1
|
Li DS, Burke TM, Smith JM, Reed RC, Okamura DM, Menon S. Use of the Seraph® 100 Microbind® Affinity Blood Filter in an adolescent patient with disseminated adenoviral disease. Pediatr Nephrol 2024; 39:331-335. [PMID: 37505308 DOI: 10.1007/s00467-023-06097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The Seraph® 100 Microbind® Affinity Blood Filter (Seraph® 100) is an adjunctive pathogen adsorption device with emergency use authorization for use with extracorporeal therapies to treat COVID-19 infection. CASE Here, we describe the use of Seraph® 100 in a 17-year-old chronically immunosuppressed patient status post deceased donor kidney transplant who presented initially for hematuria, dysuria, and fevers, and was found to have disseminated adenovirus (ADV) infection complicated by nephritis, viral pneumonia, elevated transaminases, and bone marrow suppression. Despite halting immunosuppression for 2 weeks, she remained febrile to 40.2 °C, with serum ADV counts > 10 million copies/mL (> log 7). Due to concerns about nephrotoxicity from cidofovir treatment, she underwent 2 intermittent treatments with Seraph® 100 to reduce viral load. Fever curve, blood counts, and transaminases stabilized in the days following treatment, and the patient was able to resume her prior immunosuppression regimen without a rebound in viral counts. CONCLUSIONS This adolescent kidney transplant patient with disseminated ADV infection tolerated in-line treatment with Seraph® 100 without major clinical adverse events related to the adsorber, and had resolution of her ADV infection and good clinical recovery.
Collapse
Affiliation(s)
- David S Li
- University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas M Burke
- Seattle Children's Hospital, Seattle, WA, USA
- Division of Child Neurology, Department of Neurology, University of Washington, Seattle, WA, USA
| | - Jodi M Smith
- University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of Washington, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98103, USA
| | - Robyn C Reed
- Seattle Children's Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Daryl M Okamura
- University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children's Hospital, Seattle, WA, USA
- Division of Pediatric Nephrology, Department of Pediatrics, University of Washington, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98103, USA
| | - Shina Menon
- University of Washington School of Medicine, Seattle, WA, USA.
- Seattle Children's Hospital, Seattle, WA, USA.
- Division of Pediatric Nephrology, Department of Pediatrics, University of Washington, Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, 98103, USA.
| |
Collapse
|
2
|
Dulek DE. Update on Epidemiology and Outcomes of Infection in Pediatric Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:561-575. [PMID: 37532391 DOI: 10.1016/j.idc.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Pediatric solid organ transplant (SOT) recipients are at risk for infection following transplantation. Data from adult SOT recipients are often used to guide prevention and treatment of infections associated with organ transplantation in children. This article highlights key recent pediatric SOT-specific publications for an array of infectious complications of organ transplantation. Attention is given to areas of need for future study.
Collapse
Affiliation(s)
- Daniel E Dulek
- Vanderbilt University Medical Center, Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, TN, USA.
| |
Collapse
|
3
|
Lynch JP, Kajon AE. Adenovirus: Epidemiology, Global Spread of Novel Types, and Approach to Treatment. Semin Respir Crit Care Med 2021; 42:800-821. [PMID: 34918322 DOI: 10.1055/s-0041-1733802] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adenoviruses (AdVs) are DNA viruses that typically cause mild infections involving the upper or lower respiratory tract, gastrointestinal tract, or conjunctiva. Rare manifestations of AdV infections include hemorrhagic cystitis, hepatitis, hemorrhagic colitis, pancreatitis, nephritis, or meningoencephalitis. AdV infections are more common in young children, due to lack of humoral immunity. Epidemics of AdV infection may occur in healthy children or adults in closed or crowded settings (particularly military recruits). The vast majority of cases are self-limited. However, the clinical spectrum is broad and fatalities may occur. Dissemination is more likely in patients with impaired immunity (e.g., organ transplant recipients, human immunodeficiency virus infection). Fatality rates for untreated severe AdV pneumonia or disseminated disease may exceed 50%. More than 100 genotypes and 52 serotypes of AdV have been identified and classified into seven species designated HAdV-A through -G. Different types display different tissue tropisms that correlate with clinical manifestations of infection. The predominant types circulating at a given time differ among countries or regions, and change over time. Transmission of novel strains between countries or across continents and replacement of dominant viruses by new strains may occur. Treatment of AdV infections is controversial, as prospective, randomized therapeutic trials have not been done. Cidofovir has been the drug of choice for severe AdV infections, but not all patients require treatment. Live oral vaccines are highly efficacious in reducing the risk of respiratory AdV infection and are in routine use in the military in the United States but currently are not available to civilians.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Adriana E Kajon
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, New Mexico
| |
Collapse
|
4
|
Virus-specific T cells in pediatric renal transplantation. Pediatr Nephrol 2021; 36:789-796. [PMID: 32221706 PMCID: PMC7910244 DOI: 10.1007/s00467-020-04522-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
After pediatric kidney transplantation, immunosuppressive therapy causes an increased risk of severe viral complications, especially from cytomegalovirus (CMV), BK polyomavirus (BKPyV) or Epstein-Barr virus (EBV), and less frequent from adenovirus (ADV). However, suitable predictive markers for the individual outcome of viral infections are missing and the therapeutic management remains a challenge to the success of pediatric kidney transplantation. Virus-specific T cells are known for controlling viral replication and there is growing evidence that virus-specific T cells may serve as a prognostic marker to identify patients at risk for viral complications. This review provides an overview of the usability of virus-specific T cells for improving diagnostic and therapeutic management of viral infections with reference to the necessity of antiviral prophylaxis, timing of pre-emptive therapy, and dosing of immunosuppressive medication after pediatric kidney transplantation. Several studies demonstrated that high levels of virus-specific T cells are associated with decrease of virus load and favorable outcome, whereas lack of virus-specific T cells coincided with virus-induced complications. Accordingly, the additional monitoring of virus-specific T cells aims to personalize the management of antiviral therapy, identify overimmunosuppression, and avoid unnecessary therapeutic interventions. Prospective randomized trials in pediatric kidney recipients comparing standard antiviral and immunosuppressive regimens with T cell-guided therapeutic interventions are needed, before monitoring of virus-specific T cells is implemented in the routine care of pediatric kidney graft recipients.
Collapse
|
5
|
Londeree J, Winterberg PD, Garro R, George RP, Shin S, Liverman R, Serluco A, Romero R, Yildirim I. Brincidofovir for the treatment of human adenovirus infection in pediatric solid organ transplant recipients: A case series. Pediatr Transplant 2020; 24:e13769. [PMID: 32558134 DOI: 10.1111/petr.13769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
HAdV viremia can cause significant morbidity among pediatric recipients of SOT with variability in incidence and severity of disease based on the type of allograft. Currently, there are no US FDA-approved treatments for HAdV infections, and historically, the mainstay of treatment has been decreasing immunosuppression, with antiviral therapies reserved for those with severe disease. We describe the treatment of four pediatric SOT recipients (two kidney, one combined kidney-liver, and one liver) presenting with HAdV disease at our institution using brincidofovir. Our case series highlights the variability in presentation and the potential for severe disease in pediatric SOT recipients as we review disease presentation, disease course, complications, and treatment with brincidofovir.
Collapse
Affiliation(s)
- Jackson Londeree
- Division of Nephrology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Pamela D Winterberg
- Division of Nephrology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Rouba Garro
- Division of Nephrology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Roshan P George
- Division of Nephrology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Stella Shin
- Division of Nephrology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | | | | | - Rene Romero
- Division of Hepatology and Gastroenterology, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - Inci Yildirim
- Division of Infectious Diseases, Department of Pediatrics, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia.,Department of Epidemiology, Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
6
|
Beyond Cytomegalovirus and Epstein-Barr Virus: a Review of Viruses Composing the Blood Virome of Solid Organ Transplant and Hematopoietic Stem Cell Transplant Recipients. Clin Microbiol Rev 2020; 33:33/4/e00027-20. [PMID: 32847820 DOI: 10.1128/cmr.00027-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Viral primary infections and reactivations are common complications in patients after solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) and are associated with high morbidity and mortality. Among these patients, viral infections are frequently associated with viremia. Beyond the usual well-known viruses that are part of the routine clinical management of transplant recipients, numerous other viral signatures or genomes can be identified in the blood of these patients. The identification of novel viral species and variants by metagenomic next-generation sequencing has opened up a new field of investigation and new paradigms. Thus, there is a need to thoroughly describe the state of knowledge in this field with a review of all viral infections that should be scrutinized in high-risk populations. Here, we review the eukaryotic DNA and RNA viruses identified in blood, plasma, or serum samples of pediatric and adult SOT/HSCT recipients and the prevalence of their detection, with a particular focus on recently identified viruses and those for which their potential association with disease remains to be investigated, such as members of the Polyomaviridae, Anelloviridae, Flaviviridae, and Astroviridae families. Current knowledge of the clinical significance of these viral infections with associated viremia among transplant recipients is also discussed. To ensure a comprehensive description in these two populations, individuals described as healthy (mostly blood donors) are considered for comparative purposes. The list of viruses that should be on the clinicians' radar is certainly incomplete and will expand, but the challenge is to identify those of possible clinical significance.
Collapse
|
7
|
Approach to infection and disease due to adenoviruses in solid organ transplantation. Curr Opin Infect Dis 2020; 32:300-306. [PMID: 31116132 DOI: 10.1097/qco.0000000000000558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Adenoviruses are an important cause of morbidity and mortality of solid organ transplant patients and remain a clinical challenge with regard to diagnosis and treatment. In this review, we provide an approach to identification and classification of adenovirus infection and disease, highlight risk factors, and outline management options for adenovirus disease in solid organ transplant patients. RECENT FINDINGS Additional clinical data and pathologic findings of adenovirus disease in different organs and transplant recipients are known. Unlike hematopoietic cell transplant recipients, adenovirus blood PCR surveillance and preemptive therapy is not supported in solid organ transplantation. Strategies for management of adenovirus disease continue to evolve with newer antivirals, such as brincidofovir and adjunctive immunotherapies, but more studies are needed to support their use. SUMMARY Distinguishing between adenovirus infection and disease is an important aspect in adenovirus management as treatment is warranted only in symptomatic solid organ transplant patients. Supportive care and decreasing immunosuppression remain the mainstays of management. Cidofovir remains the antiviral of choice for severe or disseminated disease. Given its significant nephrotoxic effect, administration of probenecid and isotonic saline precidofovir and postcidofovir infusion is recommended.
Collapse
|
8
|
Ison MG, Hirsch HH. Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs. Clin Microbiol Rev 2019; 32:e00042-19. [PMID: 31511250 PMCID: PMC7399564 DOI: 10.1128/cmr.00042-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainfluenzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Michael G Ison
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Lion T. Adenovirus persistence, reactivation, and clinical management. FEBS Lett 2019; 593:3571-3582. [PMID: 31411731 DOI: 10.1002/1873-3468.13576] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Adenoviral infections continue posing a major threat in severely immunocompromised patients including particularly allogeneic stem cell transplant recipients. Although exogenous infections occur in some instances, the majority of invasive events appear to arise from viral reactivation. In the pediatric setting, adenoviruses were demonstrated to persist in the gastrointestinal tract, and the intestinal epithelium serves as the main site of viral replication preceding invasive infection. Regular monitoring of serial stool samples for the presence and load of adenoviruses has therefore become a routine diagnostic tool for post-transplant patient surveillance, and can serve as a trigger for early initiation of treatment. In the adult setting, the source of infection or reactivation is less clear, and monitoring of peripheral blood specimens is the predominant approach for patient surveillance. Timely initiation of antiviral treatment is reportedly required for prevention or successful control of disseminated disease mediated by adenoviruses, and appropriate diagnostic monitoring is therefore of paramount importance. Currently available antiviral agents and immune therapeutic approaches have not been able to entirely overcome the life-threatening courses of invasive adenoviral infections in the immunocompromised clinical setting.
Collapse
Affiliation(s)
- Thomas Lion
- St.Anna Children's Cancer Research Institute (CCRI), Department of Pediatrics, Medical University of Vienna, Austria
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Respiratory viruses are common in solid organ transplant (SOT) recipients and recognized as a significant cause of mortality and morbidity. This review examines the literature on influenza and noninfluenza viruses in the SOT recipient. RECENT FINDINGS Advances in immunosuppression and antimicrobial prophylaxis have led to improved patient and graft survival, yet respiratory viruses continue to be a common cause of disease in this population. Influenza viruses have received top priority regarding prevention and treatment, whereas advances in molecular diagnostic tests detecting an array of other respiratory viruses have expanded our knowledge about the epidemiology and impact of these viruses in both the general population and SOT patients. Effective treatment and prevention for noninfluenza respiratory viruses are only emerging. SUMMARY Respiratory viruses can contribute to a wide array of symptoms in SOT, particularly in lung transplant recipients. The clinical manifestations, diagnosis, and treatment options for influenza and noninfluenza viruses in SOT patients are reviewed. PCR and related molecular techniques represent the most sensitive diagnostic modalities for detection of respiratory viruses. Early therapy is associated with improved outcomes. Newer classes of antivirals and antibodies are under continuous development for many of these community acquired respiratory viruses.
Collapse
Affiliation(s)
- Hannah H Nam
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|