) curves were constructed to determine the effect of the three genes’ expression on gastric cancer, and the AUC was used to determine the degree of confidence: CDH3 (AUC = 0.800, P<0.05, 95% CI =0.857-0.895), LEF1 (AUC=0.620, P<0.05, 95%CI=0.632-0.714), and MMP7 (AUC=0.914, P<0.05, 95%CI=0.714-0.947). The high-risk warning indicator of gastric cancer contained 8<CDH3<15 and 10<expression of LEF1<16. Conclusions CDH3, LEF1, and MMP7 can be used as candidate biomarkers to construct a neural network model from hub genes, which may be helpful for the early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Meng-Jie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.,Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling-Bing Meng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Cardiology Department, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Peng Guo
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan-Meng Zhang
- Department of Cardiology, The Third Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Dexian Kong
- Department of Endocrinology, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Bin Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
8
|
Hu Q, Lan J, Liang W, Chen Y, Chen B, Liu Z, Xiong Y, Zhong Z, Wang Y, Ye Q. MMP7 damages the integrity of the renal tubule epithelium by activating MMP2/9 during ischemia-reperfusion injury. J Mol Histol 2020; 51:685-700. [PMID: 33070277 DOI: 10.1007/s10735-020-09914-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
Renal ischemia-reperfusion (IR) injury is a common issue in urological surgery, and the renal tubules, particularly the proximal tubules, are extremely vulnerable to IR injury. In this work, we detected the differently expressed genes (DEGs) between normal rabbit kidneys and IR kidneys by RNA-sequencing, then identified that matrix metalloproteinase-7 (MMP7) played an important role in the progress of IR injury. Indeed, A time-dependent promotion of renal injury was detected in rabbit model, as demonstrated by the increased levels of MMP2/7/9, and the decreased of tight junction protein-1 (TJP1). Furtherly, similar results were confirmed in human renal proximal tubule epithelial (HK-2) cells model. Notably, downregulation of MMP7 affected the activity of MMP2/9 by suppressing expression of cleaved-MMP2/9 not the pro-MMP2/9 protein, which directly alleviated the degradation of TJP1 in HK-2 model. On the contrary, MMP7 had not been affected by inhibiting MMP2/9. In addition, coimmunoprecipitation assay showed that knockdown MMP7 restrained the interaction between MMP2/9 and TJP1. Collectively, this study suggested that MMP7 could serve as early biomarkers for renal tubular injury, and revealed that MMP7 could destroy the integrity of tubular epithelium through degrading TJP1 by activating MMP2/9.
Collapse
Affiliation(s)
- Qianchao Hu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jianan Lan
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Wenjin Liang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yiwen Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Biao Chen
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zhongzhong Liu
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yan Xiong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zibiao Zhong
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Qifa Ye
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China. .,Transplantation Medicine Engineering and Technology Research Center, National Health Commission, The 3rd Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
9
|
Urinary Biomarkers for Diagnosis and Prediction of Acute Kidney Allograft Rejection: A Systematic Review. Int J Mol Sci 2020; 21:ijms21186889. [PMID: 32961825 PMCID: PMC7555436 DOI: 10.3390/ijms21186889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Noninvasive tools for diagnosis or prediction of acute kidney allograft rejection have been extensively investigated in recent years. Biochemical and molecular analyses of blood and urine provide a liquid biopsy that could offer new possibilities for rejection prevention, monitoring, and therefore, treatment. Nevertheless, these tools are not yet available for routine use in clinical practice. In this systematic review, MEDLINE was searched for articles assessing urinary biomarkers for diagnosis or prediction of kidney allograft acute rejection published in the last five years (from 1 January 2015 to 31 May 2020). This review follows the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. Articles providing targeted or unbiased urine sample analysis for the diagnosis or prediction of both acute cellular and antibody-mediated kidney allograft rejection were included, analyzed, and graded for methodological quality with a particular focus on study design and diagnostic test accuracy measures. Urinary C-X-C motif chemokine ligands were the most promising and frequently studied biomarkers. The combination of precise diagnostic reference in training sets with accurate validation in real-life cohorts provided the most relevant results and exciting groundwork for future studies.
Collapse
|
10
|
Navarrete M, Korkmaz B, Guarino C, Lesner A, Lao Y, Ho J, Nickerson P, Wilkins JA. Activity-based protein profiling guided identification of urine proteinase 3 activity in subclinical rejection after renal transplantation. Clin Proteomics 2020; 17:23. [PMID: 32549867 PMCID: PMC7296916 DOI: 10.1186/s12014-020-09284-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/19/2020] [Indexed: 03/04/2023] Open
Abstract
Background The pathophysiology of subclinical versus clinical rejection remains incompletely understood given their equivalent histological severity but discordant graft function. The goal was to evaluate serine hydrolase enzyme activities to explore if there were any underlying differences in activities during subclinical versus clinical rejection. Methods Serine hydrolase activity-based protein profiling (ABPP) was performed on the urines of a case control cohort of patients with biopsy confirmed subclinical or clinical transplant rejection. In-gel analysis and affinity purification with mass spectrometry were used to demonstrate and identify active serine hydrolase activity. An assay for proteinase 3 (PR3/PRTN3) was adapted for the quantitation of activity in urine. Results In-gel ABPP profiles suggested increased intensity and diversity of serine hydrolase activities in urine from patients undergoing subclinical versus clinical rejection. Serine hydrolases (n = 30) were identified by mass spectrometry in subclinical and clinical rejection patients with 4 non-overlapping candidates between the two groups (i.e. ABHD14B, LTF, PR3/PRTN3 and PRSS12). Western blot and the use of a specific inhibitor confirmed the presence of active PR3/PRTN3 in samples from patients undergoing subclinical rejection. Analysis of samples from normal donors or from several serial post-transplant urines indicated that although PR3/PRTN3 activity may be highly associated with low-grade subclinical inflammation, the enzyme activity was not restricted to this patient group. Conclusions There appear to be limited qualitative and quantitative differences in serine hydrolase activity in patients with subclinical versus clinical renal transplant rejection. The majority of enzymes identified were present in samples from both groups implying that in-gel quantitative differences may largely relate to the activity status of shared enzymes. However qualitative compositional differences were also observed indicating differential activities. The PR3/PRTN3 analyses indicate that the activity status of urine in transplant patients is dynamic possibly reflecting changes in the underlying processes in the transplant. These data suggest that differential serine hydrolase pathways may be active in subclinical versus clinical rejection which requires further exploration in larger patient cohorts. Although this study focused on PR3/PRTN3, this does not preclude the possibility that other enzymes may play critical roles in the rejection process.
Collapse
Affiliation(s)
- Mario Navarrete
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada
| | - Brice Korkmaz
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", Université de Tours, 37032 Tours, France
| | - Carla Guarino
- INSERM, UMR 1100, "Centre d'Etude des Pathologies Respiratoires", Université de Tours, 37032 Tours, France
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Ying Lao
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Section of Nephrology, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Dept. Immunology, University of Manitoba, Winnipeg, MB Canada
| | - Peter Nickerson
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Section of Nephrology, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada.,Dept. Immunology, University of Manitoba, Winnipeg, MB Canada
| | - John A Wilkins
- Manitoba Centre for Proteomics and Systems Biology, 799 John Buhler Research Centre, 715 McDermot Ave., Winnipeg, MB R3E3P4 Canada.,Section Biomedical Proteomics, Dept. Internal Medicine, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
11
|
Abstract
Enzyme activity may be more pathophysiologically relevant than enzyme quantity and is regulated by changes in conformational status that are undetectable by traditional proteomic approaches. Further, enzyme activity may provide insights into rapid physiological responses to inflammation/injury that are not dependent on de novo protein transcription. Activity-based protein profiling (ABPP) is a chemical proteomic approach designed to characterize and identify active enzymes within complex biological samples. Activity probes have been developed to interrogate multiple enzyme families with broad applicability, including but not limited to serine hydrolases, cysteine proteases, matrix metalloproteases, nitrilases, caspases, and histone deacetylases. The goal of this overview is to describe the overall rationale, approach, methods, challenges, and potential applications of ABPP to transplantation research. To do so, we present a case example of urine serine hydrolase ABPP in kidney transplant rejection to illustrate the utility and workflow of this analytical approach. Ultimately, developing novel transplant therapeutics is critically dependent on understanding the pathophysiological processes that result in loss of transplant function. ABPP offers a new dimension for characterizing dynamic changes in clinical samples. The capacity to identify and measure relevant enzyme activities provides fresh opportunities for understanding these processes and may help identify markers of disease activity for the development of novel diagnostics and real-time monitoring of patients. Finally, these insights into enzyme activity may also help to identify new transplant therapeutics, such as enzyme-specific inhibitors.
Collapse
|
12
|
Kim JY, Wee YM, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Cho YM, Go H, Han M, Kim YH, Han DJ, Shin S. Urinary transglutaminase 2 as a potent biomarker to predict interstitial fibrosis and tubular atrophy of kidney allograft during early posttransplant period in deceased donor kidney transplantation. Ann Surg Treat Res 2019; 97:27-35. [PMID: 31297350 PMCID: PMC6609414 DOI: 10.4174/astr.2019.97.1.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 11/30/2022] Open
Abstract
Purpose Transglutaminase type 2 (TG2) is an extracellular matrix crosslinking enzyme with a pivotal role in kidney fibrosis. We tested whether quantification of urinary TG2 may represent a noninvasive method to estimate the severity of kidney allograft fibrosis. Methods We prospectively collected urine specimens from 18 deceased donor kidney transplant recipients at 1-day, 7-day, 1-month, 3-month, and 6-month posttransplant. In addition, kidney allograft tissue specimens at 0-day and 6-month posttransplant were sampled to analyze the correlation of urinary TG2 and kidney allograft fibrosis. Results Thirteen recipients had increased interstitial fibrosis and tubular atrophy (IFTA) scores at the 6-month protocol biopsy (IFTA group). The mean level of urinary TG2 in the IFTA group was higher compared to that of 5 other recipients without IFTA (no IFTA group). Conversely, the mean level of urinary syndecan-4 in the IFTA group was lower than levels in patients without IFTA. In the IFTA group, double immunofluorescent staining revealed that TG2 intensity was significantly upregulated and colocalizations of TG2/heparin sulfate proteoglycan and nuclear syndecan-4 were prominent, usually around tubular structures. Conclusion Urinary TG2 in early posttransplant periods is a potent biomarker for kidney allograft inflammation or fibrosis.
Collapse
Affiliation(s)
- Jee Yeon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yu-Mee Wee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong Mee Cho
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Heounjeong Go
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Minkyu Han
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Wee YM, Lee HW, Choi MY, Jung HR, Choi JY, Kwon HW, Jung JH, Kim YH, Han DJ, Shin S. A composite of urinary biomarkers for differentiating between tubulointerstitial inflammation and interstitial fibrosis/tubular atrophy in kidney allografts. Ann Hepatobiliary Pancreat Surg 2018; 22:310-320. [PMID: 30588521 PMCID: PMC6295379 DOI: 10.14701/ahbps.2018.22.4.310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 01/28/2023] Open
Abstract
Backgrounds/Aims Compared with a single urinary biomarker, a composite of multiple urinary biomarkers may be more helpful for differentiating tubulointerstitial inflammation from interstitial fibrosis/tubular atrophy (IFTA) in kidney allografts. Methods In this cross-sectional cohort study, we collected urine samples from 115 patients with for-cause biopsy, 53 patients with stable allografts, and 50 living kidney donors. We measured the urinary levels of transglutaminase 2 (TG2), syndecan-4 (SDC4), alpha 1 microglobulin (A1M), interferon-inducible protein 10 (IP-10), interleukin 6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). Results The for-cause biopsy group showed significantly higher levels of logeTG2/Cr, logeA1M/Cr, logeIL-6/Cr, and logeMCP-1/Cr compared with other groups. In the for-cause biopsy group, logeTG2/Cr level was positively correlated with the severity of IFTA. After adjusting for age, sex, body mass index, diabetes, hypertension, cardiovascular disease, and the interval between kidney transplant and biopsy, TG2 and the interval between transplant and biopsy were significantly correlated variables for the severity of IFTA. Regarding tubulointerstitial inflammation, Body mass index, TG2, SDC4, and IP-10 were positively-correlated variables, and MCP-1 and the interval between transplant and biopsy were negatively-correlated variables. Conclusions Our results show that post-transplant urinary levels of TG2, SDC4, MCP-1 and IP-10 may be a useful biomarker for tubulointerstitial inflammation and IFTA.
Collapse
Affiliation(s)
- Yu-Mee Wee
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae-Won Lee
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Monica Young Choi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hey Rim Jung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Yoon Choi
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Wook Kwon
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joo Hee Jung
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hoon Kim
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Duck Jong Han
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Shin
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Division of Kidney and Pancreas Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Chen D, Zhang J, Peng W, Weng C, Chen J. Urinary C‑X‑C motif chemokine 13 is a noninvasive biomarker of antibody‑mediated renal allograft rejection. Mol Med Rep 2018; 18:2399-2406. [PMID: 29956754 DOI: 10.3892/mmr.2018.9211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Noninvasive monitoring methods of immune status are preferred by transplant recipients. The present study investigated whether urinary C‑X‑C motif chemokine 13 (CXCL13) had the potential to reflect ongoing immune processes within renal allografts. Using an ELISA assay, the level of urinary CXCL13 was quantified in a total of 146 renal allograft recipients and 40 healthy controls at scheduled intervals and at the time of the indicated or protocol biopsy. The results of the present study revealed that urinary CXCL13/creatinine (Cr) was lower in normal transplants compared with in those with acute tubular necrosis (ATN; P=0.001), chronic allograft nephropathy (CAN; P=0.01), and acute rejection (AR; P<0.0001), which was associated with a good diagnostic performance for AR [area under the curve (AUC)=0.818, P<0.0001). In addition, urinary CXCL13/Cr levels in patients with AR were also higher than that of patients with graft dysfunction but no rejection, including ATN and CAN (P=0.034). Notably, urinary CXCL13 distinguished between acute antibody‑mediated rejection (ABMR) and acute cellular rejection, with an AUC of 0.856. Furthermore, patients with steroid‑resistant AR exhibited significantly increased urinary CXCL13/Cr levels than patients with reversible AR (P=0.001). Additionally, elevated levels of urinary CXCL13/Cr within the first month of transplant were predictive of graft function at 3 and 6 months (P=0.044 and P=0.04, respectively). Collectively, the findings of the present study indicated that the noninvasive investigation of urinary CXCL13/Cr may be valuable for the detection of AR, particularly ABMR. In addition, high urinary CXCL13/Cr levels predicted a poor response to steroid treatment and compromised graft function.
Collapse
Affiliation(s)
- Dajin Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian Zhang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wenhan Peng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Despite modern immunosuppression, renal allograft rejection remains a major contributor to graft loss. Novel biomarkers may help improve posttransplant outcomes through the early detection and treatment of rejection. Our objective is to provide an overview of proteomics, review recent discovery-based rejection studies, and explore innovative approaches in biomarker development. RECENT FINDINGS Urine MMP7 was identified as a biomarker of subclinical and clinical rejection using two-dimensional liquid chromatography tandem-mass spectrometry (LC-MS/MS) and improved the overall diagnostic discrimination of urine CXCL10 : Cr alone for renal allograft inflammation. A novel peptide signature to classify stable allografts from acute rejection, chronic allograft injury, and polyoma virus (BKV) nephropathy was identified using isobaric tag for relative and absolute quantitation (TRAQ) and label-free MS, with independent validation by selected reaction monitoring mass spectrometry (SRM-MS). Finally, an in-depth exploration of peripheral blood mononuclear cells identified differential proteoform expression in healthy transplants versus rejection. SUMMARY There is still much in the human proteome that remains to be explored, and further integration of renal, urinary, and exosomal data may offer deeper insight into the pathophysiology of rejection. Functional proteomics may be more biologically relevant than protein/peptide quantity alone, such as assessment of proteoforms or activity-based protein profiling. Discovery-based studies have identified potential biomarker candidates, but external validation studies are required.
Collapse
|
17
|
Leblanc J, Subrt P, Paré M, Hartell D, Sénécal L, Blydt-Hansen T, Cardinal H. Practice Patterns in the Treatment and Monitoring of Acute T Cell-Mediated Kidney Graft Rejection in Canada. Can J Kidney Health Dis 2018; 5:2054358117753616. [PMID: 29479453 PMCID: PMC5818088 DOI: 10.1177/2054358117753616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/21/2017] [Indexed: 01/11/2023] Open
Abstract
Background One of the goals of the Canadian National Transplant Research Program (CNTRP) is to develop novel therapies for acute rejection that could positively affect graft outcomes with greater efficacy or less toxicity. To develop innovative management strategies for kidney graft rejection, new modalities need to be compared with current clinical practices. However, there are no standardized practices concerning the management of acute T cell-mediated rejection (TCMR). Objectives To describe clinicians' practice patterns in the diagnosis, treatment, and monitoring of acute TCMR in Canada. Design Survey. Setting Patients/Participants Canadian transplant nephrologists and transplant surgeons involved in the management of acute TCMR. Methods and Measurements We developed an anonymous, web-based survey consisting of questions related to the diagnosis, treatment, and monitoring of TCMR. The survey was disseminated on 3 occasions between June and October 2016 through the Canadian Society of Transplantation (CST) kidney group electronic mailing list. Results Forty-seven respondents, mostly transplant nephrologists (97%), originating from at least 18 of the 25 Canadian centers offering adult or pediatric kidney transplantation, participated in the study. Surveillance biopsies were used by 28% of respondents to screen for kidney graft rejection. High-dose steroids were used by most of the respondents to treat clinical and subclinical Banff grade 1A and 1B rejections. Nine percent (95% confidence interval [CI]: 1-17) of practitioners used lymphocyte-depleting agents as the first-line approach for the treatment of Banff grade 1B acute rejection. Eighteen percent (95% CI: 7-29) and 36% (95% CI: 8-65) of respondents reported that they would not use high-dose steroids for treating clinical and subclinical borderline rejections, respectively. Seventy percent (95% CI: 54-83) of respondents answered that there was no indication to assess histological response to treatment independent of the change in kidney function. Limitations The limitations of this study are its limited sample size and the low representation of pediatric specialists. Conclusions There is heterogeneity regarding the use of surveillance biopsies, treatment of borderline rejection, and modalities to monitor treatment response among transplant physicians. Our results illustrate the current state of practice patterns across Canada and can be used to inform the design of future trials.
Collapse
Affiliation(s)
- Julie Leblanc
- Division of Internal Medicine, Department of Medicine, Université de Montréal, Québec, Canada
| | - Peter Subrt
- Canadian National Transplant Research Program, Montreal, Québec, Canada
| | - Michèle Paré
- Institut de recherche en santé publique de l'Université de Montréal, Québec, Canada
| | - David Hartell
- Canadian National Transplant Research Program, Montreal, Québec, Canada
| | - Lynne Sénécal
- Canadian National Transplant Research Program, Montreal, Québec, Canada.,Division of Nephrology, Department of Medicine, Hôpital Maisonneuve-Rosemont, Montreal, Québec, Canada
| | - Tom Blydt-Hansen
- Canadian National Transplant Research Program, Montreal, Québec, Canada.,Division of Pediatric Nephrology, University of British Columbia, Vancouver, Canada
| | - Héloïse Cardinal
- Canadian National Transplant Research Program, Montreal, Québec, Canada.,Division of Nephrology, Centre hospitalier de l'Université de Montréal, Québec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
18
|
Affiliation(s)
- Arjun Chakraborty
- Department of Surgery, University of California San Francisco, San Francisco, USA
| | - Minnie Sarwal
- Director of Precision Transplant Medicine, University of California San Francisco, San Francisco, USA
| |
Collapse
|
19
|
Zhang J, Ren P, Wang Y, Feng S, Wang C, Shen X, Weng C, Lang X, Chen Z, Jiang H, Chen J. Serum Matrix Metalloproteinase-7 Level is Associated with Fibrosis and Renal Survival in Patients with IgA Nephropathy. Kidney Blood Press Res 2017; 42:541-552. [DOI: 10.1159/000477132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/08/2017] [Indexed: 11/19/2022] Open
|
20
|
Danger R, Sawitzki B, Brouard S. Immune monitoring in renal transplantation: The search for biomarkers. Eur J Immunol 2017; 46:2695-2704. [PMID: 27861809 DOI: 10.1002/eji.201545963] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Abstract
It is now widely accepted that in order to improve long-term graft function and survival, a more personalized immunosuppressive treatment of transplant patients according to the individual anti-donor immune response status is needed. This applies to the identification of potentially "high-risk" patients likely to develop acute rejection episodes or display an accelerated decline of graft function, patients who might need immunosuppression intensification, and operationally tolerant patients suitable for immunosuppression minimization or weaning off. Such a patient stratification would benefit from biomarkers, which enable categorization into low and high risk or, ideally, identification of operational tolerant patients. Here, we report on recent developments regarding identification and performance analysis of noninvasive biomarkers such as mRNA and miRNA expression profiles, chemokines, or changes in immune cell subsets in either blood or urine of renal transplant patients. We will also discuss which future steps are needed to accelerate their clinical implementation.
Collapse
Affiliation(s)
- Richard Danger
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité University Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Berlin, Germany
| | - Sophie Brouard
- Inserm, , Center for Research in Transplantation and Immunology (CRTI) U1064, Nantes, France.,Université de Nantes, , UMR1064, Nantes, France.,CHU Nantes, Institut de Transplantation Urologie Néphrologie (ITUN), Nantes, France.,CIC Biotherapy, CHU Nantes, , 30 bd Jean-Monnet, Nantes, France
| |
Collapse
|
21
|
Parrish AR. Matrix Metalloproteinases in Kidney Disease: Role in Pathogenesis and Potential as a Therapeutic Target. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:31-65. [PMID: 28662825 DOI: 10.1016/bs.pmbts.2017.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Matrix metalloproteinases (MMPs) are large family of proteinases. In addition to a fundamental role in the remodeling of the extracellular matrix, they also cleave a number of cell surface proteins and are involved in multiple cellular processes. MMP activity is regulated via numerous mechanisms, including inhibition by endogenous tissue inhibitors of metalloproteinases (TIMPs). Similar to MMPs, a role for TIMPs has been established in multiple cell signaling pathways. Aberrant expression of MMPs and TIMPS in renal pathophysiology has long been recognized, and with the generation of specific knockout mice, the mechanistic role of several MMPs and TIMPs is becoming more understood and has revealed both pathogenic and protective roles. This chapter will focus on the expression and localization of MMPs and TIMPs in the kidney, as well as summarizing the current information linking these proteins to acute kidney injury and chronic kidney disease. In addition, we will summarize studies suggesting that MMPs and TIMPs may be biomarkers of renal dysfunction and represent novel therapeutic targets to attenuate kidney disease.
Collapse
Affiliation(s)
- Alan R Parrish
- School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
22
|
Dwivedi RC, Navarrete M, Choi N, Spicer V, Rigatto C, Arora RC, Krokhin O, Ho J, Wilkins JA. A proteomic evaluation of urinary changes associated with cardiopulmonary bypass. Clin Proteomics 2016; 13:17. [PMID: 27528862 PMCID: PMC4983784 DOI: 10.1186/s12014-016-9118-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/04/2016] [Indexed: 01/31/2023] Open
Abstract
Background The urinary proteome of patients undergoing cardiopulmonary bypass (CPB) may provide important insights into systemic and renal changes associated with the procedure. Such information may ultimately provide a basis to differentiate changes or properties associated with the development of acute kidney injury. While mass spectrometry (MS) analysis offers the potential for in-depth compositional analysis it is often limited in coverage and relative quantitation capacity. The aim of this study was to develop a process flow for the preparation and comparison of the intraoperative urinary proteome. Methods Urines were collected from patients at the start of CPB and 1-h into CPB. Pooled samples (n = 5) from each time point were processed using a modified Filter Assisted Sample Preparation protocol. The resulting peptides were analyzed by 2D-LC–MS/MS and by 1D-LC–MS/MS SWATH (Sequential Window acquisition of All Theoretical fragment ion spectra). Results The 2D-LC–MS/MS analysis identified 1324 proteins in the two pools, of which 744 were quantifiable. The SWATH approach provided quantitation for 730 proteins, 552 of which overlapped with the common population from the 2D-IDA results. Intensity correlation filtering between the two methods gave 475 proteins for biological interpretation. Proteins displaying greater than threefold changes (>log2 1.59) at 1-hour CPB relative to the initiation of CPB (26 down-regulated and 22 up-regulated) were selected for further analysis. Up-regulated proteins were enriched in GO terms related to humoral immune response, predominantly innate immunity (C4b, lactotransferrin, protein S100-A8, cathelicidin, myeloperoxidase) and extracellular matrix reorganization (e.g. MMP-9). Conclusions This study describes a scheme for processing urine from patients undergoing CPB for mass spectrometry-based analysis. The introduction of SWATH into the workflow offers a sample and instrument sparing approach to obtaining consistent in-depth sample analysis. The design of the methodology is such that it can be readily applied to large numbers of clinical samples with the potential for automation. The results also suggest that activation of the innate immune responses occur during cardiac bypass surgery. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9118-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravi C Dwivedi
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada
| | - Mario Navarrete
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada
| | - Nora Choi
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada ; Cardiac Sciences Program, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada
| | - Claudio Rigatto
- Department of Internal Medicine, Section of Nephrology, University of Manitoba, Winnipeg, MB Canada
| | - Rakesh C Arora
- Department of Surgery, University of Manitoba, Winnipeg, MB Canada ; Cardiac Sciences Program, St. Boniface Hospital Research Centre, Winnipeg, Canada
| | - Oleg Krokhin
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada
| | - Julie Ho
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada ; Department of Internal Medicine, Section of Nephrology, University of Manitoba, Winnipeg, MB Canada ; Department of Immunology, University of Manitoba, Winnipeg, MB Canada
| | - John A Wilkins
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba and Health Sciences Centre, Room 799, John Buhler Research Center, 715 Mc Dermot Avenue, Winnipeg, MB R3E 3P4 Canada ; Department of Internal Medicine, Section of Biomedical Proteomics, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
23
|
Detecting Renal Allograft Inflammation Using Quantitative Urine Metabolomics and CXCL10. Transplant Direct 2016; 2:e78. [PMID: 27500268 PMCID: PMC4946516 DOI: 10.1097/txd.0000000000000589] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The goal of this study was to characterize urinary metabolomics for the noninvasive detection of cellular inflammation and to determine if adding urinary chemokine ligand 10 (CXCL10) improves the overall diagnostic discrimination. METHODS Urines (n = 137) were obtained before biopsy in 113 patients with no (n = 66), mild (borderline or subclinical; n = 58), or severe (clinical; n = 13) rejection from a prospective cohort of adult renal transplant patients (n = 113). Targeted, quantitative metabolomics was performed with direct flow injection tandem mass spectrometry using multiple reaction monitoring (ABI 4000 Q-Trap). Urine CXCL10 was measured by enzyme-linked immunosorbent assay. A projection on latent structures discriminant analysis was performed and validated using leave-one-out cross-validation, and an optimal 2-component model developed. Chemokine ligand 10 area under the curve (AUC) was determined and net reclassification index and integrated discrimination index analyses were performed. RESULTS PLS2 demonstrated that urinary metabolites moderately discriminated the 3 groups (Cohen κ, 0.601; 95% confidence interval [95% CI], 0.46-0.74; P < 0.001). Using binary classifiers, urinary metabolites and CXCL10 demonstrated an AUC of 0.81 (95% CI, 0.74-0.88) and 0.76 (95% CI, 0.68-0.84), respectively, and a combined AUC of 0.84 (95% CI, 0.78-0.91) for detecting alloimmune inflammation that was improved by net reclassification index and integrated discrimination index analyses. Urinary CXCL10 was the best univariate discriminator, followed by acylcarnitines and hexose. CONCLUSIONS Urinary metabolomics can noninvasively discriminate noninflamed renal allografts from those with subclinical and clinical inflammation, and the addition of urine CXCL10 had a modest but significant effect on overall diagnostic performance. These data suggest that urinary metabolomics and CXCL10 may be useful for noninvasive monitoring of alloimmune inflammation in renal transplant patients.
Collapse
|