1
|
Wang L, Song Y, Zhang P, Chen W, Xiao F, Zhou P, Yang X, Dai H. Hypoxia-inducible factor prolyl hydroxylase inhibitor alleviates heatstroke-induced acute kidney injury by activating BNIP3-mediated mitophagy. FASEB J 2024; 38:e23723. [PMID: 38865198 DOI: 10.1096/fj.202400047r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 06/14/2024]
Abstract
Hypoxia-induced inflammation and apoptosis are important pathophysiological features of heat stroke-induced acute kidney injury (HS-AKI). Hypoxia-inducible factor (HIF) is a key protein that regulates cell adaptation to hypoxia. HIF-prolyl hydroxylase inhibitor (HIF-PHI) stabilizes HIF to increase cell adaptation to hypoxia. Herein, we reported that HIF-PHI pretreatment significantly improved renal function, enhanced thermotolerance, and increased the survival rate of mice in the context of HS. Moreover, HIF-PHI could alleviate HS-induced mitochondrial damage, inflammation, and apoptosis in renal tubular epithelial cells (RTECs) by enhancing mitophagy in vitro and in vivo. By contrast, mitophagy inhibitors Mdivi-1, 3-MA, and Baf-A1 reversed the renoprotective effects of HIF-PHI. Mechanistically, HIF-PHI protects RTECs from inflammation and apoptosis by enhancing Bcl-2 adenovirus E18 19-kDa-interacting protein 3 (BNIP3)-mediated mitophagy, while genetic ablation of BNIP3 attenuated HIF-PHI-induced mitophagy and abolished HIF-PHI-mediated renal protection. Thus, our results indicated that HIF-PHI protects renal function by upregulating BNIP3-mediated mitophagy to improve HS-induced inflammation and apoptosis of RTECs, suggesting HIF-PHI as a promising therapeutic agent to treat HS-AKI.
Collapse
Affiliation(s)
- Ling Wang
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Yongwei Song
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Pan Zhang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Wenting Chen
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Fei Xiao
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Zhou
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Huanzi Dai
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Troise D, Infante B, Mercuri S, Piccoli C, Lindholm B, Stallone G. Hypoxic Inducible Factor Stabilization in Pericytes beyond Erythropoietin Production: The Good and the Bad. Antioxidants (Basel) 2024; 13:537. [PMID: 38790642 PMCID: PMC11118908 DOI: 10.3390/antiox13050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The paracrine signaling pathways for the crosstalk between pericytes and endothelial cells are essential for the coordination of cell responses to challenges such as hypoxia in both healthy individuals and pathological conditions. Ischemia-reperfusion injury (IRI), one of the causes of cellular dysfunction and death, is associated with increased expression of genes involved in cellular adaptation to a hypoxic environment. Hypoxic inducible factors (HIFs) have a central role in the response to processes initiated by IRI not only linked to erythropoietin production but also because of their participation in inflammation, angiogenesis, metabolic adaptation, and fibrosis. While pericytes have an essential physiological function in erythropoietin production, a lesser-known role of HIF stabilization during IRI is that pericytes' HIF expression could influence vascular remodeling, cell loss and organ fibrosis. Better knowledge of mechanisms that control functions and consequences of HIF stabilization in pericytes beyond erythropoietin production is advisable for the development of therapeutic strategies to influence disease progression and improve treatments. Thus, in this review, we discuss the dual roles-for good or bad-of HIF stabilization during IRI, focusing on pericytes, and consequences in particular for the kidneys.
Collapse
Affiliation(s)
- Dario Troise
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Barbara Infante
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Silvia Mercuri
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
3
|
Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, Zhou Y, Hu Y, Shi B, Ge J. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther 2023; 8:431. [PMID: 37981648 PMCID: PMC10658171 DOI: 10.1038/s41392-023-01652-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 11/21/2023] Open
Abstract
Hypoxia, characterized by reduced oxygen concentration, is a significant stressor that affects the survival of aerobic species and plays a prominent role in cardiovascular diseases. From the research history and milestone events related to hypoxia in cardiovascular development and diseases, The "hypoxia-inducible factors (HIFs) switch" can be observed from both temporal and spatial perspectives, encompassing the occurrence and progression of hypoxia (gradual decline in oxygen concentration), the acute and chronic manifestations of hypoxia, and the geographical characteristics of hypoxia (natural selection at high altitudes). Furthermore, hypoxia signaling pathways are associated with natural rhythms, such as diurnal and hibernation processes. In addition to innate factors and natural selection, it has been found that epigenetics, as a postnatal factor, profoundly influences the hypoxic response and progression within the cardiovascular system. Within this intricate process, interactions between different tissues and organs within the cardiovascular system and other systems in the context of hypoxia signaling pathways have been established. Thus, it is the time to summarize and to construct a multi-level regulatory framework of hypoxia signaling and mechanisms in cardiovascular diseases for developing more therapeutic targets and make reasonable advancements in clinical research, including FDA-approved drugs and ongoing clinical trials, to guide future clinical practice in the field of hypoxia signaling in cardiovascular diseases.
Collapse
Affiliation(s)
- Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Weidong Xiong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Junbo Ge
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, 200032, China.
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Niculae A, Gherghina ME, Peride I, Tiglis M, Nechita AM, Checherita IA. Pathway from Acute Kidney Injury to Chronic Kidney Disease: Molecules Involved in Renal Fibrosis. Int J Mol Sci 2023; 24:14019. [PMID: 37762322 PMCID: PMC10531003 DOI: 10.3390/ijms241814019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Acute kidney injury (AKI) is one of the main conditions responsible for chronic kidney disease (CKD), including end-stage renal disease (ESRD) as a long-term complication. Besides short-term complications, such as electrolyte and acid-base disorders, fluid overload, bleeding complications or immune dysfunctions, AKI can develop chronic injuries and subsequent CKD through renal fibrosis pathways. Kidney fibrosis is a pathological process defined by excessive extracellular matrix (ECM) deposition, evidenced in chronic kidney injuries with maladaptive architecture restoration. So far, cited maladaptive kidney processes responsible for AKI to CKD transition were epithelial, endothelial, pericyte, macrophage and fibroblast transition to myofibroblasts. These are responsible for smooth muscle actin (SMA) synthesis and abnormal renal architecture. Recently, AKI progress to CKD or ESRD gained a lot of interest, with impressive progression in discovering the mechanisms involved in renal fibrosis, including cellular and molecular pathways. Risk factors mentioned in AKI progression to CKD are frequency and severity of kidney injury, chronic diseases such as uncontrolled hypertension, diabetes mellitus, obesity and unmodifiable risk factors (i.e., genetics, older age or gender). To provide a better understanding of AKI transition to CKD, we have selected relevant and updated information regarding the risk factors responsible for AKIs unfavorable long-term evolution and mechanisms incriminated in the progression to a chronic state, along with possible therapeutic approaches in preventing or delaying CKD from AKI.
Collapse
Affiliation(s)
- Andrei Niculae
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihai-Emil Gherghina
- Department of Nephrology, Ilfov County Emergency Clinical Hospital, 022104 Bucharest, Romania
| | - Ileana Peride
- Department of Nephrology, Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | | |
Collapse
|
5
|
Liu XJ, Lv JL, Zou X, Yu YY, Zhou HX, Wu Y, Geng YQ, Lie CH. MiR-21 alleviates renal tubular epithelial cells injury induced by ischemia by targeting TLR4. Heliyon 2023; 9:e15818. [PMID: 37234634 PMCID: PMC10205595 DOI: 10.1016/j.heliyon.2023.e15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Renal ischemia is the initial stage of kidney damage, leading to mitochondrial metabolism disorders and cell necrosis. In this study, we aimed to investigate the biological functions and potential mechanisms of miR-21 in protecting renal tubular epithelial cells from oxidative stress and apoptosis following oxygen glucose deprivation (OGD). Following an OGD injury, miR-21 levels increased in HK-2 renal tubular epithelial cells. Overexpression of miR-21 decreased the protein expressions of cleaved caspase-3, BAX, P53, cell apoptosis and increased Bcl-2 expression in HK-2 cells with OGD injury. In vivo studies found that miR-21 agomir reduced renal tissue apoptosis, while miR-21 antagomir increased it. In addition, overexpression of miR-21 reduced levels of reactive oxygen species (ROS), malondialdehyde (MDA) and lactate dehydrogenase (LDH) in HK-2 cells with OGD injury. However, miR-21 inhibition exhibited the opposite effect. A dual-luciferase reporter assay demonstrated that miR-21 directly regulates Toll-like receptor 4 (TLR4) by targeting the 3'-UTR of TLR4 mRNA. Overexpression of miR-21 led to decreased TLR4 protein expression, and TLR4 knockdown was shown to greatly increase AKT activity in HK-2 cells by in vitro kinase assay. Additionally, TLR4 knockdown promoted AKT phosphorylation and hypoxia-inducible factor-1α (HIF-1α) expression, while TLR4 overexpression inhibited these processes. Furthermore, AKT activation abolished the effect of TLR4 on HIF-1α, while AKT inhibition decreased the expression of TLR4 on HIF-1α in TLR4 knockdown HK-2 cells. Further study revealed that HIF-1α inhibition abolished the protective effect of miR-21 overexpression on ROS, LDH levels and cell apoptosis in HK-2 cells after OGD injury, which is indicated by increased levels of ROS and LDH, as well as increased cell apoptosis after HIF-1α inhibition in miR-21-treated HK-2 cells. In conclusion, miR-21 defends OGD-induced HK-2 cell injury via the TLR4/AKT/HIF-1α axis.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- Division of Nephrology, The 908 Hospital of Joint Logistics Support Force, Nanchang, Jiangxi, 330000, China
| | - Jin-Lei Lv
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Institute of Molecular Immunology of Kidney Disease of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Xin Zou
- Division of Nephrology, The 908 Hospital of Joint Logistics Support Force, Nanchang, Jiangxi, 330000, China
| | - Yan-Yan Yu
- Division of Nephrology, The 908 Hospital of Joint Logistics Support Force, Nanchang, Jiangxi, 330000, China
| | - Hong-Xia Zhou
- Division of Nephrology, The 908 Hospital of Joint Logistics Support Force, Nanchang, Jiangxi, 330000, China
| | - Yu Wu
- Division of Nephrology, The 908 Hospital of Joint Logistics Support Force, Nanchang, Jiangxi, 330000, China
| | - Yan-Qiu Geng
- Division of Nephrology, Third Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Cai-Hua Lie
- Division of Nephrology, General Hospital of Xinjiang Military Region, Urumqi, Xinjiang, 830000, China
| |
Collapse
|
6
|
Zhao L, Tang X, Huang R, Liu Q, Liao L, Hu Y, He K, Zhang X, Guo J, Chen S, Yang S. Acute hypoxia promotes the liver angiogenesis of largemouth bass (Micropterus salmoides) by HIF - Dependent pathway. FISH & SHELLFISH IMMUNOLOGY 2022; 131:264-273. [PMID: 35940542 DOI: 10.1016/j.fsi.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
A 24-h hypoxia exposure experiment was conducted to determine how hypoxia exposure induce liver angiogenesis in largemouth bass. Nitrogen (N2) was pumped into water to exclude dissolved oxygen into 1.2 ± 0.2 mg/L, and liver tissues were sampled during hypoxia exposure of 0 h, 4 h, 8 h, 12 h, 24 h and re-oxygenation for 12 h. Firstly, the results showed that hypoxia exposure promoted the angiogenesis occurrence by immunohistochemical analysis of vascular endothelial growth factor receptor 2 (VEGFR2). Secondly, the concentration of vasodilation factor increased and it's activity was elevated during 8 h exposure, such as nitric oxide (NO) and nitric oxide synthase (NOS) (p < 0.05). Thirdly, hypoxia exposure promoted angiogenesis through up-regulation the expression of matrix metalloproteinase 2 (MMP-2), jagged, protein kinase B (AKT), phosphoinositide-3-kinase (PI3K), mitogen-activated protein kinase (MAPK) at 4 h; contrarily, the expression of inhibiting angiogenesis genes presented up-regulated at 8 h (p < 0.05), such as matrix metalloproteinase inhibitor-2 (TIMP-2), matrix metalloproteinase inhibitor-3 (TIMP-3). Finally, the genes and proteins that regulate angiogenesis presented obvious chronological order. Parts of them promoted the budding and extension of blood vessels were up-regulated during 4 h-8 h (p < 0.05), such as vascular endothelial growth factor a (VEGFA), VEGFR2, monocarboxylic acid transporter 1 (MCT1), CD147, prolyl hydroxylase (PHD), nuclear factor kappa-B (NF-κB); other part of them promoted blood vessel maturation were highly expressed during 12 h-24 h (p < 0.05), such as angiogenin-1 (Ang-1) and angiogenin-2 (Ang-2). In short, acute hypoxia can promote the liver angiogenesis of largemouth bass by HIF - dependent pathway.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Fish Resources and Environment in the Lpper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu, Sichuan, 610011, China.
| | - Rui Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yifan Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xin Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiazhong Guo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shiyi Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
7
|
Larrue R, Fellah S, Van der Hauwaert C, Hennino MF, Perrais M, Lionet A, Glowacki F, Pottier N, Cauffiez C. The Versatile Role of miR-21 in Renal Homeostasis and Diseases. Cells 2022; 11:cells11213525. [PMID: 36359921 PMCID: PMC9657972 DOI: 10.3390/cells11213525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNA species that control gene expression and confer robustness to biological processes. Over the last two decades, their important roles during kidney development, homeostasis and the treatment of diseases have been established, in particular during the onset and progression of various forms of acute and chronic renal disorders. In recent years, miR-21, one of the best-characterized miRNAs to date, has received much attention in renal physiology in particular given its high degree of conservation and expression in kidneys, as well as its potent pathogenic role in various debilitating renal diseases. This review summarizes the current knowledge on miR-21’s involvement in both renal homeostasis and diseases, in particular its double-edged-sword role in acute versus chronic kidney injuries. Finally, we also discuss the potential of miR-21 as a biomarker and therapeutic target in renal diseases.
Collapse
Affiliation(s)
- Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Département de la Recherche en Santé, F-59000 Lille, France
| | | | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Arnaud Lionet
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - François Glowacki
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- CHU Lille, Service de Néphrologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
- Correspondence:
| |
Collapse
|
8
|
Iacobini C, Vitale M, Haxhi J, Pesce C, Pugliese G, Menini S. Mutual Regulation between Redox and Hypoxia-Inducible Factors in Cardiovascular and Renal Complications of Diabetes. Antioxidants (Basel) 2022; 11:2183. [PMID: 36358555 PMCID: PMC9686572 DOI: 10.3390/antiox11112183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Oxidative stress and hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of diabetic cardiovascular and renal diseases. Reactive oxygen species (ROS) mediate physiological and pathophysiological processes, being involved in the modulation of cell signaling, differentiation, and survival, but also in cyto- and genotoxic damage. As master regulators of glycolytic metabolism and oxygen homeostasis, HIFs have been largely studied for their role in cell survival in hypoxic conditions. However, in addition to hypoxia, other stimuli can regulate HIFs stability and transcriptional activity, even in normoxic conditions. Among these, a regulatory role of ROS and their byproducts on HIFs, particularly the HIF-1α isoform, has received growing attention in recent years. On the other hand, HIF-1α and HIF-2α exert mutually antagonistic effects on oxidative damage. In diabetes, redox-mediated HIF-1α deregulation contributes to the onset and progression of cardiovascular and renal complications, and recent findings suggest that deranged HIF signaling induced by hyperglycemia and other cellular stressors associated with metabolic disorders may cause mitochondrial dysfunction, oxidative stress, and inflammation. Understanding the mechanisms of mutual regulation between HIFs and redox factors and the specific contribution of the two main isoforms of HIF-α is fundamental to identify new therapeutic targets for vascular complications of diabetes.
Collapse
Affiliation(s)
- Carla Iacobini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Jonida Haxhi
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Carlo Pesce
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal Infantile Sciences (DINOGMI), Department of Excellence of MIUR, University of Genoa Medical School, 16132 Genoa, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, “La Sapienza” University, 00189 Rome, Italy
| |
Collapse
|
9
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
10
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
11
|
Wang J, Guo X, Jiang R, He J, Zhao T, Peng Y, Zheng Y. Research progress in the prevention and treatment of liver fibrosis in Chinese medicine based on miRNAs molecular regulation of angiogenesis. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022; 4:100151. [DOI: 10.1016/j.prmcm.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
|
12
|
Guo M, Xu J, Zhao S, Shen D, Jiang W, Zhang L, Ding X, Xu X. Suppressing Syndecan-1 Shedding to Protect Against Renal Ischemia/Reperfusion Injury by Maintaining Polarity of Tubular Epithelial Cells. Shock 2022; 57:256-263. [PMID: 34313252 DOI: 10.1097/shk.0000000000001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Syndecan-1 (SDC-1), a type of heparan sulfate proteoglycan on the surface of epithelial cells, is involved in maintaining cell morphology. Loss of cell polarity constitutes the early stage of ischemic acute kidney injury (AKI). This study investigated the role of SDC-1 shedding in I/R-induced AKI and the underlying mechanisms. Levels of the shed SDC-1 in the serum were measured with ELISA 12 and 24 h after reperfusion in renal I/R model mice. Na+/K+-ATPase-α1 expression was evaluated using western blotting in vivo and immunofluorescence in hypoxia/reoxygenation (H/R) cysts. Renal tubular epithelial cell apoptosis was measured using TUNEL in vivo and flow cytometry in vitro. Furthermore, plasma syndecan-1 (pSDC-1) levels were measured in patients at the time of anesthesia resuscitation after cardiac surgery. We found that shed SDC-1 levels increased and Na+/K+-ATPase-α1 expression decreased after H/R in the three-dimensional (3D) tubular model, and this state was exacerbated with extended period of hypoxia. After the inhibition of SDC-1 shedding by GM6001, SDC-1 and Na+/K+-ATPase-α1 expression was restored, while H/R-induced apoptosis was decreased. In vivo, SDC-1 shedding was induced by renal I/R and was accompanied with a loss of renal tubular epithelial cell polarity and increased apoptosis. GM6001 pretreatment protected against I/R injury by alleviating the disruption of cell polarity and apoptosis. pSDC-1 levels were significantly higher in AKI patients than in non-AKI patients. ROC curve showed that the accuracy of pSDC-1 for AKI prediction was 0.769. In conclusion, inhibition of I/R-induced SDC-1 shedding could contribute to renal protection by restoring the loss of cell polarity and alleviating apoptosis in tubular epithelial cells.
Collapse
Affiliation(s)
- Man Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Daoqi Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Wuhua Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| |
Collapse
|
13
|
Li QY, Liu F, Tang X, Fu H, Mao J. Renoprotective Role of Hypoxia-Inducible Factors and the Mechanism. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:44-56. [PMID: 35224006 PMCID: PMC8820168 DOI: 10.1159/000520141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The kidney requires abundant blood supply, and oxygen is transmitted by diffusion through blood vessels. Most physiological metabolism of the kidney depends on oxygen, so it is very sensitive to oxygen. An increasing pool of evidence suggests that hypoxia is involved in almost all acute and chronic kidney diseases (CKDs). Vascular damage, tubular injury, and fibrosis are the main pathologies associated during hypoxia. Hypoxia-inducible factors (HIFs) are the main mediators during hypoxia, but their functions remain controversial. This article reviewed recent studies and described its mechanisms on renoprotection. SUMMARY HIF is degraded rapidly during under normal oxygen. But under hypoxia, HIFs accumulate and many target genes are regulated by HIFs. Homeostasis during injury is maintained through these genes. Pretreatment of HIF can protect the kidney from acute hypoxia and can improve repair, but HIF's role in CKD and in renal tumor is still controversial. Due to its mechanism in kidney disease, many drugs toward HIFs are widely researched, even some of which have been used in clinical or in clinical research. KEY MESSAGES In this review, we described the known physiological mechanisms, target genes, and renal protective roles of HIFs, and we discussed several drugs that are researched due to such renal protective roles.
Collapse
|
14
|
Hu JM, He LJ, Wang PB, Yu Y, Ye YP, Liang L. Antagonist targeting miR‑106b‑5p attenuates acute renal injury by regulating renal function, apoptosis and autophagy via the upregulation of TCF4. Int J Mol Med 2021; 48:169. [PMID: 34278441 PMCID: PMC8285052 DOI: 10.3892/ijmm.2021.5002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Acute renal injury (ARI) is a life‑threatening condition and a main contributor to end‑stage renal disease, which is mainly caused by ischemia‑reperfusion (I/R). miR‑106b‑5p is a kidney function‑related miRNA; however, whether miR‑106b‑5p regulates the progression of ARI remains unclear. The present study thus aimed to examine the effects of miR‑106b‑5p antagonist on the regulation of ARI progression. It was found that miR‑106b‑5p expression was upregulated in the renal tissue of rats with I/R‑induced ARI and in NRK‑52E rat renal proximal tubular epithelial cells subjected to hypoxia‑reoxygenation (H/R). In vitro, H/R induction suppressed the proliferation, and promoted the apoptosis and autophagy of NRK‑52E cells, whereas miR‑106b‑5p antagonist (inhibition of miR‑106b‑5p) promoted the proliferation, and attenuated the apoptosis and autophagy of NRK‑52E cells under the H/R condition. Dual luciferase reporter gene assay validated that transcription factor 4 (TCF4) was a target of miR‑106b‑5p. It was further found that TCF4 overexpression promoted the proliferation, and inhibited the apoptosis and autophagy of NRK‑52E cells subjected to H/R. Moreover, the effects of miR‑106b‑5p antagonist on NRK‑52E cell proliferation, apoptosis and autophagy were mediated through the regulation of TCF4. In vivo, miR‑106b‑5p antagonist reduced the severity of renal injury, decreased cell proliferation in renal tissues and lowered the serum creatinine (Scr) and blood urea nitrogen (BUN) levels in the blood samples from rats with I/R‑induced ARI. On the whole, the findings presented herein demonstrate that miR‑106b‑5p antagonist attenuates ARI by promoting the proliferation, and suppressing the apoptosis and autophagy of renal cells via upregulating TCF4.
Collapse
Affiliation(s)
- Jing-Meng Hu
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li-Jie He
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Peng-Bo Wang
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Yan Yu
- Department of Nephrology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Ya-Ping Ye
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Liang
- Department of Pathology, The Southern Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
15
|
Róka B, Tod P, Kaucsár T, Bukosza ÉN, Vörös I, Varga ZV, Petrovich B, Ágg B, Ferdinandy P, Szénási G, Hamar P. Delayed Contralateral Nephrectomy Halted Post-Ischemic Renal Fibrosis Progression and Inhibited the Ischemia-Induced Fibromir Upregulation in Mice. Biomedicines 2021; 9:biomedicines9070815. [PMID: 34356879 PMCID: PMC8301422 DOI: 10.3390/biomedicines9070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI) and results in predisposition to chronic kidney disease. We demonstrated that delayed contralateral nephrectomy (Nx) greatly improved the function of the IR-injured kidney and decelerated fibrosis progression. Our aim was to identify microRNAs (miRNA/miR) involved in this process. (2) Methods: NMRI mice were subjected to 30 min of renal IR and one week later to Nx/sham surgery. The experiments were conducted for 7-28 days after IR. On day 8, multiplex renal miRNA profiling was performed. Expression of nine miRNAs was determined with qPCR at all time points. Based on the target prediction, plexin-A2 and Cd2AP were measured by Western blot. (3) Results: On day 8 after IR, the expression of 20/1195 miRNAs doubled, and 9/13 selected miRNAs were upregulated at all time points. Nx reduced the expression of several ischemia-induced pro-fibrotic miRNAs (fibromirs), such as miR-142a-duplex, miR-146a-5p, miR-199a-duplex, miR-214-3p and miR-223-3p, in the injured kidneys at various time points. Plexin-A2 was upregulated by IR on day 10, while Cd2AP was unchanged. (4) Conclusion: Nx delayed fibrosis progression and decreased the expression of ischemia-induced fibromirs. The protein expression of plexin-A2 and Cd2AP is mainly regulated by factors other than miRNAs.
Collapse
Affiliation(s)
- Beáta Róka
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Éva Nóra Bukosza
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Petrovich
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-20-825-9751
| |
Collapse
|
16
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Wu J, Zhang F, Zhang J, Sun Z, Wang W. Advances of miRNAs in kidney graft injury. Transplant Rev (Orlando) 2020; 35:100591. [PMID: 33309915 DOI: 10.1016/j.trre.2020.100591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, various types of kidney graft injury after transplantation are still key factors that affect the survival of the kidney graft. Therefore, exploring the underlying mechanisms involved is very important. Current diagnostic measures for kidney graft injury (including needle biopsy, blood creatinine, eGFR, etc.) have many limiting factors such as invasiveness, insufficient sensitivity and specificity, so they cannot provide timely and effective information to clinicians. As for kidney grafts that have occurred injury, the traditional treatment has a little efficacy and many side effects. Therefore, there is an urgent need for developing new biomarkers and targeted treatment for kidney graft injury. Recently, studies have found that miRNAs are involved in the regulation of the progression of kidney graft injury. At the same time, it has high stability in blood, urine, and other body fluids, so it is suggested to have the potential as a biomarker and therapeutic target for kidney graft injury. Here, we reviewed the miRNAs involved in the pathophysiology of kidney graft injury such as ischemia/reperfusion injury, acute rejection, drug-induced nephrotoxicity, chronic allograft dysfunction, BK virus infection, and the latest advances of miRNAs as biomarkers and therapeutic targets of kidney graft injury, then summarized the specific data of miRNAs expression level in kidney graft injury, which aims to provide a reference for subsequent basic research and clinical transformation.
Collapse
Affiliation(s)
- Jiyue Wu
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Feilong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Jiandong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Zejia Sun
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Wei Wang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China.
| |
Collapse
|
18
|
Franco-Acevedo A, Echavarria R, Moreno-Carranza B, Ortiz CI, Garcia D, Gonzalez-Gonzalez R, Bitzer-Quintero OK, Portilla-De Buen E, Melo Z. Opioid Preconditioning Modulates Repair Responses to Prevent Renal Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2020; 13:ph13110387. [PMID: 33202532 PMCID: PMC7696679 DOI: 10.3390/ph13110387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Progression to renal damage by ischemia-reperfusion injury (IRI) is the result of the dysregulation of various tissue damage repair mechanisms. Anesthetic preconditioning with opioids has been shown to be beneficial in myocardial IRI models. Our main objective was to analyze the influence of pharmacological preconditioning with opioids in renal function and expression of molecules involved in tissue repair and angiogenesis. Experimental protocol includes male rats with 45 min ischemia occluding the left renal hilum followed by 24 h of reperfusion with or without 60 min preconditioning with morphine/fentanyl. We analyzed serum creatinine and renal KIM-1 expression. We measured circulating and intrarenal VEGF. Immunohistochemistry for HIF-1 and Cathepsin D (CTD) and real-time PCR for angiogenic genes HIF-1α, VEGF, VEGF Receptor 2 (VEGF-R2), CTD, CD31 and IL-6 were performed. These molecules are considered important effectors of tissue repair responses mediated by the development of new blood vessels. We observed a decrease in acute renal injury mediated by pharmacological preconditioning with opioids. Renal function in opioid preconditioning groups was like in the sham control group. Both anesthetics modulated the expression of HIF-1, VEGF, VEGF-R2 and CD31. Preconditioning negatively regulated CTD. Opioid preconditioning decreased injury through modulation of angiogenic molecule expression. These are factors to consider when establishing strategies in pathophysiological and surgical processes.
Collapse
Affiliation(s)
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
| | | | - Cesar-Ivan Ortiz
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - David Garcia
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Ricardo Gonzalez-Gonzalez
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Oscar-Kurt Bitzer-Quintero
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Eliseo Portilla-De Buen
- Surgical Research Division, Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico; (C.-I.O.); (D.G.); (R.G.-G.); (O.-K.B.-Q.); (E.P.-D.B.)
| | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano de Seguro Social, Guadalajara 44340, Mexico;
- Correspondence: ; Tel.: +52-33-3617-7385
| |
Collapse
|
19
|
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. ACTA ACUST UNITED AC 2020; 5:961-968. [PMID: 33015417 PMCID: PMC7524787 DOI: 10.1016/j.jacbts.2020.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Hypoxia-inducible factor (HIF)-1α and HIF-2α promote cellular adaptation to acute hypoxia, but during prolonged activation, these isoforms exert mutually antagonistic effects on the redox state and on proinflammatory pathways. Sustained HIF-1α signaling can increase oxidative stress, inflammation, and fibrosis, actions that are opposed by HIF-2α. Imbalances in the interplay between HIF-1α and HIF-2α may contribute to the progression of chronic heart failure, atherosclerotic and hypertensive vascular disorders, and chronic kidney disease. These disorders are characterized by activation of HIF-1α and suppression of HIF-2α, which are potentially related to mitochondrial and peroxisomal dysfunction and suppression of the redox sensor, sirtuin-1. Hypoxia mimetics can potentiate HIF-1α and/or HIF-2α; ideally, such agents should act preferentially to promote HIF-2α while exerting little effect on or acting to suppress HIF-1α. Selective activation of HIF-2α can be achieved with drugs that: 1) inhibit isoform-selective prolyl hydroxylases (e.g., cobalt chloride and roxadustat); or 2) promote the actions of the redox sensor, sirtuin-1 (e.g., sodium-glucose cotransporter 2 inhibitors). Selective HIF-2α signaling through sirtuin-1 activation may explain the effect of sodium-glucose cotransporter 2 inhibitors to simultaneously promote erythrocytosis and ameliorate the development of cardiomyopathy and nephropathy.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas.,Imperial College, London, United Kingdom
| |
Collapse
|
20
|
Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int J Mol Sci 2020; 21:ijms21165611. [PMID: 32764403 PMCID: PMC7460602 DOI: 10.3390/ijms21165611] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The correct concentration of oxygen in all tissues is a hallmark of cellular wellness, and the negative regulation of oxygen homeostasis is able to affect the cells and tissues of the whole organism. The cellular response to hypoxia is characterized by the activation of multiple genes involved in many biological processes. Among them, hypoxia-inducible factor (HIF) represents the master regulator of the hypoxia response. The active heterodimeric complex HIF α/β, binding to hypoxia-responsive elements (HREs), determines the induction of at least 100 target genes to restore tissue homeostasis. A growing body of evidence demonstrates that hypoxia signaling can act by generating contrasting responses in cells and tissues. Here, this dual and controversial role of hypoxia and the HIF signaling pathway is discussed, with particular reference to the effects induced on the complex activities of the immune system and on mechanisms determining cell and tissue responses after an injury in both acute and chronic human diseases related to the heart, lung, liver, and kidney.
Collapse
|
21
|
Isenberg JS, Roberts DD. Thrombospondin-1 in maladaptive aging responses: a concept whose time has come. Am J Physiol Cell Physiol 2020; 319:C45-C63. [PMID: 32374675 DOI: 10.1152/ajpcell.00089.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous age-dependent alterations at the molecular, cellular, tissue and organ systems levels underlie the pathophysiology of aging. Herein, the focus is upon the secreted protein thrombospondin-1 (TSP1) as a promoter of aging and age-related diseases. TSP1 has several physiological functions in youth, including promoting neural synapse formation, mediating responses to ischemic and genotoxic stress, minimizing hemorrhage, limiting angiogenesis, and supporting wound healing. These acute functions of TSP1 generally require only transient expression of the protein. However, accumulating basic and clinical data reinforce the view that chronic diseases of aging are associated with accumulation of TSP1 in the extracellular matrix, which is a significant maladaptive contributor to the aging process. Identification of the relevant cell types that chronically produce and respond to TSP1 and the molecular mechanisms that mediate the resulting maladaptive responses could direct the development of therapeutic agents to delay or revert age-associated maladies.
Collapse
Affiliation(s)
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
22
|
Geng X, Song N, Zhao S, Xu J, Liu Y, Fang Y, Liang M, Xu X, Ding X. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI. Cell Death Discov 2020; 6:19. [PMID: 32257391 PMCID: PMC7118150 DOI: 10.1038/s41420-020-0253-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Mounting evidence has indicated that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) played important roles in renal ischemia/reperfusion (I/R) injury. However, the involvement of lncRNA growth arrest specific 5 (GAS5) in acute kidney injury (AKI) remained largely unexplored. This study aimed to determine possible mechanisms of GAS5 in the renal I/R process. We found that GAS5, noticeably upregulated by renal I/R injury, was further suppressed by delayed IPC while knockdown of miR-21 in vivo before IPC could significantly increased the GAS5 levels. Concurrently, TSP-1 was negatively regulated by miR-21 in vivo and vitro. Additionally, Reciprocal repression of GAS5 and miR-21 was identified. Knockdown of miR-21 in H6R0.5 treated HK-2 cells promoted apoptosis. Co-transfection of miR-21 mimic and pcDNA-GAS5 or pcDNA-Vector were performed, results of which showed that inhibition of miR-21 on TSP-1 could be rescued by overexpression of GAS5. This study suggested that GAS5 facilitated apoptosis by competitively sponging miR-21, which negatively regulated TSP-1 in renal I/R injury. This novel regulatory axis could act as a therapeutic target for AKI in the future.
Collapse
Affiliation(s)
- Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Yong Liu
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Mingyu Liang
- Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Shanghai Institute of Kidney and Dialysis; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Medical Center of Kidney Disease, Shanghai, China
| |
Collapse
|
23
|
Ding C, Dou M, Wang Y, Li Y, Wang Y, Zheng J, Li X, Xue W, Ding X, Tian P. miR-124/IRE-1α affects renal ischemia/reperfusion injury by regulating endoplasmic reticulum stress in renal tubular epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2020; 52:160-167. [PMID: 31965139 DOI: 10.1093/abbs/gmz150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
Acute kidney injury (AKI) refers to a clinical syndrome that occurs as a result of a rapid decline in renal function caused by multiple factors. Renal ischemia/reperfusion (I/R) injury is one of the main causes of AKI and has a high incidence and mortality. However, the specific pathogenesis of renal I/R injury is still unclear. In recent years, a major breakthrough has been made in the study of endoplasmic reticulum stress (ERS)-mediated apoptosis in I/R injury. It has been reported that miRNAs play protective roles in ischemic/reperfused organs, but the molecular mechanisms have not been investigated deeply. In this study, the renal I/R mouse model was used to explore the roles of miR-124 in ERS and in renal I/R injury. The western blot results showed that the expression levels of ERS-related proteins IRE-1α, XBP-1, and glucose-regulated protein 78 (GRP78) were significantly increased in the I/R model group when compared with those in the control group. Meanwhile, qPCR results showed that miR-124 expression was decreased in the I/R injury model, and overexpression of miR-124 using miR-124 mimics effectively reduced the expression of ERS-related proteins and alleviated renal I/R injury. In addition, luciferase reporter assay was performed, and the results showed that IRE-1α and miR-124 may have direct interaction. In conclusion, our data indicated that miR-124 was a negative regulator of ERS via binding to IRE-1α, ultimately conferring its protective effect on the kidney, which demonstrates the regulatory mechanism of miR-124 in renal I/R injury and provides new ideas and methods for the prevention and treatment of renal I/R injury.
Collapse
Affiliation(s)
- Chenguang Ding
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Meng Dou
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yuxiang Wang
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yang Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Ying Wang
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiao Li
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaoming Ding
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| | - Puxun Tian
- Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Institute of Organ Transplantation, Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
24
|
Wang Z, Zhang W. The crosstalk between hypoxia-inducible factor-1α and microRNAs in acute kidney injury. Exp Biol Med (Maywood) 2020; 245:427-436. [PMID: 31996035 DOI: 10.1177/1535370220902696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common critical clinical disease that is characterized by a rapid decline in renal function and reduced urine output. Ischemia and hypoxia are dominant pathophysiological changes in AKI that are induced by many factors, and the role of the “master” regulator hypoxia-inducible factor-1α (HIF-1α) is well recognized in AKI-related studies. MicroRNAs have been found to act as critical regulators of AKI pathophysiological process. More studies now have reported mutual interactions between HIF-1α and microRNAs in AKI. Therefore, in this brief review, we look into the mutual regulatory mechanisms between HIF-1α and microRNAs and discuss their function in the process of AKI. Recent studies demonstrated that HIF-1α is involved in the regulation of multiple functional microRNAs in AKI, and in turn, the level of HIF-1α is regulated by specific microRNAs. However, the role of the interactions between HIF-1α and microRNAs in AKI are controversial, and whether interventions targeting relevant mechanisms could achieve clinical benefits is not clear. Much work remains to further explore the value of targeting the HIF-1α-microRNA pathway in AKI treatment. Impact statement At first, we have discussed the role of hypoxia-inducible factor-1α (HIF-1α) and microRNAs in the acute kidney injury (AKI) pathophysiology. Then we have summarized the interactions between HIF-1α and microRNAs reported by AKI-related studies and concluded their regulatory effects in AKI process. Finally, we have made a vision of HIF-1α/microRNAs pathway’s potential as the intervention target in AKI. The mini review provides a systematic understanding of the crosstalk between HIF-1α and microRNAs in AKI and their effects on AKI pathophysiology and treatment.
Collapse
Affiliation(s)
- Zhiyu Wang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wen Zhang
- Division of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
25
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|
26
|
Patton MC, Zubair H, Khan MA, Singh S, Singh AP. Hypoxia alters the release and size distribution of extracellular vesicles in pancreatic cancer cells to support their adaptive survival. J Cell Biochem 2019; 121:828-839. [PMID: 31407387 DOI: 10.1002/jcb.29328] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic tumors are highly desmoplastic and poorly-vascularized, and therefore must develop adaptive mechanisms to sustain their survival under hypoxic condition. Extracellular vesicles (EV) play vital roles in pancreatic tumor pathobiology by facilitating intercellular communication. Here we studied the effect of hypoxia on the release of EVs and examined their role in adaptive survival of pancreatic cancer (PC) cells. Hypoxia promoted the release of EV in PC cell lines, MiaPaCa and AsPC1, wherein former exhibited a far greater induction. Moreover, a time-dependent, measurable and significant increase was recorded for small EV (SEV) in both the cell lines with only minimal induction observed for medium (MEV) and large EVs (LEV). Similarly, noticeable changes in size distribution of SEV were also recorded with a shift toward smaller average size under extreme hypoxia. Thrombospondin (apoptotic bodies marker) was exclusively detected on LEVs, while Arf6 (microvesicles marker) was mostly present on MEV with some expression in LEV as well. However, CD9 and CD63 (exosome markers) were expressed in both SEV and MEVs with a decreased expression recorded under hypoxia. Among all subfractions, SEV was the most bioactive in promoting the survival of hypoxic PC cells and hypoxia-inducible factor-1α stabilization was involved in heightened EV release under hypoxia and for their potency to promote hypoxic cell survival. Altogether, our findings provide a novel mechanism for the adaptive hypoxic survival of PC cells and should serve as the basis for future investigations on broader functional implications of EV.
Collapse
Affiliation(s)
- Mary C Patton
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Haseeb Zubair
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Mohammad Aslam Khan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ajay P Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
27
|
Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate Thrombospondin-1 expression. Clin Sci (Lond) 2019; 133:1629-1644. [PMID: 31315970 DOI: 10.1042/cs20190188] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022]
Abstract
Background: Our previous studies observed that administration of exosomes from endothelial progenitor cells (EPC) facilitated vascular repair in the rat model of balloon injury. However, the molecular events underlying this process remain elusive. Here, we aim to interrogate the key miRNAs within EPC-derived exosomes (EPC-exosomes) responsible for the activation of endothelial cell (EC) repair. Methods: The efficacy of EPC-exosomes in re-endothelialization was examined by Evans Blue dye and histological examination in the rat model of balloon-induced carotid artery injury. The effects of EPC-exosomes on human vascular EC (HUVEC) were also studied by evaluating the effects on growth, migratory and tube formation. To dissect the underlying mechanism, RNA-sequencing assays were performed to determine miRNA abundance in exosomes and mRNA profiles in exosome-treated HUVECs. Meanwhile, in vitro loss of function assays identified an exosomal miRNA and its target gene in EC, which engaged in EPC-exosomes-induced EC repair. Results: Administration of EPC-exosomes potentiated re-endothelialization in the early phase after endothelial damage in the rat carotid artery. The uptake of exogenous EPC-exosomes intensified HUVEC in proliferation rate, migration and tube-forming ability. Integrative analyses of miRNA-mRNA interactions revealed that miR-21-5p was highly enriched in EPC-exosomes and specifically suppressed the expression of an angiogenesis inhibitor Thrombospondin-1 (THBS1) in the recipient EC. The following functional studies demonstrated a fundamental role of miR-21-5p in the pro-angiogenic activities of EPC-exosomes. Conclusions: The present work highlights a critical event for the regulation of EC behavior by EPC-exosomes, which EPC-exosomes may deliver miR-21-5p and inhibit THBS1 expression to promote EC repair.
Collapse
|
28
|
Non-Coding RNAs as New Therapeutic Targets in the Context of Renal Fibrosis. Int J Mol Sci 2019; 20:ijms20081977. [PMID: 31018516 PMCID: PMC6515288 DOI: 10.3390/ijms20081977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fibrosis, or tissue scarring, is defined as the excessive, persistent and destructive accumulation of extracellular matrix components in response to chronic tissue injury. Renal fibrosis represents the final stage of most chronic kidney diseases and contributes to the progressive and irreversible decline in kidney function. Limited therapeutic options are available and the molecular mechanisms governing the renal fibrosis process are complex and remain poorly understood. Recently, the role of non-coding RNAs, and in particular microRNAs (miRNAs), has been described in kidney fibrosis. Seminal studies have highlighted their potential importance as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. This review will summarize recent scientific advances and will discuss potential clinical applications as well as future research directions.
Collapse
|
29
|
Guo C, Dong G, Liang X, Dong Z. Epigenetic regulation in AKI and kidney repair: mechanisms and therapeutic implications. Nat Rev Nephrol 2019; 15:220-239. [PMID: 30651611 PMCID: PMC7866490 DOI: 10.1038/s41581-018-0103-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a major public health concern associated with high morbidity and mortality. Despite decades of research, the pathogenesis of AKI remains incompletely understood and effective therapies are lacking. An increasing body of evidence suggests a role for epigenetic regulation in the process of AKI and kidney repair, involving remarkable changes in histone modifications, DNA methylation and the expression of various non-coding RNAs. For instance, increases in levels of histone acetylation seem to protect kidneys from AKI and promote kidney repair. AKI is also associated with changes in genome-wide and gene-specific DNA methylation; however, the role and regulation of DNA methylation in kidney injury and repair remains largely elusive. MicroRNAs have been studied quite extensively in AKI, and a plethora of specific microRNAs have been implicated in the pathogenesis of AKI. Emerging research suggests potential for microRNAs as novel diagnostic biomarkers of AKI. Further investigation into these epigenetic mechanisms will not only generate novel insights into the mechanisms of AKI and kidney repair but also might lead to new strategies for the diagnosis and therapy of this disease.
Collapse
Affiliation(s)
- Chunyuan Guo
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Xinling Liang
- Division of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Geriatrics Institute, Guangzhou, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
30
|
Geng X, Xu X, Fang Y, Zhao S, Hu J, Xu J, Jia P, Ding X, Teng J. Effect of long non-coding RNA growth arrest-specific 5 on apoptosis in renal ischaemia/reperfusion injury. Nephrology (Carlton) 2019; 24:405-413. [PMID: 30129267 DOI: 10.1111/nep.13476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
AIM Long non-coding RNA (lncRNAs) have been shown to play a critical role in a variety of pathophysiological processes, such as cell proliferation, apoptosis and migration. However, there were few studies addressing the function of lncRNAs in renal ischaemia/reperfusion (I/R) injury. Apoptosis is an important pathogenesis during I/R injury. Here, we identified the effect of hypoxia-responsive lncRNA growth arrest-specific 5 (GAS5) on apoptosis in renal I/R injury. METHODS Ischaemia/reperfusion injury in mice or hypoxia/re-oxygenation (H/R) in human proximal renal tubular epithelial cells (HK-2) was practiced to induce apoptosis. The kidneys and blood were collected at 24 h after reperfusion. The GAS5 messenger RNA (mRNA) expression and apoptosis-related gene mRNA and protein levels, including p53, cellular inhibitor of apoptosis protein 2 (cIAP2) and thrombospondin-1 (TSP-1), were analysed. GAS5 small-interfering RNA was transfected with H/R induced cells. Over-expression of GAS5 was performed by plasmid transfection. RESULTS Apoptotic cells significantly increased in I/R-injured kidneys. GAS5 could be up-regulated in kidneys at 24 h after reperfusion and 3 h after re-oxygenation, combined with increased expression of its downstream apoptosis-related proteins p53 and cIAP2. GAS5 small-interfering RNA treatment down-regulated the mRNA and protein levels of p53 and TSP-1, and attenuated apoptosis induced by H/R in HK-2 cells. Conversely, over-expression of GAS5 up-regulated the mRNA and protein levels of p53 and TSP-1, and promoted apoptosis in HK-2 cells. CONCLUSION Long non-coding RNA GAS5 induced by I/R injury could promote apoptosis in kidney. TSP-1 might be one of the downstream effectors of GAS5, which will be explored in the future.
Collapse
Affiliation(s)
- Xuemei Geng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
- Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
31
|
Hypoxia and Hypoxia-Inducible Factors in Kidney Injury and Repair. Cells 2019; 8:cells8030207. [PMID: 30823476 PMCID: PMC6468851 DOI: 10.3390/cells8030207] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by an abrupt loss of renal function. Accumulating evidence indicates that incomplete or maladaptive repair after AKI can result in kidney fibrosis and the development and progression of chronic kidney disease (CKD). Hypoxia, a condition of insufficient supply of oxygen to cells and tissues, occurs in both acute and chronic kidney diseases under a variety of clinical and experimental conditions. Hypoxia-inducible factors (HIFs) are the "master" transcription factors responsible for gene expression in hypoxia. Recent researches demonstrate that HIFs play an important role in kidney injury and repair by regulating HIF target genes, including microRNAs. However, there are controversies regarding the pathological roles of HIFs in kidney injury and repair. In this review, we describe the regulation, expression, and functions of HIFs, and their target genes and related functions. We also discuss the involvement of HIFs in AKI and kidney repair, presenting HIFs as effective therapeutic targets.
Collapse
|
32
|
Abstract
Developments in organ preservation techniques, novel immunosuppressants and improved diagnostics have made organ transplantation the success it is today. That does not mean that we are not still striving to perfect techniques, or that there are no more problems to solve. New strategies to address the donor organ shortage, prevent and manage antibody-mediated rejection, lower long-term allograft failure rates and reduce the toxicity of lifelong immunosuppressive medication are urgently needed, and are being widely researched. Both fundamental research and preclinical studies aim to solve these problems, and ultimately, benefit organ transplant recipients. This article highlights the latest technical developments and trends in xenotransplantation, tissue injury and regeneration, immunosuppression, and transplantation immunology described in the most viewed and cited articles published in the Basic Sciences section of the Transplantation journal during the year 2017.
Collapse
|
33
|
Brianza-Padilla M, Sánchez-Muñoz F, Vázquez-Palacios G, Huang F, Almanza-Pérez JC, Bojalil R, Bonilla-Jaime H. Cytokine and microRNA levels during different periods of paradoxical sleep deprivation and sleep recovery in rats. PeerJ 2018; 6:e5567. [PMID: 30225174 PMCID: PMC6139242 DOI: 10.7717/peerj.5567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 01/19/2023] Open
Abstract
Background Sleep has a fundamental role in the regulation of homeostasis. The aim of this study was to assess the effect of different periods of paradoxical sleep deprivation (PSD) and recovery on serum levels of cytokines and miRNAs related to inflammatory responses. Methods Male Wistar rats were submitted to a PSD of 24, 96, or 192 h, or of 192 h followed by 20 days of recovery (192 h PSD+R). The concentrations of corticosterone, cytokines (IL-6, TNF, IL-10, Adiponectin) and miRNAs (miR-146a, miR-155, miR-223, miR-16, miR-126, miR-21) in serum were evaluated. Results At PSD 24 h a significant increase of IL-6 and decrease of IL-10 were observed. At PSD 96h adiponectin increased. At 192 h of PSD IL-6 increased significantly again, accompanied by a threefold increase of IL-10 and an increase of serum corticosterone. After 20 days of recovery (192 h PSD+R) corticosterone, IL-6 and TNF levels increased significantly, while IL-10 decreased also significantly. Regarding the miRNAs at 24 h of PSD serum miR-146a, miR-155, miR-223, and miR-16 levels all increased. At 96 h of PSD miR-223 decreased. At 192 h of PSD decreases in miR-16 and miR-126 were observed. After recovery serum miR-21 increased and miR-16 decreased. Conclusion PSD induces a dynamic response likely reflecting the induced cellular stress and manifested as variating hormonal and inflammatory responses. Sleep deprivation disturbed corticosterone, cytokine and miRNA levels in serum related to the duration of sleep deprivation, as short-term PSD produced effects similar to those of an acute inflammatory response and long-term PSD induced long-lasting disturbances of biological mediators.
Collapse
Affiliation(s)
- Malinalli Brianza-Padilla
- Posgrado en Biologia Experimental, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de Mexico, Mexico
| | - Gonzalo Vázquez-Palacios
- Colegio de Ciencias y Humanidades, Universidad Autonoma de la Ciudad de Mexico, Ciudad de Mexico, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Farmacología y Toxicología, Hospital Infantil de Mexico Federico Gomez, Ciudad de Mexico, Mexico
| | - Julio César Almanza-Pérez
- Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| | - Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de Mexico, Mexico.,Departamento de Atención a la Salud, Universidad Autónoma Metropolitana Xochimilco, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biologia de la Reproducción, División de Ciencias Biológicas y de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Ciudad de Mexico, Mexico
| |
Collapse
|
34
|
Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y, Hu J, Jia P, Teng J, Ding X. miR-21 Protects Against Ischemia/Reperfusion-Induced Acute Kidney Injury by Preventing Epithelial Cell Apoptosis and Inhibiting Dendritic Cell Maturation. Front Physiol 2018; 9:790. [PMID: 30013485 PMCID: PMC6036242 DOI: 10.3389/fphys.2018.00790] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/06/2018] [Indexed: 02/02/2023] Open
Abstract
Renal tubular injury and innate immune responses induced by hypoxia contribute to acute kidney injury. Accumulating evidence suggests that miR-21 overexpression protects against kidney ischemia injury. Additionally, miR-21 emerges as a key inhibitor in dendritic cell maturation. Thus, we hypothesized that miR-21 protects the kidney from IR injury by suppressing epithelial cell damage and inflammatory reaction. In this study, we investigated effects of miR-21 and its signaling pathways (PTEN/AKT/mTOR/HIF, PDCD4/NFκ-B) on kidney ischemia/reperfusion (IR) injury in vitro and in vivo. The results revealed that IR increased miR-21, HIF1α, and 2α expression in vivo and in vitro. MiR-21 interacted with HIF1α and 2α through the PTEN/AKT/mTOR pathway. Moreover, inhibition of miR-21 activated PDCD4/NFκ-B pathways, which are critical for dendritic cell maturation. Renal IR triggers local inflammation by inducing the dendritic cell maturation and promoting the secretion of IL-12, IL-6, and TNF-α cytokines. Knockdown of miR-21 intensified the effect of IR on tubular epithelial cell apoptosis and dendritic cell maturation. Our results suggested that IR-inducible miR-21 protects epithelial cells from IR injury via a feedback interaction with HIF (PTEN/AKT/mTOR/HIF/miR-21) and by inhibiting maturation of DCs through the PDCD4/NF-κB pathway. These findings highlight new therapeutic opportunities in AKI.
Collapse
Affiliation(s)
- Nana Song
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ting Zhang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - XiaLian Xu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Zhihui Lu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaofang Yu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Yi Fang
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jiachang Hu
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Ping Jia
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Jie Teng
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital,Fudan University, Shanghai, China.,Shanghai Medical Center of Kidney, Shanghai, China.,Shanghai Institute of Kidney and Dialysis, Shanghai, China.,Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Hemodialysis Quality Control Center of Shanghai, Shanghai, China
| |
Collapse
|
35
|
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem 2018; 82:1366-1376. [PMID: 29658404 DOI: 10.1080/09168451.2018.1459179] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.
Collapse
Affiliation(s)
- Feng Qiu
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China.,b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Huijuan Tong
- c Department of Nursing , Shenyang Medical College , Shenyang , People's Republic of China
| | - Yawen Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Jun Tao
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Hailin Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Lei Chen
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China
| |
Collapse
|
36
|
Lu L, Xu H, Yang P, Xue J, Chen C, Sun Q, Yang Q, Lu J, Shi A, Liu Q. Involvement of HIF-1α-regulated miR-21, acting via the Akt/NF-κB pathway, in malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol Lett 2018; 289:14-21. [PMID: 29501572 DOI: 10.1016/j.toxlet.2018.02.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/21/2018] [Accepted: 02/27/2018] [Indexed: 12/12/2022]
Abstract
Although the relationship between cigarette smoke and lung cancer has been widely studied, the molecular mechanism for cigarette smoke-induced lung cancer remains largely unclear. The present study investigated the roles of hypoxia-inducible factor (HIF)-1α and miR-21 in the malignant transformation of human bronchial epithelial (HBE) cells induced by cigarette smoke extract (CSE). In case of acute and chronic treatment of HBE cells, CSE increased the levels of HIF-1α, p-Akt, p-NF-κB, and miR-21 and decreased PTEN levels. The increased miR-21 levels induced by CSE were prevented by down-regulation of HIF-1α. Further, elevated miR-21 suppressed PTEN levels, which decreased the levels of p-Akt and p-NF-κB. However, those changes were attenuated in cells co-transfected with HIF-1α siRNA and an miR-21 mimic. Silencing of HIF-1α or NF-κB decreased colony formation and the invasion and migration capacities of CSE-transformed HBE cells; however, up-regulation of miR-21 reversed these effects. These results indicate that the oncogenic capacity of HIF-1α in regulation of miR-21-inhibited PTEN in a manner dependent on the Akt/NF-κB pathway, a process that is involved in the CSE-induced malignant transformation of HBE cells. Thus, the present research has established a new mechanism for cigarette smoke-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Lu Lu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hui Xu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Ping Yang
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Chao Chen
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qian Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qianlei Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jiachun Lu
- School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 510182, Guangdong, People's Republic of China
| | - Aimin Shi
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Key Laboratory of the Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Labrousse-Arias D, Martínez-Ruiz A, Calzada MJ. Hypoxia and Redox Signaling on Extracellular Matrix Remodeling: From Mechanisms to Pathological Implications. Antioxid Redox Signal 2017; 27:802-822. [PMID: 28715969 DOI: 10.1089/ars.2017.7275] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. CRITICAL ISSUES Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. FUTURE DIRECTIONS Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Collapse
Affiliation(s)
- David Labrousse-Arias
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Antonio Martínez-Ruiz
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,2 Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV) , Madrid, Spain
| | - María J Calzada
- 1 Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Departmento de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| |
Collapse
|
38
|
Dual Role of MiR-21-Mediated Signaling in HUVECs and Rat Surgical Flap under Normoxia and Hypoxia Condition. Int J Mol Sci 2017; 18:ijms18091917. [PMID: 28880208 PMCID: PMC5618566 DOI: 10.3390/ijms18091917] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/26/2022] Open
Abstract
Restoring sufficient vascularity of the ischemia/hypoxia flap is always the critical issue in flap surgeries. In a previous studies microRNA-21 (miR-21) expression was upregulated after rat skin flap surgery. MiR-21 has been reported to be induced by hypoxia and the function of miR-21 involves in the process of angiogenesis. However, the precise regulatory mechanisms in miR-21-mediated pathways are still unclear. These issues were investigated via in vitro and in vivo experiments in this study. In human umbilical vein endothelial cells (HUVEC), the expression of hsa-miR-21-5p was induced after hypoxic culture and the induction of hsa-miR-21-5p was suppressed after sequential normoxic culture. Moreover, transfection of hsa-miR-21-5p mimic enhanced tube formation capacity in normoxia, but attenuated it in hypoxia. Furthermore, bioinformatic analysis suggested that SMAD7 was a predicted target of hsa-miR-21-5p. Our results demonstrated the effect of hsa-miR-21-5p was different on SMAD7 expression in normoxia and hypoxia. In rat skin flaps, blockage of miR-21-5p significantly increased angiogenesis via analysis of color laser Doppler imaging and repressed SMAD7 expression in ischemic skin tissue. Our study showed the opposite effect of miR-21-5p mediating angiogenesis in normoxia and hypoxia, providing important implications regarding the design of novel miRNA-based therapeutic strategies in flap surgeries.
Collapse
|
39
|
Dai J, Lin Y, Duan Y, Li Z, Zhou D, Chen W, Wang L, Zhang QQ. Andrographolide Inhibits Angiogenesis by Inhibiting the Mir-21-5p/TIMP3 Signaling Pathway. Int J Biol Sci 2017; 13:660-668. [PMID: 28539838 PMCID: PMC5441182 DOI: 10.7150/ijbs.19194] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis provides nutrients and oxygen to promote tumor growth and affords a channel that facilitates tumor cell entry into the circulation. Andrographolide (Andro) possess anti-tumor activity; however, its direct effect on angiogenesis still needs to be clarified. In this study, our experiments revealed that Andro significantly inhibited vascular growth in chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models. Meanwhile, tumor angiogenesis was also suppressed by Andro. Additionally, we found that cell proliferation, migration and tube formation of vascular endothelial cells was inhibited by Andro treatment in vitro. The effect was primarily mediated through inhibition of miR-21-5p expression and further targeting of TIMP3. This work provides evidence that Andro directly inhibits angiogenesis and might be an effective anti-angiogenic therapeutic drug for cancer treatment.
Collapse
Affiliation(s)
- Jianwei Dai
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Yuyin Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Youfa Duan
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zixuan Li
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dalei Zhou
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wensheng Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou 510000, China
| | - Lijing Wang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian-Qian Zhang
- Vascular Biology Research Institute, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|