1
|
Durgam SS, Rosado-Sánchez I, Yin D, Speck M, Mojibian M, Sayin I, Hynes GE, Alegre ML, Levings MK, Chong AS. CAR Treg synergy with anti-CD154 mediates infectious tolerance to dictate heart transplant outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614149. [PMID: 39386649 PMCID: PMC11463638 DOI: 10.1101/2024.09.20.614149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Successful allograft specific tolerance induction would eliminate the need for daily immunosuppression and improve post-transplant quality of life. Adoptive cell therapy with regulatory T cells expressing donor-specific Chimeric Antigen Receptors (CAR-Tregs) is a promising strategy, but as monotherapy, cannot prolong the survival with allografts with multiple MHC mismatches. Using an HLA-A2-transgenic haplo-mismatched heart transplantation model in immunocompetent C57Bl/6 recipients, we show that HLA-A2-specific (A2) CAR Tregs was able to synergize with low dose of anti-CD154 to enhance graft survival. Using haplo-mismatched grafts expressing the 2W-OVA transgene and tetramer-based tracking of 2W- and OVA-specific T cells, we showed that in mice with accepted grafts, A2.CAR Tregs inhibited endogenous non-A2 donor- specific T cell, B cell and antibody responses, and promoted a significant increase in endogenous FoxP3 + Tregs with indirect donor-specificity. By contrast, in mice where A2.CAR Tregs failed to prolong graft survival, FoxP3 neg A2.CAR T cells preferentially accumulated in rejecting allografts and endogenous donor-specific responses were not controlled. This study therefore provides the first evidence for synergy between A2.CAR Tregs and CD154 blockade to promote infectious tolerance in immunocompetent recipients of haplo-mismatched heart grafts and defines features of A2.CAR Tregs when they fail to reshape host immunity towards allograft tolerance.
Collapse
|
2
|
Sasaki K, Kubo M, Wang YC, Lu L, Vujevich V, Wood-Trageser MA, Golnoski K, Lesniak A, Gunabushanam V, Ganoza A, Wijkstrom MJ, Humar A, Demetris AJ, Thomson AW, Ezzelarab MB. Multiple infusions of ex vivo-expanded regulatory T cells promote CD163 + myeloid cells and kidney allograft survival in non-lymphodepleted non-human primates. Kidney Int 2024; 105:84-98. [PMID: 37839695 DOI: 10.1016/j.kint.2023.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Clinical verification of adoptively transferred regulatory T cell (Treg) efficacy in transplantation remains challenging. Here, we examined the influence of autologous ex vivo-expanded polyclonal Tregs on kidney graft survival in a clinically relevant non-human primate model. Peripheral blood Tregs were isolated and expanded using artificial antigen presenting cells. Immunosuppression was comprised of tapered tacrolimus and CTLA4 immunoglobulin, in five animals each without or with Treg infusions. Escalating Treg doses were administered 6, 10, 13, 16, 20, 23, 27 and 30 days after transplant. Infused Tregs were monitored for Treg signature, anti-apoptotic (Bcl-2) and proliferation (Ki67) marker expression. Treg infusions prolonged median graft survival time significantly from 35 to 70 days. Treg marker (Ki67 and Bcl-2) expression by infused Tregs diminished after their infusion but remained comparable to that of circulating native Tregs. No major changes in circulating donor-reactive T cell responses or total Treg percentages, or in graft-infiltrating T cell subsets were observed with Treg infusion. However, Treg infusion was associated with significant increases in CD163 expression by circulating HLA-DR+ myeloid cells and elevated levels of circulating soluble CD163. Further, graft-infiltrating CD163+ cells were increased with Treg infusion. Thus, multiple Treg infusions were associated with M2-like myeloid cell enhancement that may mediate immunomodulatory, anti-inflammatory and graft reparative effects.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masahiko Kubo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yu-Chao Wang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Veronica Vujevich
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michelle A Wood-Trageser
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kayla Golnoski
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Lesniak
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikraman Gunabushanam
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Armando Ganoza
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin J Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abhinav Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J Demetris
- Department of Pathology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Immunology, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mohamed B Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Requejo Cier CJ, Valentini N, Lamarche C. Unlocking the potential of Tregs: innovations in CAR technology. Front Mol Biosci 2023; 10:1267762. [PMID: 37900916 PMCID: PMC10602912 DOI: 10.3389/fmolb.2023.1267762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Regulatory T cells (Tregs) adoptive immunotherapy is emerging as a viable treatment option for both autoimmune and alloimmune diseases. However, numerous challenges remain, including limitations related to cell number, availability of target-specific cells, stability, purity, homing ability, and safety concerns. To address these challenges, cell engineering strategies have emerged as promising solutions. Indeed, it has become feasible to increase Treg numbers or enhance their stability through Foxp3 overexpression, post-translational modifications, or demethylation of the Treg-specific demethylated region (TSDR). Specificity can be engineered by the addition of chimeric antigen receptors (CARs), with new techniques designed to fine-tune specificity (tandem chimeric antigen receptors, universal chimeric antigen receptors, synNotch chimeric antigen receptors). The introduction of B-cell targeting antibody receptor (BAR) Tregs has paved the way for effective regulation of B cells and plasma cells. In addition, other constructs have emerged to enhance Tregs activation and function, such as optimized chimeric antigen receptors constructs and the use of armour proteins. Chimeric antigen receptor expression can also be better regulated to limit tonic signaling. Furthermore, various opportunities exist for enhancing the homing capabilities of CAR-Tregs to improve therapy outcomes. Many of these genetic modifications have already been explored for conventional CAR-T therapy but need to be further considered for CAR-Tregs therapies. This review highlights innovative CAR-engineering strategies that have the potential to precisely and efficiently manage immune responses in autoimmune diseases and improve transplant outcomes. As these strategies are further explored and optimized, CAR-Treg therapies may emerge as powerful tools for immune intervention.
Collapse
Affiliation(s)
- Christopher J. Requejo Cier
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Valentini
- Department of Microbiology, Infectiology and Immunology, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| | - Caroline Lamarche
- Department of Medicine, Hôpital Maisonneuve-Rosemont Research Institute, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Rosado-Sánchez I, Haque M, Salim K, Speck M, Fung VC, Boardman DA, Mojibian M, Raimondi G, Levings MK. Tregs integrate native and CAR-mediated costimulatory signals for control of allograft rejection. JCI Insight 2023; 8:e167215. [PMID: 37669115 PMCID: PMC10619441 DOI: 10.1172/jci.insight.167215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
Tregs expressing chimeric antigen receptors (CAR-Tregs) are a promising tool to promote transplant tolerance. The relationship between CAR structure and Treg function was studied in xenogeneic, immunodeficient mice, revealing advantages of CD28-encoding CARs. However, these models could underrepresent interactions between CAR-Tregs, antigen-presenting cells (APCs), and donor-specific Abs. We generated Tregs expressing HLA-A2-specific CARs with different costimulatory domains and compared their function in vitro and in vivo using an immunocompetent model of transplantation. In vitro, the CD28-encoding CAR had superior antigen-specific suppression, proliferation, and cytokine production. In contrast, in vivo, Tregs expressing CARs encoding CD28, ICOS, programmed cell death 1, and GITR, but not 4-1BB or OX40, all extended skin allograft survival. To reconcile in vitro and in vivo data, we analyzed effects of a CAR encoding CD3ζ but no costimulatory domain. These data revealed that exogenous costimulation from APCs can compensate for the lack of a CAR-encoded CD28 domain. Thus, Tregs expressing a CAR with or without CD28 are functionally equivalent in vivo, mediating similar extension of skin allograft survival and controlling the generation of anti-HLA-A2 alloantibodies. This study reveals a dimension of CAR-Treg biology and has important implications for the design of CARs for clinical use in Tregs.
Collapse
Affiliation(s)
- Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
| | - Manjurul Haque
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vivian C.W. Fung
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A. Boardman
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering and
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Abstract
When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.
Collapse
|
6
|
Kaljanac M, Abken H. Do Treg Speed Up with CARs? Chimeric Antigen Receptor Treg Engineered to Induce Transplant Tolerance. Transplantation 2023; 107:74-85. [PMID: 36226849 PMCID: PMC9746345 DOI: 10.1097/tp.0000000000004316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of regulatory T cells (Treg) can induce transplant tolerance in preclinical models by suppressing alloantigen-directed inflammatory responses; clinical translation was so far hampered by the low abundance of Treg with allo-specificity in the peripheral blood. In this situation, ex vivo engineering of Treg with a T-cell receptor (TCR) or chimeric antigen receptor (CAR) provides a cell population with predefined specificity that can be amplified and administered to the patient. In contrast to TCR-engineered Treg, CAR Treg can be redirected toward a broad panel of targets in an HLA-unrestricted fashion' making these cells attractive to provide antigen-specific tolerance toward the transplanted organ. In preclinical models, CAR Treg accumulate and amplify at the targeted transplant, maintain their differentiated phenotype, and execute immune repression more vigorously than polyclonal Treg. With that, CAR Treg are providing hope in establishing allospecific, localized immune tolerance in the long term' and the first clinical trials administering CAR Treg for the treatment of transplant rejection are initiated. Here, we review the current platforms for developing and manufacturing alloantigen-specific CAR Treg and discuss the therapeutic potential and current hurdles in translating CAR Treg into clinical exploration.
Collapse
Affiliation(s)
- Marcell Kaljanac
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Division Genetic Immunotherapy, and Chair Genetic Immunotherapy, Leibniz Institute for Immunotherapy, University Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Ghobadinezhad F, Ebrahimi N, Mozaffari F, Moradi N, Beiranvand S, Pournazari M, Rezaei-Tazangi F, Khorram R, Afshinpour M, Robino RA, Aref AR, Ferreira LMR. The emerging role of regulatory cell-based therapy in autoimmune disease. Front Immunol 2022; 13:1075813. [PMID: 36591309 PMCID: PMC9795194 DOI: 10.3389/fimmu.2022.1075813] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Autoimmune disease, caused by unwanted immune responses to self-antigens, affects millions of people each year and poses a great social and economic burden to individuals and communities. In the course of autoimmune disorders, including rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, and multiple sclerosis, disturbances in the balance between the immune response against harmful agents and tolerance towards self-antigens lead to an immune response against self-tissues. In recent years, various regulatory immune cells have been identified. Disruptions in the quality, quantity, and function of these cells have been implicated in autoimmune disease development. Therefore, targeting or engineering these cells is a promising therapeutic for different autoimmune diseases. Regulatory T cells, regulatory B cells, regulatory dendritic cells, myeloid suppressor cells, and some subsets of innate lymphoid cells are arising as important players among this class of cells. Here, we review the roles of each suppressive cell type in the immune system during homeostasis and in the development of autoimmunity. Moreover, we discuss the current and future therapeutic potential of each one of these cell types for autoimmune diseases.
Collapse
Affiliation(s)
- Farbod Ghobadinezhad
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran,Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Mozaffari
- Department of Nutrition, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Neda Moradi
- Division of Biotechnology, Department of Cell and Molecular Biology and Microbiology, Nourdanesh Institute of Higher Education, University of Meymeh, Isfahan, Iran
| | - Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Shahrekord, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Roya Khorram
- Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Afshinpour
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, United States
| | - Rob A. Robino
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States,Xsphera Biosciences, Boston, MA, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| | - Leonardo M. R. Ferreira
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States,Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States,*Correspondence: Leonardo M. R. Ferreira, ; Amir Reza Aref,
| |
Collapse
|
8
|
Orozco G, Gupta M, Gedaly R, Marti F. Untangling the Knots of Regulatory T Cell Therapy in Solid Organ Transplantation. Front Immunol 2022; 13:883855. [PMID: 35720387 PMCID: PMC9198594 DOI: 10.3389/fimmu.2022.883855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Numerous preclinical studies have provided solid evidence supporting adoptive transfer of regulatory T cells (Tregs) to induce organ tolerance. As a result, there are 7 currently active Treg cell-based clinical trials in solid organ transplantation worldwide, all of which are early phase I or phase I/II trials. Although the results of these trials are optimistic and support both safety and feasibility, many experimental and clinical unanswered questions are slowing the progression of this new therapeutic alternative. In this review, we bring to the forefront the major challenges that Treg cell transplant investigators are currently facing, including the phenotypic and functional diversity of Treg cells, lineage stability, non-standardized ex vivo Treg cell manufacturing process, adequacy of administration route, inability of monitoring and tracking infused cells, and lack of biomarkers or validated surrogate endpoints of efficacy in clinical trials. With this plethora of interrogation marks, we are at a challenging and exciting crossroad where properly addressing these questions will determine the successful implementation of Treg cell-based immunotherapy in clinical transplantation.
Collapse
Affiliation(s)
- Gabriel Orozco
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Meera Gupta
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, KY, United States.,Alliance Research Initiative [Treg cells to Induce Liver Tolerance (TILT) Alliance], University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, KY, United States.,Alliance Research Initiative [Treg cells to Induce Liver Tolerance (TILT) Alliance], University of Kentucky College of Medicine, Lexington, KY, United States.,Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Department of Surgery - Transplant Division, College of Medicine, University of Kentucky, Lexington, KY, United States.,Alliance Research Initiative [Treg cells to Induce Liver Tolerance (TILT) Alliance], University of Kentucky College of Medicine, Lexington, KY, United States.,Lucille Parker Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, United States
| |
Collapse
|
9
|
Zhu J, Inomata T, Di Zazzo A, Kitazawa K, Okumura Y, Coassin M, Surico PL, Fujio K, Yanagawa A, Miura M, Akasaki Y, Fujimoto K, Nagino K, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Huang T, Shokirova H, Eguchi A, Murakami A. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204667. [PMID: 34682792 PMCID: PMC8537034 DOI: 10.3390/jcm10204667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Corneal transplantation is one of the most successful forms of solid organ transplantation; however, immune rejection is still a major cause of corneal graft failure. Both innate and adaptive immunity play a significant role in allograft tolerance. Therefore, immune cells, cytokines, and signal-transduction pathways are critical therapeutic targets. In this analysis, we aimed to review the current literature on various immunotherapeutic approaches for corneal-allograft rejection using the PubMed, EMBASE, Web of Science, Cochrane, and China National Knowledge Infrastructure. Retrievable data for meta-analysis were screened and assessed. The review, which evaluated multiple immunotherapeutic approaches to prevent corneal allograft rejection, showed extensive involvement of innate and adaptive immunity components. Understanding the contribution of this immune diversity to the ocular surface is critical for ensuring corneal allograft survival.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Ophthalmology, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
- Correspondence: ; Tel.: +81-3-5802-1228
| | - Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 6020841, Japan;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Pier Luigi Surico
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Keiichi Fujimoto
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| |
Collapse
|
10
|
Ezzelarab MB, Zhang H, Sasaki K, Lu L, Zahorchak AF, van der Windt DJ, Dai H, Perez-Gutierrez A, Bhama JK, Thomson AW. Ex Vivo Expanded Donor Alloreactive Regulatory T Cells Lose Immunoregulatory, Proliferation, and Antiapoptotic Markers After Infusion Into ATG-lymphodepleted, Nonhuman Primate Heart Allograft Recipients. Transplantation 2021; 105:1965-1979. [PMID: 33587433 PMCID: PMC8239063 DOI: 10.1097/tp.0000000000003617] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Regulatory T cell (Treg) therapy is a promising approach to amelioration of allograft rejection and promotion of organ transplant tolerance. However, the fate of infused Treg, and how this relates to their therapeutic efficacy using different immunosuppressive regimens is poorly understood. Our aim was to analyze the tissue distribution, persistence, replicative activity and phenotypic stability of autologous, donor antigen alloreactive Treg (darTreg) in anti-thymocyte globulin (ATG)-lymphodepleted, heart-allografted cynomolgus monkeys. METHODS darTreg were expanded ex vivo from flow-sorted, circulating Treg using activated donor B cells and infused posttransplant into recipients of major histocompatibility complex-mismatched heart allografts. Fluorochrome-labeled darTreg were identified and characterized in peripheral blood, lymphoid, and nonlymphoid tissues and the graft by flow cytometric analysis. RESULTS darTreg selectively suppressed autologous T cell responses to donor antigens in vitro. However, following their adoptive transfer after transplantation, graft survival was not prolonged. Early (within 2 wk posttransplant; under ATG, tacrolimus, and anti-IL-6R) or delayed (6-8 wk posttransplant; under rapamycin) darTreg infusion resulted in a rapid decline in transferred darTreg in peripheral blood. Following their early or delayed infusion, labeled cells were evident in lymphoid and nonlymphoid organs and the graft at low percentages (<4% CD4+ T cells). Notably, infused darTreg showed reduced expression of immunoregulatory molecules (Foxp3 and CTLA4), Helios, the proliferative marker Ki67 and antiapoptotic Bcl2, compared with preinfusion darTreg and endogenous CD4+CD25hi Treg. CONCLUSIONS Lack of therapeutic efficacy of infused darTreg in lymphodepleted heart graft recipients appears to reflect loss of a regulatory signature and proliferative and survival capacity shortly after infusion.
Collapse
Affiliation(s)
- Mohamed B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hong Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kazuki Sasaki
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lien Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alan F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dirk J. van der Windt
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Helong Dai
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angelica Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jay K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Angus W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Bu X, Zhong J, Li W, Cai S, Gao Y, Ping B. Immunomodulating functions of human leukocyte antigen-G and its role in graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2021; 100:1391-1400. [PMID: 33709198 PMCID: PMC8116272 DOI: 10.1007/s00277-021-04486-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapeutic strategy to treat several hematological malignancies and non-hematological malignancies. However, graft-versus-host disease (GVHD) is a frequent and serious transplant-related complication which dramatically restrains the curative effect of allo-HSCT and a significant cause of morbidity and mortality in allogeneic HCT recipients. Effective prevention of GVHD mainly depends on the induction of peripheral immune tolerance. Human leukocyte antigen-G (HLA-G) is a non-classical MHC class I molecule with a strong immunosuppressive function, which plays a prominent role in immune tolerance. HLA-G triggers different reactions depending on the activation state of the immune cells and system. It also exerts a long-term immune tolerance mechanism by inducing regulatory cells. In this present review, we demonstrate the immunomodulatory properties of human leukocyte antigen-G and highlight the role of HLA-G as an immune regulator of GVHD. Furthermore, HLA-G could also serve as a good predictor of GVHD and represent a new therapeutic target for GVHD.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| | - Baohong Ping
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
- Department of Huiqiao, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
12
|
Fortunato M, Morali K, Passeri L, Gregori S. Regulatory Cell Therapy in Organ Transplantation: Achievements and Open Questions. Front Immunol 2021; 12:641596. [PMID: 33708227 PMCID: PMC7940680 DOI: 10.3389/fimmu.2021.641596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/04/2021] [Indexed: 12/27/2022] Open
Abstract
The effective development of innovative surgical applications and immunosuppressive agents have improved remarkable advancements in solid organ transplantation. Despite these improvements led to prevent acute rejection and to promote short-term graft survival, the toxicity of long-term immunosuppression regiments has been associated to organ failure or chronic graft rejection. The graft acceptance is determined by the balance between the regulatory and the alloreactive arm of the immune system. Hence, enhance regulatory cells leading to immune tolerance would be the solution to improve long-term allograft survival which, by reducing the overall immunosuppression, will provide transplanted patients with a better quality of life. Regulatory T cells (Tregs), and regulatory myeloid cells (MRCs), including regulatory macrophages and tolerogenic dendritic cells, are promising cell populations for restoring tolerance. Thus, in the last decade efforts have been dedicated to apply regulatory cell-based therapy to improve the successful rate of organ transplantation and to promote allogeneic tolerance. More recently, this approach has been translated into clinical application. The aim of this review is to summarize and discuss results on regulatory cell-based strategies, focusing on Tregs and MRCs, in terms of safety, feasibility, and efficacy in clinical studies of organ transplantation.
Collapse
Affiliation(s)
- Marta Fortunato
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Konstantina Morali
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Laura Passeri
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
13
|
Building a CAR-Treg: Going from the basic to the luxury model. Cell Immunol 2020; 358:104220. [DOI: 10.1016/j.cellimm.2020.104220] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023]
|
14
|
Huang Q, Ma X, Wang Y, Niu Z, Wang R, Yang F, Wu M, Liang G, Rong P, Wang H, Harris DC, Wang W, Cao Q. IL-10 producing type 2 innate lymphoid cells prolong islet allograft survival. EMBO Mol Med 2020; 12:e12305. [PMID: 33034128 PMCID: PMC7645373 DOI: 10.15252/emmm.202012305] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Type 2 innate lymphoid cells (ILC2s) are a subset of ILCs with critical roles in immunoregulation. However, the possible role of ILC2s as immunotherapy against allograft rejection remains unclear. Here, we show that IL‐33 significantly prolonged islet allograft survival. IL‐33‐treated mice had elevated numbers of ILC2s and regulatory T cells (Tregs). Depletion of Tregs partially abolished the protective effect of IL‐33 on allograft survival, and additional ILC2 depletion in Treg‐depleted DEREG mice completely abolished the protective effects of IL‐33, indicating that ILC2s play critical roles in IL‐33‐mediated islet graft protection. Two subsets of ILC2s were identified in islet allografts of IL‐33‐treated mice: IL‐10 producing ILC2s (ILC210) and non‐IL‐10 producing ILC2s (non‐ILC10). Intravenous transfer of ILC210 cells, but not non‐ILC10, prolonged islet allograft survival in an IL‐10‐dependent manner. Locally transferred ILC210 cells led to long‐term islet graft survival, suggesting that ILC210 cells are required within the allograft for maximal suppressive effect and graft protection. This study has uncovered a major protective role of ILC210 in islet transplantation which could be potentiated as a therapeutic strategy.
Collapse
Affiliation(s)
- Qingsong Huang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaoqian Ma
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia.,The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Zhiguo Niu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Ruifeng Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Fuyan Yang
- The Department of Nephrology, First People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Menglin Wu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Guining Liang
- The Department of Physiology, Guangxi Medical University, Nanning, China
| | - Pengfei Rong
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - David Ch Harris
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Cao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China.,Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
15
|
Dawson NAJ, Rosado-Sánchez I, Novakovsky GE, Fung VCW, Huang Q, McIver E, Sun G, Gillies J, Speck M, Orban PC, Mojibian M, Levings MK. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci Transl Med 2020; 12:12/557/eaaz3866. [DOI: 10.1126/scitranslmed.aaz3866] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Antigen-specific regulatory T cells (Tregs) engineered with chimeric antigen receptors (CARs) are a potent immunosuppressive cellular therapy in multiple disease models and could overcome shortcomings of polyclonal Treg therapy. CAR therapy was initially developed with conventional T cells, which have different signaling requirements than do Tregs. To date, most of the CAR Treg studies used second-generation CARs, encoding a CD28 or 4-1BB co-receptor signaling domain and CD3ζ, but it was not known if this CAR design was optimal for Tregs. Using a human leukocyte antigen–A2–specific CAR platform and human Tregs, we compared 10 CARs with different co-receptor signaling domains and systematically tested their function and CAR-stimulated gene expression profile. Tregs expressing a CAR encoding CD28wt were markedly superior to all other CARs tested in an in vivo model of graft-versus-host disease. In vitro assays revealed stable expression of Helios and an ability to suppress CD80 expression on dendritic cells as key in vitro predictors of in vivo function. This comprehensive study of CAR signaling domain variants in Tregs can be leveraged to optimize CAR design for use in antigen-specific Treg therapy.
Collapse
Affiliation(s)
- Nicholas A. J. Dawson
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Isaac Rosado-Sánchez
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - German E. Novakovsky
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Vivian C. W. Fung
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Qing Huang
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Emma McIver
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Grace Sun
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jana Gillies
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Madeleine Speck
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Paul C. Orban
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Majid Mojibian
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Megan K. Levings
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
16
|
The Identity Card of T Cells-Clinical Utility of T-cell Receptor Repertoire Analysis in Transplantation. Transplantation 2020; 103:1544-1555. [PMID: 31033649 DOI: 10.1097/tp.0000000000002776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a clear medical need to change the current strategy of "one-size-fits-all" immunosuppression for controlling transplant rejection to precision medicine and targeted immune intervention. As T cells play a key role in both undesired graft rejection and protection, a better understanding of the fate and function of both alloreactive graft-deteriorating T cells and those protecting to infections is required. The T-cell receptor (TCR) is the individual identity card of each T cell clone and can help to follow single specificities. In this context, tracking of lymphocytes with certain specificity in blood and tissue in clinical follow up is of especial importance. After overcoming technical limitations of the past, novel molecular technologies opened new avenues of diagnostics. Using advantages of next generation sequencing, a method was established for T-cell tracing by detection of variable TCR region as identifiers of individual lymphocyte clones. The current review describes principles of laboratory and computational methods of TCR repertoire analysis, and gives an overview on applications for the basic understanding of transplant biology and immune monitoring. The review also delineates methodological pitfalls and challenges. With the outlook on prediction of antigens in immune-mediated processes including those of unknown causative pathogens, monitoring the fate and function of individual T cell clones, and the adoptive transfer of protective effector or regulatory T cells, this review highlights the current and future capability of TCR repertoire analysis.
Collapse
|
17
|
23rd Nantes Actualités Transplantation: "Genomics and Immunogenetics of Kidney and Inflammatory Diseases-Lessons for Transplantation". Transplantation 2019; 103:857-861. [PMID: 30399125 DOI: 10.1097/tp.0000000000002517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
19
|
Guo H, Xun L, Zhang R, Hu F, Luan J, Lao K, Wang X, Gou X. Stability and inhibitory function of Treg cells under inflammatory conditions in vitro. Exp Ther Med 2019; 18:2443-2450. [PMID: 31555356 PMCID: PMC6755276 DOI: 10.3892/etm.2019.7873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy with transplanted T-regulatory (Treg) cells is currently in use. However, patients have complex internal environments with confounding factors, including the presence of inflammatory cytokines. The present study aimed to detect Treg cell function under simulated inflammatory conditions to provide a foundation for Treg cell-based immunotherapy. CD4+CD25high Treg cells were sorted from peripheral blood mononuclear cells and cultured for 14 days in the presence of recombinant human interleukin-2 (rhIL-2) and anti-CD3/CD28 beads, with or without 25 ng/ml rhIL-6. Next, the absolute count of Treg cells was determined, the stability and activity were detected by measuring the expression levels of forkhead box (Fox)P3 and CD39, and the suppressive function of Treg cells was investigated by assessing the suppression of T-effector cell proliferation by Treg cells after co-culture for 5 days. The number of Treg cells cultured in the presence of 25 ng/ml rhIL-6 for 14 days was reduced by 49.7% when compared with that of cells cultured without rhIL-6. Of the Treg cells continually cultured for 14 days without or with 25 ng/ml rhIL-6, 56.15 and 24.7% expressed FoxP3, respectively. There was no difference in the activity of the FoxP3+ Treg cells after culture for 14 days without or with 25 ng/ml rhIL-6. The suppressive function of Treg cells tended to deteriorate in the presence of rhIL-6. In conclusion, IL-6 inhibited the proliferation and stability of Treg cells, suggesting that administration of increased numbers of Treg cells may be required during Treg cell-based immunotherapy.
Collapse
Affiliation(s)
- Huifang Guo
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Liru Xun
- Nephrology Department of Shaanxi Provincial People's Hospital Affiliated to Xi'an Medical University, Xi'an, Shaanxi 710068, P.R. China
| | - Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Kejing Lao
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xiaolong Wang
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and School of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Adoptive cell therapy using CD4FOXP3 regulatory T cells (Treg) has emerged as a promising therapeutic strategy to treat autoimmunity and alloimmunity. Preclinical studies suggest that the efficacy of Treg therapy can be improved by modifying the antigen specificity, stability and function of therapeutic Tregs. We review recent innovations that considerably enhance the possibilities of controlling these parameters. RECENT FINDINGS Antigen-specific Tregs can be generated by genetically modifying polyclonal Tregs to express designated T-cell receptors or single-chain chimeric antigen receptors. The benefits of this approach can be further extended by using novel strategies to fine-tune the antigen-specificity and affinity of Treg in vivo. CRISPR/Cas 9 technology now enables the modification of therapeutic Tregs so they are safer, more stable and long lived. The differentiation and homing properties of Tregs can also be modulated by gene editing or modifying ex-vivo stimulation conditions. SUMMARY A new wave of innovation has considerably increased the number of strategies that could be used to increase the therapeutic potential of Treg therapy. However, the increased complexity of these approaches may limit their wide accessibility. Third-party therapy with off-the-shelf Treg products could be a solution.
Collapse
|
21
|
Novel molecules mediate specialized functions of human regulatory macrophages. Curr Opin Organ Transplant 2019; 23:533-537. [PMID: 30059361 DOI: 10.1097/mot.0000000000000560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Now that adoptive transfer of regulatory macrophages (Mregs) is clinically practicable, we ask whether this approach could be used to achieve self-sustaining peripheral regulation and what mechanisms may be involved. RECENT FINDINGS Dehydrogenase/reductase 9 (DHRS9)-expressing Mregs are a specialized subset of monocyte-derived macrophages that are currently being investigated as a tolerogenic cell-based therapy. Human Mregs are defined by their capacity to convert naïve CD4 T cells to IL-10-secreting FoxP3 regulatory T cells (Tregs) through an activation-dependent process involving signals mediated by TGF-β, retinoic acid, indoleamine 2,3-dioxygenase activity, notch and progestagen associated endometrial protein (PAEP). Mreg-induced iTregs (miTregs) are a phenotypically distinct type of in-vitro-derived human iTreg that expresses butyrophilin-like protein 8 (BTNL8) and T cell immunoreceptor with Ig and ITIM domains (TIGIT). miTregs are nonspecifically suppressive of mitogen-stimulated bystander T cell proliferation and inhibit TNFα-induced maturation of monocyte-derived dendritic cells. Preclinical and clinical studies find that intravenous infusion of allogeneic Mregs leads to enrichment of circulating TIGIT Tregs. SUMMARY These results suggest a feed-forward mechanism by which Mreg treatment could promote solid organ transplant acceptance through rapid induction of direct pathway Tregs.
Collapse
|
22
|
mTOR Inhibitor Everolimus in Regulatory T Cell Expansion for Clinical Application in Transplantation. Transplantation 2019; 103:705-715. [PMID: 30451741 DOI: 10.1097/tp.0000000000002495] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Experimental and preclinical evidence suggest that adoptive transfer of regulatory T (Treg) cells could be an appropriate therapeutic strategy to induce tolerance and improve graft survival in transplanted patients. The University of Kentucky Transplant Service Line is developing a novel phase I/II clinical trial with ex vivo expanded autologous Treg cells as an adoptive cellular therapy in renal transplant recipients who are using everolimus (EVR)-based immunosuppressive regimen. METHODS The aim of this study was to determine the mechanisms of action and efficacy of EVR for the development of functionally competent Treg cell-based adoptive immunotherapy in transplantation to integrate a common EVR-based regimen in vivo (in the patient) and ex vivo (in the expansion of autologous Treg cells). CD25 Treg cells were selected from leukapheresis product with a GMP-compliant cell separation system and placed in 5-day (short) or 21-day (long) culture with EVR or rapamycin (RAPA). Multi-parametric flow cytometry analyses were used to monitor the expansion rates, phenotype, autophagic flux, and suppressor function of the cells. phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway profiles of treated cells were analyzed by Western blot and cell bioenergetic parameters by extracellular flux analysis. RESULTS EVR-treated cells showed temporary slower growth, lower metabolic rates, and reduced phosphorylation of protein kinase B compared with RAPA-treated cells. In spite of these differences, the expansion rates, phenotype, and suppressor function of long-term Treg cells in culture with EVR were similar to those with RAPA. CONCLUSIONS Our results support the feasibility of EVR to expand functionally competent Treg cells for their clinical use.
Collapse
|
23
|
Abstract
BACKGROUND Regulatory T (Treg) cell-based immunotherapies have been studied as potential cell-based modalities for promoting transplant survival. However, the efficacy of local delivery of Treg cells in corneal transplantation has not been fully elucidated. Herein, we investigated the kinetics of migration of subconjunctivally injected Treg cells and their role in promoting corneal allograft survival. METHODS GFPCD4CD25Foxp3 Treg cells were isolated from draining lymph nodes (DLNs) of GFP transgenic mice and were subconjunctivally injected to corneal allograft recipients. Next, Treg cells, conventional T cells (Tconv) or a combination of both was locally injected to graft recipients, and graft survival was determined by evaluating opacity scores for 10 weeks. Transplanted mice without treatment served as controls. The frequencies of major histocompatibility complex-IICD11b antigen-presenting cells, IFNγCD4 Th1 cells, and CD45 cells in the DLNs and cornea were evaluated at week 2 posttransplantation using flow cytometry. Expressions of IFNγ, IL-10 and TGF-β in the grafts were assessed using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS GFP Treg cells were detected in the ipsilateral cornea and DLNs of recipients 6 hours after injection. Subconjunctival injection of Treg cells significantly decreased the frequencies of mature antigen-presenting cells in the graft and DLNs, suppressed Th1 frequencies in DLNs, and inhibited CD45 cell infiltration to the graft. Finally, locally delivered Treg cells significantly reduced the expression of IFN-γ, enhanced the levels of IL-10 and TGF-β in the graft, and promoted long-term allograft survival. CONCLUSIONS Our study elucidates the kinetics of migration of locally delivered Treg cells and shows their role in suppressing host immune response against the allograft.
Collapse
|
24
|
MacDonald KN, Piret JM, Levings MK. Methods to manufacture regulatory T cells for cell therapy. Clin Exp Immunol 2019; 197:52-63. [PMID: 30913302 DOI: 10.1111/cei.13297] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Regulatory T cell (Treg ) therapy has shown promise in early clinical trials for treating graft-versus-host disease, transplant rejection and autoimmune disorders. A challenge has been to isolate sufficiently pure Tregs and expand them to a clinical dose. However, there has been considerable progress in the development and optimization of these methods, resulting in a variety of manufacturing protocols being tested in clinical trials. In this review, we summarize methods that have been used to manufacture Tregs for clinical trials, including the choice of cell source and protocols for cell isolation and expansion. We also discuss alternative culture or genome editing methods for modulating Treg specificity, function or stability that could be applied to future clinical manufacturing protocols to increase the efficacy of Treg therapy.
Collapse
Affiliation(s)
- K N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - J M Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
| | - M K Levings
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Garnier AS, Planchais M, Riou J, Jacquemin C, Ordonez L, Saint-André JP, Croue A, Saoudi A, Delneste Y, Devys A, Boutin I, Subra JF, Duveau A, Augusto JF. Pre-transplant CD45RC expression on blood T cells differentiates patients with cancer and rejection after kidney transplantation. PLoS One 2019; 14:e0214321. [PMID: 30925186 PMCID: PMC6440623 DOI: 10.1371/journal.pone.0214321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/11/2019] [Indexed: 01/11/2023] Open
Abstract
Background Biological biomarkers to stratify cancer risk before kidney transplantation are lacking. Several data support that tumor development and growth is associated with a tolerant immune profile. T cells expressing low levels of CD45RC preferentially secrete regulatory cytokines and contain regulatory T cell subset. In contrast, T cells expressing high levels of CD45RC have been shown to secrete proinflammatory cytokines, to drive alloreactivity and to predict acute rejection (AR) in kidney transplant patients. In the present work, we evaluated whether pre-transplant CD45RClow T cell subset was predictive of post-transplant cancer occurrence. Methods We performed an observational cohort study of 89 consecutive first time kidney transplant patients whose CD45RC T cell expression was determined by flow cytometry before transplantation. Post-transplant events including cancer, AR, and death were assessed retrospectively. Results After a mean follow-up of 11.1±4.1 years, cancer occurred in 25 patients (28.1%) and was associated with a decreased pre-transplant proportion of CD4+CD45RChigh T cells, with a frequency below 51.9% conferring a 3.7-fold increased risk of post-transplant malignancy (HR 3.71 [1.24–11.1], p = 0.019). The sensibility, specificity, negative predictive and positive predictive values of CD4+CD45RChigh<51.9% were 84.0, 54.7, 89.8 and 42.0% respectively. Confirming our previous results, frequency of CD8+CD45RChigh T cells above 52.1% was associated with AR, conferring a 20-fold increased risk (HR 21.7 [2.67–176.2], p = 0.0004). The sensibility, specificity, negative predictive and positive predictive values of CD8+CD45RChigh>52.1% were 94.5, 68.0, 34.7 and 98.6% respectively. Frequency of CD4+CD45RChigh T cells was positively correlated with those of CD8+CD45RChigh (p<0.0001), suggesting that recipients with high AR risk display a low cancer risk. Conclusion High frequency of CD45RChigh T cells was associated with AR, while low frequency was associated with cancer. Thus, CD45RC expression on T cells appears as a double-edged sword biomarker of promising interest to assess both cancer and AR risk before kidney transplantation.
Collapse
Affiliation(s)
- Anne-Sophie Garnier
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Martin Planchais
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Jérémie Riou
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IBS- CHU, Angers, France
| | - Clément Jacquemin
- INSERM U1035, BMGIC, Immuno-dermatology ATIP-AVENIR, University of Bordeaux, Bordeaux, France
| | - Laurence Ordonez
- Université de Toulouse, Centre de physiopathologie de Toulouse Purpan, Toulouse, France
| | - Jean-Paul Saint-André
- LUNAM Université, Angers, France
- CHU Angers, Laboratoire d’anatomopathologie, Angers, France
| | - Anne Croue
- CHU Angers, Laboratoire d’anatomopathologie, Angers, France
| | - Abdelhadi Saoudi
- Université de Toulouse, Centre de physiopathologie de Toulouse Purpan, Toulouse, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Anne Devys
- Laboratoire HLA, Etablissement Français du Sang Pays de Loire, Angers, France
| | - Isabelle Boutin
- Centre de Sante, Etablissement Français du Sang Pays de Loire, Angers, France
| | - Jean-François Subra
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
| | - Agnès Duveau
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
| | - Jean-François Augusto
- LUNAM Université, Angers, France
- CHU Angers, Service de Néphrologie-Dialyse-Transplantation, Angers, France
- CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France
- LabEx IGO “Immunotherapy, Graft, Oncology”, Angers, France
- * E-mail:
| |
Collapse
|
26
|
Dawson NA, Lamarche C, Hoeppli RE, Bergqvist P, Fung VC, McIver E, Huang Q, Gillies J, Speck M, Orban PC, Bush JW, Mojibian M, Levings MK. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019; 4:123672. [PMID: 30753169 DOI: 10.1172/jci.insight.123672] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chimeric antigen receptor (CAR) technology can be used to engineer the antigen specificity of regulatory T cells (Tregs) and improve their potency as an adoptive cell therapy in multiple disease models. As synthetic receptors, CARs carry the risk of immunogenicity, particularly when derived from nonhuman antibodies. Using an HLA-A*02:01-specific CAR (A2-CAR) encoding a single-chain variable fragment (Fv) derived from a mouse antibody, we developed a panel of 20 humanized A2-CARs (hA2-CARs). Systematic testing demonstrated variations in expression, and ability to bind HLA-A*02:01 and stimulate human Treg suppression in vitro. In addition, we developed a new method to comprehensively map the alloantigen specificity of CARs, revealing that humanization reduced HLA-A cross-reactivity. In vivo bioluminescence imaging showed rapid trafficking and persistence of hA2-CAR Tregs in A2-expressing allografts, with eventual migration to draining lymph nodes. Adoptive transfer of hA2-CAR Tregs suppressed HLA-A2+ cell-mediated xenogeneic graft-versus-host disease and diminished rejection of human HLA-A2+ skin allografts. These data provide a platform for systematic development and specificity testing of humanized alloantigen-specific CARs that can be used to engineer specificity and homing of therapeutic Tregs.
Collapse
Affiliation(s)
- Nicholas Aj Dawson
- Department of Medicine and.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Caroline Lamarche
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Romy E Hoeppli
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Peter Bergqvist
- Centre for Drug and Research and Development, Vancouver, British Columbia, Canada
| | - Vivian Cw Fung
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Emma McIver
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Qing Huang
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jana Gillies
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Madeleine Speck
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Paul C Orban
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Jonathan W Bush
- BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine and
| | - Majid Mojibian
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia (UBC), Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute (BCCHR), Vancouver, British Columbia, Canada.,School of Biomedical Engineering, UBC, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Lam AJ, MacDonald KN, Pesenacker AM, Juvet SC, Morishita KA, Bressler B, Pan JG, Sidhu SS, Rioux JD, Levings MK. Innate Control of Tissue-Reparative Human Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 202:2195-2209. [PMID: 30850479 DOI: 10.4049/jimmunol.1801330] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022]
Abstract
Regulatory T cell (Treg) therapy is a potential curative approach for a variety of immune-mediated conditions, including autoimmunity and transplantation, in which there is pathological tissue damage. In mice, IL-33R (ST2)-expressing Tregs mediate tissue repair by producing the growth factor amphiregulin, but whether similar tissue-reparative Tregs exist in humans remains unclear. We show that human Tregs in blood and multiple tissue types produced amphiregulin, but this was neither a unique feature of Tregs nor selectively upregulated in tissues. Human Tregs in blood, tonsil, synovial fluid, colon, and lung tissues did not express ST2, so ST2+ Tregs were engineered via lentiviral-mediated overexpression, and their therapeutic potential for cell therapy was examined. Engineered ST2+ Tregs exhibited TCR-independent, IL-33-stimulated amphiregulin expression and a heightened ability to induce M2-like macrophages. The finding that amphiregulin-producing Tregs have a noneffector phenotype and are progressively lost upon TCR-induced proliferation and differentiation suggests that the tissue repair capacity of human Tregs may be an innate function that operates independently from their classical suppressive function.
Collapse
Affiliation(s)
- Avery J Lam
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Katherine N MacDonald
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Anne M Pesenacker
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada.,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Stephen C Juvet
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Kimberly A Morishita
- BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,Division of Rheumatology, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Brian Bressler
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada
| | | | - James G Pan
- Toronto Recombinant Antibody Centre, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Sachdev S Sidhu
- Toronto Recombinant Antibody Centre, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - John D Rioux
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada; and.,Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada; .,BC Children's Hospital Research Institute, Vancouver, British Columbia V5Z 4H4, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW The application of regulatory T cell (Treg) therapy in organ transplantation is actively being pursued using unmodified, typically polyclonal cells. As the results of these ongoing clinical trials emerge, it is time to plan the next wave of clinical trials of Tregs. Here we will review a key strategy to improve Treg effectiveness and reduce side effects, namely increasing Treg specificity - both in terms of antigen recognition and localization to the allograft. RECENT FINDINGS Study of chemokine signatures accompanying acute rejection has revealed several chemokines that could be targeted to increase Treg homing. For example, Tregs possessing a Th1-like phenotype and expressing CXCR3 are better able to migrate towards local inflammation. Allografts themselves can be modified to increase Treg-attracting chemokines and Tregs themselves can produce chemokines, facilitating local proximity to their targets of suppression. Finally, tailoring Treg antigen specificity by T-cell or chimeric antigen receptor engineering is another approach to increase the specificity of suppression and optimize localization. SUMMARY Treg localization to the graft is important, but the important role of lymph node and germinal center homing cannot be overlooked. There is an opportunity to learn from advances made in cancer immunotherapy to optimize Treg therapy for transplantation.
Collapse
|
29
|
Transient increase of activated regulatory T cells early after kidney transplantation. Sci Rep 2019; 9:1021. [PMID: 30705299 PMCID: PMC6355855 DOI: 10.1038/s41598-018-37218-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/29/2018] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) are crucial in controlling allospecific immune responses. However, studies in human kidney recipients regarding the contribution of polyspecific Tregs have provided differing results and studies on alloreactive Tregs are missing completely. In this retrospective study, we specifically analyzed activated CD4+CD25highFOXP3+GARP+ Tregs in 17 patients of a living donor kidney transplantation cohort longitudinally over 24 months by flow cytometry (FOXP3: forkhead box protein 3, GARP: glycoprotein A repetitions predominant). We could demonstrate that Tregs of patients with end-stage renal disease (ESRD) are already pre-activated when compared to healthy controls. Furthermore, even though total CD4+CD25highFOXP3+ Treg numbers decreased in the first three months after transplantation, frequency of activated Tregs increased significantly representing up to 40% of all peripheral Tregs. In a cohort of living donor kidney transplantation recipients with stable graft function, frequencies of activated Tregs did not correlate with the occurrence of acute cellular rejection or chronic graft dysfunction. Our results will be important for clinical trials using adoptive Treg therapy after kidney transplantation. Adoptively transferred Tregs could be important to compensate the Treg loss at month 3, while they have to compete within the Treg niche with a large number of activated Tregs.
Collapse
|
30
|
Abstract
Developments in organ preservation techniques, novel immunosuppressants and improved diagnostics have made organ transplantation the success it is today. That does not mean that we are not still striving to perfect techniques, or that there are no more problems to solve. New strategies to address the donor organ shortage, prevent and manage antibody-mediated rejection, lower long-term allograft failure rates and reduce the toxicity of lifelong immunosuppressive medication are urgently needed, and are being widely researched. Both fundamental research and preclinical studies aim to solve these problems, and ultimately, benefit organ transplant recipients. This article highlights the latest technical developments and trends in xenotransplantation, tissue injury and regeneration, immunosuppression, and transplantation immunology described in the most viewed and cited articles published in the Basic Sciences section of the Transplantation journal during the year 2017.
Collapse
|
31
|
Hoeppli RE, MacDonald KN, Leclair P, Fung VCW, Mojibian M, Gillies J, Rahavi SMR, Campbell AIM, Gandhi SK, Pesenacker AM, Reid G, Lim CJ, Levings MK. Tailoring the homing capacity of human Tregs for directed migration to sites of Th1-inflammation or intestinal regions. Am J Transplant 2019; 19:62-76. [PMID: 29766641 DOI: 10.1111/ajt.14936] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 04/17/2018] [Accepted: 05/06/2018] [Indexed: 01/25/2023]
Abstract
Cell-based therapy with CD4+ FOXP3+ regulatory T cells (Tregs) is a promising strategy to limit organ rejection and graft-vs-host disease. Ongoing clinical applications have yet to consider how human Tregs could be modified to direct their migration to specific inflammation sites and/or tissues for more targeted immunosuppression. We show here that stable, homing-receptor-tailored human Tregs can be generated from thymic Tregs isolated from pediatric thymus or adult blood. To direct migration to Th1-inflammatory sites, addition of interferon-γ and IL-12 during Treg expansion produced suppressive, epigenetically stable CXCR3+ TBET+ FOXP3+ T helper (Th)1-Tregs. CXCR3 remained expressed after injection in vivo and Th1-Tregs migrated efficiently towards CXCL10 in vitro. To induce tissue-specific migration, addition of retinoic acid (RA) during Treg expansion induced expression of the gut-homing receptors α4β7-integrin and CCR9. FOXP3+ RA-Tregs had elevated expression of the functional markers latency-associated peptide and glycoprotein A repetitions predominant, increased suppressive capacity in vitro and migrated efficiently to healthy and inflamed intestine after injection into mice. Homing-receptor-tailored Tregs were epigenetically stable even after long-term exposure to inflammatory conditions, suppressive in vivo and characterized by Th1- or gut-homing-specific transcriptomes. Tailoring human thymic Treg homing during in vitro expansion offers a new and clinically applicable approach to improving the potency and specificity of Treg therapy.
Collapse
Affiliation(s)
- R E Hoeppli
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - K N MacDonald
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - P Leclair
- Department of Pediatrics, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - V C W Fung
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - M Mojibian
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - J Gillies
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - S M R Rahavi
- Department of Pediatrics, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - A I M Campbell
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - S K Gandhi
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - A M Pesenacker
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - G Reid
- Department of Pediatrics, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - C J Lim
- Department of Pediatrics, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - M K Levings
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
|
33
|
Martin-Moreno PL, Tripathi S, Chandraker A. Regulatory T Cells and Kidney Transplantation. Clin J Am Soc Nephrol 2018; 13:1760-1764. [PMID: 29789350 PMCID: PMC6237070 DOI: 10.2215/cjn.01750218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ability of the immune system to differentiate self from nonself is critical in determining the immune response to antigens expressed on transplanted tissue. Even with conventional immunosuppression, acceptance of the allograft is an active process often determined by the presence of regulatory T cells (Tregs). Tregs classically are CD4+ cells that constitutively express high levels of the IL-2 receptor α chain CD25, along with the transcription factor Foxp3. The use of Tregs in the field of solid organ transplantation is related specifically to the objective of achieving tolerance, with the goal of reducing or eliminating immunosuppressive drugs as well as maintaining tissue repair and managing acute rejection. A key issue in clinical use of Tregs is how to effectively expand the number of Tregs, either through increasing numbers of endogenous Tregs or by the direct infusion of exogenously expanded Tregs. In order to realize the benefits of Treg therapy in solid organ transplantation, a number of outstanding challenges need to be overcome, including assuring an effective expansion of Tregs, improving long-term Treg stability and reduction of risk-related to off-target, nonspecific, immunosuppressive effects related specially to cancer.
Collapse
Affiliation(s)
- Paloma Leticia Martin-Moreno
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
- Nephrology Department, Clinica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sudipta Tripathi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
34
|
Dawson NAJ, Vent-Schmidt J, Levings MK. Engineered Tolerance: Tailoring Development, Function, and Antigen-Specificity of Regulatory T Cells. Front Immunol 2017; 8:1460. [PMID: 29163527 PMCID: PMC5675854 DOI: 10.3389/fimmu.2017.01460] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Regulatory T cells (Tregs) are potent suppressors of immune responses and are currently being clinically tested for their potential to stop or control undesired immune responses in autoimmunity, hematopoietic stem cell transplantation, and solid organ transplantation. Current clinical approaches aim to boost Tregs in vivo either by using Treg-promoting small molecules/proteins and/or by adoptive transfer of expanded Tregs. However, the applicability of Treg-based immunotherapies continues to be hindered by technical limitations related to cell isolation and expansion of a pure, well-characterized, and targeted Treg product. Efforts to overcome these limitations and improve Treg-directed therapies are now under intense investigation in animal models and pre-clinical studies. Here, we review cell and protein engineering-based approaches that aim to target different aspects of Treg biology including modulation of IL-2 signaling or FOXP3 expression, and targeted antigen-specificity using transgenic T cell receptors or chimeric antigen receptors. With the world-wide interest in engineered T cell therapy, these exciting new approaches have the potential to be rapidly implemented and developed into therapies that can effectively fine-tune immune tolerance.
Collapse
Affiliation(s)
- Nicholas A J Dawson
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jens Vent-Schmidt
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|