1
|
Qu K, Yan F, Qin X, Zhang K, He W, Dong M, Wu G. Mitochondrial dysfunction in vascular endothelial cells and its role in atherosclerosis. Front Physiol 2022; 13:1084604. [PMID: 36605901 PMCID: PMC9807884 DOI: 10.3389/fphys.2022.1084604] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The mitochondria are essential organelles that generate large amounts of ATP via the electron transport chain (ECT). Mitochondrial dysfunction causes reactive oxygen species accumulation, energy stress, and cell death. Endothelial mitochondrial dysfunction is an important factor causing abnormal function of the endothelium, which plays a central role during atherosclerosis development. Atherosclerosis-related risk factors, including high glucose levels, hypertension, ischemia, hypoxia, and diabetes, promote mitochondrial dysfunction in endothelial cells. This review summarizes the physiological and pathophysiological roles of endothelial mitochondria in endothelial function and atherosclerosis.
Collapse
Affiliation(s)
- Kai Qu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Fang Yan
- Department of Geriatrics, Geriatric Diseases Institute of Chengdu, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Xian Qin
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Kun Zhang
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,College of Bioengineering Chongqing University, Chongqing, China
| | - Wen He
- Department of Geriatrics, Clinical trial center, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Mingqing Dong
- Center for Medicine Research and Translation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| | - Guicheng Wu
- Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, China,*Correspondence: Mingqing Dong, ; Guicheng Wu,
| |
Collapse
|
2
|
He J, Khan UZ, Qing L, Wu P, Tang J. Improving the ischemia-reperfusion injury in vascularized composite allotransplantation: Clinical experience and experimental implications. Front Immunol 2022; 13:998952. [PMID: 36189311 PMCID: PMC9523406 DOI: 10.3389/fimmu.2022.998952] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Long-time ischemia worsening transplant outcomes in vascularized composite allotransplantation (VCA) is often neglected. Ischemia-reperfusion injury (IRI) is an inevitable event that follows reperfusion after a period of cold static storage. The pathophysiological mechanism activates local inflammation, which is a barrier to allograft long-term immune tolerance. The previous publications have not clearly described the relationship between the tissue damage and ischemia time, nor the rejection grade. In this review, we found that the rejection episodes and rejection grade are usually related to the ischemia time, both in clinical and experimental aspects. Moreover, we summarized the potential therapeutic measures to mitigate the ischemia-reperfusion injury. Compare to static preservation, machine perfusion is a promising method that can keep VCA tissue viability and extend preservation time, which is especially beneficial for the expansion of the donor pool and better MHC-matching.
Collapse
Affiliation(s)
- Jiqiang He
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Umar Zeb Khan
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Hand and Microsurgery, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Plumblee L, Atkinson C, Jaishankar D, Scott E, Tietjen GT, Nadig SN. Nanotherapeutics in transplantation: How do we get to clinical implementation? Am J Transplant 2022; 22:1293-1298. [PMID: 35224837 PMCID: PMC9081154 DOI: 10.1111/ajt.17012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023]
Abstract
Patients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged. This minireview describes the role of NPs in organ transplantation and discusses obstacles to clinical implementation and pathways to clinical translation.
Collapse
Affiliation(s)
- Leah Plumblee
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Carl Atkinson
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFlorida
| | - Dinesh Jaishankar
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Evan Scott
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinois
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
| | - Gregory T. Tietjen
- Department of SurgeryDepartment of Biomedical EngineeringYale School of MedicineYale UniversityNew HavenConnecticut
| | - Satish N. Nadig
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
- Department of SurgeryDepartment of PediatricsComprehensive Transplant CenterFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
4
|
Tran DT, Tu Z, Alawieh A, Mulligan J, Esckilsen S, Quinn K, Sundararaj K, Wallace C, Finnegan R, Allen P, Mehrotra S, Atkinson C, Nadig SN. Modulating donor mitochondrial fusion/fission delivers immunoprotective effects in cardiac transplantation. Am J Transplant 2022; 22:386-401. [PMID: 34714588 PMCID: PMC8813895 DOI: 10.1111/ajt.16882] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Early insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype. Here, we assess whether modulating mitochondrial fusion/fission reduces EC immunogenicity and alters EC-T cell interactions. By knocking down DRP1, a mitochondrial fission protein, or by using the small molecules M1, a fusion promoter, and Mdivi1, a fission inhibitor, we demonstrate that promoting mitochondrial fusion reduced EC immunogenicity to allogeneic CD8+ T cells, shown by decreased T cell cytotoxic proteins, decreased EC VCAM-1, MHC-I expression, and increased PD-L1 expression. Co-cultured T cells also displayed decreased memory frequencies and Ki-67 proliferative index. For in vivo significance, we used a novel murine brain-dead donor transplant model. Balb/c hearts pretreated with M1/Mdivi1 after brain-death induction were heterotopically transplanted into C57BL/6 recipients. We demonstrate that, in line with our in vitro studies, M1/Mdivi1 pretreatment protected cardiac allografts from injury, decreased infiltrating T cell production of cytotoxic proteins, and prolonged allograft survival. Collectively, our data show promoting mitochondrial fusion in donor ECs mitigates recipient T cell responses and leads to significantly improved cardiac transplant survival.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Zhenxiao Tu
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ali Alawieh
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Mulligan
- Department of Otolaryngology‐Head & Neck SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Scott Esckilsen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kristen Quinn
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Kamala Sundararaj
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Caroline Wallace
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Ryan Finnegan
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Patterson Allen
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Shikhar Mehrotra
- Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Carl Atkinson
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Satish N. Nadig
- Department of Microbiology & ImmunologyMedical University of South CarolinaCharlestonSouth CarolinaUSA,Department of SurgeryDivision of Transplant SurgeryLee Patterson Allen Transplant Immunobiology LaboratoryMedical University of South CarolinaCharlestonSouth CarolinaUSA,South Carolina Investigators in TransplantationDepartment of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
5
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
6
|
Méndez-Carmona N, Wyss RK, Arnold M, Segiser A, Kalbermatter N, Joachimbauer A, Carrel TP, Longnus SL. Effects of graft preservation conditions on coronary endothelium and cardiac functional recovery in a rat model of donation after circulatory death. J Heart Lung Transplant 2021; 40:1396-1407. [PMID: 34509349 DOI: 10.1016/j.healun.2021.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Use of cardiac grafts obtained with donation after circulatory death (DCD) could significantly improve donor heart availability. As DCD hearts undergo potentially deleterious warm ischemia and reperfusion, clinical protocols require optimization to ensure graft quality. Thus, we investigated effects of alternative preservation conditions on endothelial and/or vascular and contractile function in comparison with the current clinical standard. METHODS Using a rat DCD model, we compared currently used graft preservation conditions, St. Thomas n°2 (St. T) at 4°C, with potentially more suitable conditions for DCD hearts, adenosine-lidocaine preservation solution (A-L) at 4°C or 22°C. Following general anesthesia and diaphragm transection, hearts underwent either 0 or 18 min of in-situ warm ischemia, were explanted, flushed and stored for 15 min with either St. T at 4°C or A-L at 4°C or 22°C, and then reperfused under normothermic, aerobic conditions. Endothelial integrity and contractile function were determined. RESULTS Compared to 4°C preservation, 22°C A-L significantly increased endothelial nitric oxide synthase (eNOS) dimerization and reduced oxidative tissue damage (p < 0.05 for all). Furthermore, A-L at 22°C better preserved the endothelial glycocalyx and coronary flow compared with St. T, tended to reduce tissue calcium overload, and stimulated pro-survival signaling. No significant differences were observed in cardiac function among ischemic groups. CONCLUSIONS Twenty-two-degree Celsius A-L solution better preserves the coronary endothelium compared to 4°C St. T, which likely results from greater eNOS dimerization, reduced oxidative stress, and activation of the reperfusion injury salvage kinase (RISK) pathway. Improving heart preservation conditions immediately following warm ischemia constitutes a promising approach for the optimization of clinical protocols in DCD heart transplantation.
Collapse
Affiliation(s)
- Natalia Méndez-Carmona
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Rahel K Wyss
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nina Kalbermatter
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Anna Joachimbauer
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Thierry P Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sarah L Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital and Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Shepherd HM, Gauthier JM, Li W, Krupnick AS, Gelman AE, Kreisel D. Innate immunity in lung transplantation. J Heart Lung Transplant 2021; 40:562-568. [PMID: 34020867 PMCID: PMC10977655 DOI: 10.1016/j.healun.2021.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023] Open
Abstract
Innate immune pathways early after pulmonary transplantation have been shown to cause primary graft dysfunction (PGD) and also predispose to late graft failure. Recent studies in animal models have elucidated critical mechanisms governing such innate immune responses. Here, we discuss pathways of inflammatory cell death, triggers for sterile and infectious inflammation, and signaling cascades that mediate lung injury early after transplantation. These studies highlight potential avenues for lung-specific therapies early following lung transplantation to dampen innate immune responses and improve outcomes.
Collapse
Affiliation(s)
- Hailey M Shepherd
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Jason M Gauthier
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | | | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
8
|
Zhang Z, Qiu L, Yan S, Wang JJ, Thomas PM, Kandpal M, Zhao L, Iovane A, Liu XF, Thorp EB, Chen Q, Hummel M, Kanwar YS, Abecassis MM. A clinically relevant murine model unmasks a "two-hit" mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. Am J Transplant 2019; 19:2421-2433. [PMID: 30947382 PMCID: PMC6873708 DOI: 10.1111/ajt.15376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 01/25/2023]
Abstract
Reactivation of latent cytomegalovirus remains an important complication after transplant. Although immunosuppression (IS) has been implicated as a primary cause, we have previously shown that the implantation response of a kidney allograft can lead to early transcriptional activation of latent murine cytomegalovirus (MCMV) genes in an immune-competent host and to MCMV reactivation and dissemination to other organs in a genetically immune-deficient recipient. We now describe a model that allows us to separately analyze the impact of the implantation effect vs that of a clinically relevant IS regimen. Treatment with IS of latently infected mice alone does not induce viral reactivation, but transplant of latently infected allogeneic kidneys combined with IS facilitates MCMV reactivation in the graft and dissemination to other organs. The IS regimen effectively dampens allo-immune inflammatory pathways and depletes recipient anti-MCMV but does not affect ischemia-reperfusion injury pathways. MCMV reactivation similar to that seen in allogeneic transplants combined with also occurs after syngeneic transplants. Thus, our data strongly suggest that while ischemia-reperfusion injury of the implanted graft is sufficient and necessary to initiate transcriptional reactivation of latent MCMV ("first hit"), IS is permissive to the first hit and facilitates dissemination to other organs ("second hit").
Collapse
Affiliation(s)
- Zheng Zhang
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Longhui Qiu
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Shixian Yan
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Paul M. Thomas
- Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Lihui Zhao
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Andre Iovane
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Xue-feng Liu
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Edward B. Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Qing Chen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Mary Hummel
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Nephrology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - Michael M. Abecassis
- Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Surgery, Northwestern University, Feinberg School of Medicine, Chicago, Illinois,Department of Microbiology and Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
9
|
Hypothermic Oxygenated Perfusion: A Simple and Effective Method to Modulate the Immune Response in Kidney Transplantation. Transplantation 2019; 103:e128-e136. [DOI: 10.1097/tp.0000000000002634] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Yu H, Kalogeris T, Korthuis RJ. Reactive species-induced microvascular dysfunction in ischemia/reperfusion. Free Radic Biol Med 2019; 135:182-197. [PMID: 30849489 PMCID: PMC6503659 DOI: 10.1016/j.freeradbiomed.2019.02.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Vascular endothelial cells line the inner surface of the entire cardiovascular system as a single layer and are involved in an impressive array of functions, ranging from the regulation of vascular tone in resistance arteries and arterioles, modulation of microvascular barrier function in capillaries and postcapillary venules, and control of proinflammatory and prothrombotic processes, which occur in all segments of the vascular tree but can be especially prominent in postcapillary venules. When tissues are subjected to ischemia/reperfusion (I/R), the endothelium of resistance arteries and arterioles, capillaries, and postcapillary venules become dysfunctional, resulting in impaired endothelium-dependent vasodilator and enhanced endothelium-dependent vasoconstrictor responses along with increased vulnerability to thrombus formation, enhanced fluid filtration and protein extravasation, and increased blood-to-interstitium trafficking of leukocytes in these functionally distinct segments of the microcirculation. The number of capillaries open to flow upon reperfusion also declines as a result of I/R, which impairs nutritive perfusion. All of these pathologic microvascular events involve the formation of reactive species (RS) derived from molecular oxygen and/or nitric oxide. In addition to these effects, I/R-induced RS activate NLRP3 inflammasomes, alter connexin/pannexin signaling, provoke mitochondrial fission, and cause release of microvesicles in endothelial cells, resulting in deranged function in arterioles, capillaries, and venules. It is now apparent that this microvascular dysfunction is an important determinant of the severity of injury sustained by parenchymal cells in ischemic tissues, as well as being predictive of clinical outcome after reperfusion therapy. On the other hand, RS production at signaling levels promotes ischemic angiogenesis, mediates flow-induced dilation in patients with coronary artery disease, and instigates the activation of cell survival programs by conditioning stimuli that render tissues resistant to the deleterious effects of prolonged I/R. These topics will be reviewed in this article.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ted Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, 1 Hospital Drive, Columbia, MO 65212, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|