1
|
Zhao X, Li Y, Wu S, Wang Y, Liu B, Zhou H, Li F. Role of extracellular vesicles in pathogenesis and therapy of renal ischemia-reperfusion injury. Biomed Pharmacother 2023; 165:115229. [PMID: 37506581 DOI: 10.1016/j.biopha.2023.115229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
Renal ischemia-reperfusion injury (RIRI) is a complex disorder characterized by both intrinsic damage to renal tubular epithelial cells and extrinsic inflammation mediated by cytokines and immune cells. Unfortunately, there is no cure for this devastating condition. Extracellular vesicles (EVs) are nanosized membrane-bound vesicles secreted by various cell types that can transfer bioactive molecules to target cells and modulate their function. EVs have emerged as promising candidates for cell-free therapy of RIRI, owing to their ability to cross biological barriers and deliver protective signals to injured renal cells. In this review, we provide an overview of EVs, focusing on their functional role in RIRI and the signaling messengers responsible for EV-mediated crosstalk between various cell types in renal tissue. We also discuss the renoprotective role of EVs and their use as therapeutic agents for RIRI, highlighting the advantages and challenges encountered in the therapeutic application of EVs in renal disease.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yunkuo Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Shouwang Wu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Renaud-Picard B, Koutsokera A, Cabanero M, Martinu T. Acute Rejection in the Modern Lung Transplant Era. Semin Respir Crit Care Med 2021; 42:411-427. [PMID: 34030203 DOI: 10.1055/s-0041-1729542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acute cellular rejection (ACR) remains a common complication after lung transplantation. Mortality directly related to ACR is low and most patients respond to first-line immunosuppressive treatment. However, a subset of patients may develop refractory or recurrent ACR leading to an accelerated lung function decline and ultimately chronic lung allograft dysfunction. Infectious complications associated with the intensification of immunosuppression can also negatively impact long-term survival. In this review, we summarize the most recent evidence on the mechanisms, risk factors, diagnosis, treatment, and prognosis of ACR. We specifically focus on novel, promising biomarkers which are under investigation for their potential to improve the diagnostic performance of transbronchial biopsies. Finally, for each topic, we highlight current gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Benjamin Renaud-Picard
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| | - Angela Koutsokera
- Division of Pulmonology, Lung Transplant Program, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Cabanero
- Department of Pathology, Toronto General Hospital, University Health Network, Toronto, Canada
| | - Tereza Martinu
- Division of Respirology and Toronto Lung Transplant Program, University of Toronto and University Health Network, Toronto, Canada
| |
Collapse
|
3
|
Jackson AM, Glass C. Rejection in the setting of non-HLA antibody: New tools for navigating bench to bedside. Am J Transplant 2020; 20:2639-2641. [PMID: 32372531 DOI: 10.1111/ajt.15975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Carolyn Glass
- Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Sharma M, Ravichandran R, Perincheri S, Danziger-Isakov L, Heeger PS, Sweet SC, Mohanakumar T. Distinct molecular and immunological properties of circulating exosomes isolated from pediatric lung transplant recipients with bronchiolitis obliterans syndrome - a retrospective study. Transpl Int 2020; 33:1491-1502. [PMID: 33448479 DOI: 10.1111/tri.13720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
Long-term success following human lung transplantation is poor due to chronic rejection. We demonstrated circulating exosomes of lung origin during acute and chronic lung allograft rejection. We analyzed plasma from pediatric lung transplant recipients (LTxRs) enrolled in the CTOT-C-03 to determine whether circulating exosomes are released into circulation during bronchiolitis obliterans syndrome (BOS). Plasma exosomes were isolated, and human leukocyte antigens (HLA) were detected. Exosomes were analyzed for lung self-antigens (SAgs), co-stimulatory molecules transcription factors, major histocompatibility complex class II (MHC-II), adhesion molecules, and 20S proteasome. Mice were immunized with exosomes from BOS or stable to determine their immunogenicity. Circulating exosomes from BOS LTxRs contained increased levels of SAgs, donor HLA class I, MHC-II, transcription factors, co-stimulatory molecules, and 20S proteasome compared with stable. Serial analysis of exosomes containing SAgs demonstrated that exosomes are detectable in the circulation before BOS. Mice immunized with exosomes from BOS, or stable, demonstrated that exosomes from BOS are distinct in inducing both humoral and cellular immune responses to SAgs. Circulating exosomes from BOS LTxRs elicit distinct humoral and cellular response. In addition, detection of SAgs on circulatory exosomes 12 months before diagnosis of BOS suggest that exosomes could serve as biomarker.
Collapse
Affiliation(s)
- Monal Sharma
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Sudhir Perincheri
- Department of Pathology, Yale School of Pathology, New Haven, CT, USA
| | | | - Peter S Heeger
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Stuart C Sweet
- Washington University Medical School, St. Louis, MO, USA
| | | |
Collapse
|
5
|
Moore C, Gao B, Roskin KM, Vasilescu ERM, Addonizio L, Givertz MM, Madsen JC, Zorn E. B cell clonal expansion within immune infiltrates in human cardiac allograft vasculopathy. Am J Transplant 2020; 20:1431-1438. [PMID: 31811777 PMCID: PMC7238293 DOI: 10.1111/ajt.15737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is associated with intragraft B cell infiltrates. Here, we studied the clonal composition of B cell infiltrates using 4 graft specimens with CAV. Using deep sequencing, we analyzed the immunoglobulin heavy chain variable region repertoire in both graft and blood. Results showed robust B cell clonal expansion in the graft but not in the blood for all cases. Several expanded B cell clones, characterized by their uniquely rearranged complementarity-determining region 3, were detected in different locations in the graft. Sequences from intragraft B cells also showed elevated levels of mutated rearrangements in the graft compared to blood B cells. The number of somatic mutations per rearrangement was also higher in the graft than in the blood, suggesting that B cells continued maturing in situ. Overall, our studies demonstrated B cell clonal expansion in human cardiac allografts with CAV. This local B cell response may contribute to the pathophysiology of CAV through a mechanism that needs to be identified.
Collapse
Affiliation(s)
- Carolina Moore
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Baoshan Gao
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Transplant Center, The First Hospital of Jilin University, Changchun, China
| | - Krishna M. Roskin
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio
| | | | - Linda Addonizio
- Division of Cardiothoracic Surgery, Department of Surgery, Columbia University Medical Center, New York, New York
| | - Michael M. Givertz
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joren C. Madsen
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emmanuel Zorn
- Center for Transplantation Science, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts,Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| |
Collapse
|
6
|
Kawashima M, Juvet SC. The role of innate immunity in the long-term outcome of lung transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:412. [PMID: 32355856 PMCID: PMC7186608 DOI: 10.21037/atm.2020.03.20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Long-term survival after lung transplantation remains suboptimal due to chronic lung allograft dysfunction (CLAD), a progressive scarring process affecting the graft. Although anti-donor alloimmunity is central to the pathogenesis of CLAD, its underlying mechanisms are not fully elucidated and it is neither preventable nor treatable using currently available immunosuppression. Recent evidence has shown that innate immune stimuli are fundamental to the development of CLAD. Here, we examine long-standing assumptions and new concepts linking innate immune activation to late lung allograft fibrosis.
Collapse
Affiliation(s)
- Mitsuaki Kawashima
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Stephen C Juvet
- Latner Thoracic Research Laboratories, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
8
|
|
9
|
Snell G, Hiho S, Levvey B, Sullivan L, Westall G. Consequences of donor-derived passengers (pathogens, cells, biological molecules and proteins) on clinical outcomes. J Heart Lung Transplant 2019; 38:902-906. [PMID: 31307786 DOI: 10.1016/j.healun.2019.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/12/2022] Open
Abstract
It is recognized that donor factors contribute to lung transplant outcomes. Recent observations and studies have started to elucidate potential mechanisms behind explaining these observations. This perspective piece summarizes evolving lung transplant literature on the subject, focusing on donor "passenger" organisms, cells, hormones, and proteins transferred to the recipient. Many extrinsic and intrinsic donor features or properties have important consequences for subsequent allograft function in the recipient. Potentially, a better understanding of these features may provide useful novel therapeutic targets to enhance allograft outcomes.
Collapse
Affiliation(s)
- Gregory Snell
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia.
| | - Steven Hiho
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Bronwyn Levvey
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| | - Lucy Sullivan
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Glen Westall
- Lung Transplant Service, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Kummrow M, Hiho S, Hudson F, Cantwell L, Mulley WR, D'Orsogna L, Testro A, Pavlovic J, MacDonald P, Sullivan LC, Snell GI, Westall GP. Transfer of donor anti-HLA antibody expression to multiple transplant recipients: A potential variant of the passenger lymphocyte syndrome? Am J Transplant 2019; 19:1577-1581. [PMID: 30653828 DOI: 10.1111/ajt.15262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/26/2018] [Accepted: 01/06/2019] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection, whereby transplant recipient B cells and/or plasma cells produce alloreactive anti-human leukocyte antigen (HLA) antibodies, negatively influences transplant outcomes and is a major contributor to graft loss. An early humoral immune response is suggested by the production of anti-HLA donor-specific antibodies (DSA) that can be measured using solid phase assays. We report the early posttransplant coexistence of a shared anti-HLA antibody profile in 5 solid organ transplant recipients who received organs from the same donor. Retrospective analysis of the donor's serum confirmed the presence of the same anti-HLA profile, suggesting the transfer of donor-derived anti-HLA antibodies, or the cells that produce them, to multiple solid organ transplant recipients. The time frame and extent of transfer suggest a novel variant of the passenger lymphocyte syndrome. These findings have important implications for the consideration of all posttransplant antibody measurements, particularly the interpretation of non-DSAs in the sera of transplant recipients.
Collapse
Affiliation(s)
- Megan Kummrow
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Steven Hiho
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia.,Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Fiona Hudson
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - Linda Cantwell
- Victorian Transplantation and Immunogenetics Service, Australian Red Cross Blood Service, Melbourne, Victoria, Australia
| | - William R Mulley
- Department of Nephrology, Monash Medical Centre, Clayton, Victoria, Australia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
| | - Julie Pavlovic
- Liver Transplant Unit, Austin Hospital, Melbourne, Victoria, Australia
| | - Peter MacDonald
- Heart Transplant Service, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Lucy C Sullivan
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Gregory I Snell
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| | - Glen P Westall
- Lung Transplant Service, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Sensitization to endothelial cell antigens: Unraveling the cause or effect paradox. Hum Immunol 2019; 80:614-620. [PMID: 31054781 DOI: 10.1016/j.humimm.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
Abstract
Anti-endothelial cell antibodies (AECAs) have been correlated with increased acute and chronic rejection across all organ types and early graft dysfunction in kidney and heart transplantation. Nevertheless, the lack of appropriate tools and clear criteria for defining injurious versus non-injurious AECAs prohibits their routine inclusion in clinical risk assessments and diagnostic algorithms for antibody mediated injury. Clinical characterization of AECAs is complicated due to the wide range of polymorphic and non-polymorphic antigens expressed across different vascular tissues and the diverse array of specificities observed between individuals. This complexity is also reflected in the broad spectrum of reported injury phenotypes. AECAs detected at time of allograft dysfunction may represent biomarkers of past vascular injury or active contributors to a current rejection process. New tools within the fields of proteomics, genomics, bioinformatics, and imaging are currently being validated and hold great promise for unraveling the AECA paradox.
Collapse
|
12
|
Ravichandran R, Bansal S, Rahman M, Sharma M, Liu W, Bharat A, Hachem R, Omar A, Smith MA, Mohanakumar T. The role of donor-derived exosomes in lung allograft rejection. Hum Immunol 2019; 80:588-594. [PMID: 30898684 DOI: 10.1016/j.humimm.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 12/20/2022]
Abstract
Lung transplant recipients (LTxRs) with acute or chronic rejection release circulating exosomes that mostly originate from donor lung tissue and express mismatched human leucocyte antigens (HLA) and lung-associated self-antigens (SAgs), Collagen-V and K alpha 1 Tubulin. During lung transplant (LTx), donor lungs often undergo injuries that increase the antigenicity of the transplanted organ. 30% of LTxRs also have pre-transplant antibodies (Abs) to HLA and lung SAgs, which may induce conditions that increase the risk of chronic lung allograft dysfunction (CLAD). Post-transplant, some recipients experience de novo development of Abs to mismatched donor HLA (donor-specific antibody [DSA]) and Abs to lung SAgs, which have been implicated in CLAD pathogenesis. Because most LTxRs who develop DSA also develop Abs to SAgs, some have suggested a synergistic relationship between alloimmunity and autoimmunity in CLAD immunopathogenesis. These processes likely occur from stress-induced exosome release. Exosomes carry allo-antigens, lung SAgs, several micro RNAs, proteasome, co-stimulatory molecules, and pro-inflammatory transcription factors-resulting in efficient antigen presentation by direct, semidirect, and indirect pathways, leading to immune responses to both allo-antigens and lung-associated SAgs. This review summarizes recent findings on the role of exosomes, and processes triggering immune responses to allo-antigens and lung SAgs that ultimately culminate in CLAD.
Collapse
Affiliation(s)
| | - Sandhya Bansal
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mohammad Rahman
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Monal Sharma
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Wei Liu
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Ankit Bharat
- Department of Surgery, Northwestern Feinberg School of Medicine, Chicago, IL, United States
| | - Ramsey Hachem
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashraf Omar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael A Smith
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.
| |
Collapse
|
13
|
Arterbery AS, Yao J, Ling A, Avitzur Y, Martinez M, Lobritto S, Deng Y, Geliang G, Mehta S, Wang G, Knight J, Ekong UD. Inflammasome Priming Mediated via Toll-Like Receptors 2 and 4, Induces Th1-Like Regulatory T Cells in De Novo Autoimmune Hepatitis. Front Immunol 2018; 9:1612. [PMID: 30072988 PMCID: PMC6060440 DOI: 10.3389/fimmu.2018.01612] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022] Open
Abstract
De novo autoimmune hepatitis (DAIH) is an important cause of late allograft dysfunction following liver transplantation, but its cause and underlying pathogenesis remains unclear. We sought to identify specific innate and adaptive immune mechanisms driving the pro-inflammatory cytokine secreting regulatory T cell (Treg) phenotype in DAIH and determine if modulation of these pathways could resolve the inflammatory milieu observed in the livers of patients with DAIH. Here, we demonstrate toll-like receptors (TLRs) 2- and 4-mediated inflammasome activation in CD14++ monocytes, a finding that is key to maintaining dysfunctional Tregs in patients with DAIH. Furthermore, silencing of TLR 2 and 4 in CD14++ monocytes prevented activation of the inflammasome and significantly decreased IFN-γ production by FOXP3+ Tregs. We also observed significantly increase in expression of tumor necrosis factor α-induced protein 3 (TNFAIP3), a negative regulator of the NLRP3 Inflammasome, in monocytes/macrophages of liver transplant subjects who have normal allograft function and do not have DAIH. TNFAIP3 expression was virtually absent in monocytes/macrophages of patients with DAIH. Our findings suggest that autoimmunity in DAIH is promoted by CD14++ monocytes predominantly through activation of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Adam S. Arterbery
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, United States
| | - Jie Yao
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, United States
| | - Andrew Ling
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, United States
| | - Yaron Avitzur
- Gastroenterology, Hepatology, and Nutrition, Hospital for Sick Children, Toronto, ON, Canada
| | - Mercedes Martinez
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, United States
| | - Steven Lobritto
- Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University, New York, NY, United States
| | - Yanhong Deng
- Yale Center for Analytical Sciences, New Haven, CT, United States
| | - Gan Geliang
- Yale Center for Analytical Sciences, New Haven, CT, United States
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, United States
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, United States
| | - James Knight
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT, United States
| | - Udeme D. Ekong
- Pediatric Gastroenterology and Hepatology, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
New Answers to Old Conundrums: What Antibodies, Exosomes and Inflammasomes Bring to the Conversation. Canadian National Transplant Research Program International Summit Report: Erratum. Transplantation 2018; 102:e360. [PMID: 29952929 DOI: 10.1097/tp.0000000000002298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|