1
|
Medina CK, Aykut B. Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines 2024; 12:2792. [PMID: 39767699 PMCID: PMC11673786 DOI: 10.3390/biomedicines12122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiome has been shown to play a significant role in solid organ transplantation, potentially influencing graft function and patient outcomes. Dysbiosis, characterized by reduced microbial diversity and an increase in pathogenic taxa, has been linked to higher incidences of allograft rejection, graft dysfunction, and post-transplant mortality. Several studies suggest that the gut microbiome might be able to serve as both a biomarker and a therapeutic target, potentially guiding personalized immunosuppressive therapies and other interventions to improve outcomes after solid organ transplantation. As summarized in this review, clinical studies have shown that specific microbial shifts correlate with adverse outcomes, including acute rejection and chronic allograft dysfunction. As research surrounding the relationship between the gut microbiome and solid organ transplant progresses, the integration of microbial analysis into clinical practice has the potential to revolutionize post-transplant care, offering new avenues to improve graft survival and patient quality of life. This review aims to provide a comprehensive overview of the relationship between gut microbial dysbiosis and transplantation outcomes, emphasizing the impact on kidney, liver, lung, and heart transplant recipients.
Collapse
Affiliation(s)
| | - Berk Aykut
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
2
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
3
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2024:00007890-990000000-00891. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4+ regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Smibert OC, Trubiano JA, Kwong JC, Markey KA, Slavin MA. Protocol for a clinically annotated biorepository of samples from Australian immune-compromised patients to investigate the host-microbiome interaction. BMJ Open 2024; 14:e085504. [PMID: 39266311 PMCID: PMC11440200 DOI: 10.1136/bmjopen-2024-085504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The human gut microbiota has the potential to modulate the outcomes of several human diseases. This effect is likely to be mediated through interaction with the host immune system. This protocol details the establishment of a biorepository of clinically annotated samples, which we will use to explore correlations between the gut microbiota and the immune system of immune-compromised patients. We aim to identify microbiome-related risk factors for adverse outcomes. METHODS AND ANALYSES This is a protocol for the development of a biorepository of clinically annotated samples collected prospectively across three centres in Melbourne, Australia. Participants will be recruited across the following clinical streams: (1) acute leukaemia and allogeneic stem cell transplant; (2) end-stage liver disease and liver transplant; (3) patients receiving any cancer immunotherapies (eg, chimeric antigen receptor therapy); (4) deceased organ donors and (5) healthy adult controls. Participants will be asked to provide paired peripheral blood and microbiota samples (stool and saliva) at either (1) single time point for healthy controls and deceased organ donors or (2) longitudinally over multiple prespecified or event-driven time points for the remaining cohorts. Sampling of fluid from bronchoalveolar lavage and colonoscopy or biopsy of tissues undertaken during routine care will also be performed. ETHICS AND DISSEMINATION Ethical approval has been obtained from the relevant local ethics committee (The Royal Melbourne Hospital Human Research Ethics Committee). The results of this study will be disseminated by various scientific platforms including social media, international presentations and publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12623001105639. Date registered 20 October 2023.
Collapse
Affiliation(s)
- Olivia C Smibert
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Jason C Kwong
- Department of Infectious Diseases & Immunology, Austin Health, Melbourne, Victoria, Australia
- Department of Microbiology & Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate A Markey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center (FHCC), Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Monica A Slavin
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Infectious Diseases, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Sharma SP, Suk KT. Microbial influence on liver regeneration: understanding gut microbiota and hepatic recovery post partial hepatectomy. Hepatobiliary Surg Nutr 2024; 13:314-316. [PMID: 38617487 PMCID: PMC11007337 DOI: 10.21037/hbsn-23-663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024]
|
6
|
Lehmann CJ, Dylla NP, Odenwald M, Nayak R, Khalid M, Boissiere J, Cantoral J, Adler E, Stutz MR, Dela Cruz M, Moran A, Lin H, Ramaswamy R, Sundararajan A, Sidebottom AM, Little J, Pamer EG, Aronsohn A, Fung J, Baker TB, Kacha A. Fecal metabolite profiling identifies liver transplant recipients at risk for postoperative infection. Cell Host Microbe 2024; 32:117-130.e4. [PMID: 38103544 DOI: 10.1016/j.chom.2023.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Metabolites produced by the intestinal microbiome modulate mucosal immune defenses and optimize epithelial barrier function. Intestinal dysbiosis, including loss of intestinal microbiome diversity and expansion of antibiotic-resistant pathobionts, is accompanied by changes in fecal metabolite concentrations and increased incidence of systemic infection. Laboratory tests that quantify intestinal dysbiosis, however, have yet to be incorporated into clinical practice. We quantified fecal metabolites in 107 patients undergoing liver transplantation (LT) and correlated these with fecal microbiome compositions, pathobiont expansion, and postoperative infections. Consistent with experimental studies implicating microbiome-derived metabolites with host-mediated antimicrobial defenses, reduced fecal concentrations of short- and branched-chain fatty acids, secondary bile acids, and tryptophan metabolites correlate with compositional microbiome dysbiosis in LT patients and the relative risk of postoperative infection. Our findings demonstrate that fecal metabolite profiling can identify LT patients at increased risk of postoperative infection and may provide guideposts for microbiome-targeted therapies.
Collapse
Affiliation(s)
- Christopher J Lehmann
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Department of Pediatrics, Section of Pediatric Infectious Diseases, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
| | - Nicholas P Dylla
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew Odenwald
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA; Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Ravi Nayak
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Maryam Khalid
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jaye Boissiere
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jackelyn Cantoral
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Emerald Adler
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Matthew R Stutz
- Department of Pulmonary and Critical Care Medicine, Cook County Health, 1950 W. Polk St, Chicago, IL 60612, USA
| | - Mark Dela Cruz
- Department of Cardiology, Advocate Health Care Systems, 4400 W. 95(th) St, Oak Lawn, IL 60453, USA
| | - Angelica Moran
- Department of Pathology, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Huaiying Lin
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ramanujam Ramaswamy
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Anitha Sundararajan
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Jessica Little
- Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA
| | - Eric G Pamer
- Department of Medicine, Section of Infectious Disease and Global Health, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA; Duchossois Family Institute, Biological Sciences Division, University of Chicago, 900 E. 57th St, Chicago, IL 60637, USA.
| | - Andrew Aronsohn
- Department of Medicine, Section of Gastroenterology, Hepatology, and Nutrition, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - John Fung
- Department of Surgery, Section of Transplant Surgery, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah Health, 30 N. 1900 East, Salt Lake City, UT 84132, USA
| | - Aalok Kacha
- Department of Anesthesia and Critical Care, University of Chicago Medicine, 5841 South Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
8
|
Waldner B, Aldrian D, Zöggeler T, Oberacher H, Oberhuber R, Schneeberger S, Messner F, Schneider AM, Kohlmaier B, Lanzersdorfer R, Huber WD, Entenmann A, Müller T, Vogel GF. The influence of liver transplantation on the interplay between gut microbiome and bile acid homeostasis in children with biliary atresia. Hepatol Commun 2023; 7:02009842-202306010-00002. [PMID: 37184522 DOI: 10.1097/hc9.0000000000000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/18/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Biliary atresia (BA) causes neonatal cholestasis and rapidly progresses into cirrhosis if left untreated. Kasai portoenterostomy may delay cirrhosis. BA remains among the most common indications for liver transplantation (LT) during childhood. Liver function and gut microbiome are interconnected. Disturbed liver function and enterohepatic signaling influence microbial diversity. We, herein, investigate the impact of LT and reestablishment of bile flow on gut microbiome-bile acid homeostasis in children with BA before (pre, n = 10), 3 months (post3m, n = 12), 12 months (post12m, n = 9), and more than 24 months (post24 + m, n = 12) after LT. METHODS We analyzed the intestinal microbiome of BA patients before and after LT by 16S-rRNA-sequencing and bioinformatics analyses, and serum primary and secondary bile acid levels. RESULTS The gut microbiome in BA patients exhibits a markedly reduced alpha diversity in pre (p = 0.015) and post3m group (p = 0.044), and approximated healthy control groups at later timepoints post12m (p = 1.0) and post24 + m (p = 0.74). Beta diversity analysis showed overall community structure similarities of pre and post3m (p = 0.675), but both differed from the post24 + m (p < 0.001). Longitudinal analysis of the composition of the gut microbiome revealed the Klebsiella genus to show increased abundance in the post24 + m group compared with an age-matched control (p = 0.029). Secondary bile acid production increased 2+ years after LT (p = 0.03). Multivariable associations of microbial communities and clinical metadata reveal several significant associations of microbial genera with tacrolimus and mycophenolate mofetil-based immunosuppressive regimens. CONCLUSIONS In children with BA, the gut microbiome shows strongly reduced diversity before and shortly after LT, and approximates healthy controls at later timepoints. Changes in diversity correlate with altered secondary bile acid synthesis at 2+ years and with the selection of different immunosuppressants.
Collapse
Affiliation(s)
- Birgit Waldner
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Denise Aldrian
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Zöggeler
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Institute of Legal Medicine and Core Facility Metabolomics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Transplant Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Transplant Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Franka Messner
- Department of Transplant Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna M Schneider
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, Graz, Austria
| | - Roland Lanzersdorfer
- Department of Paediatrics and Adolescent Medicine, Johannes Keppler University Linz, Linz, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Entenmann
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg F Vogel
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. Int J Mol Sci 2023; 24:ijms24054841. [PMID: 36902269 PMCID: PMC10003075 DOI: 10.3390/ijms24054841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver transplantation as a treatment option for end-stage liver diseases is associated with a relevant risk for complications. On the one hand, immunological factors and associated chronic graft rejection are major causes of morbidity and carry an increased risk of mortality due to liver graft failure. On the other hand, infectious complications have a major impact on patient outcomes. In addition, abdominal or pulmonary infections, and biliary complications, including cholangitis, are common complications in patients after liver transplantation and can also be associated with a risk for mortality. Thereby, these patients already suffer from gut dysbiosis at the time of liver transplantation due to their severe underlying disease, causing end-stage liver failure. Despite an impaired gut-liver axis, repeated antibiotic therapies can cause major changes in the gut microbiome. Due to repeated biliary interventions, the biliary tract is often colonized by several bacteria with a high risk for multi-drug resistant germs causing local and systemic infections before and after liver transplantation. Growing evidence about the role of gut microbiota in the perioperative course and their impact on patient outcomes in liver transplantation is available. However, data about biliary microbiota and their impact on infectious and biliary complications are still sparse. In this comprehensive review, we compile the current evidence for the role of microbiome research in liver transplantation with a focus on biliary complications and infections due to multi-drug resistant germs.
Collapse
|
10
|
Xiao M, Wan Z, Lin X, Wang D, Chen Z, Gu Y, Ding S, Zheng S, Li Q. ABO-Incompatible Liver Transplantation under the Desensitization Protocol with Rituximab: Effect on Biliary Microbiota and Metabolites. J Clin Med 2022; 12:jcm12010141. [PMID: 36614942 PMCID: PMC9821037 DOI: 10.3390/jcm12010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Background: ABO-incompatible liver transplantation (ABOi LT) under the desensitization protocol with rituximab had excellent survival outcomes comparable to those of ABO-compatible liver transplantation (ABOc LT). In this work, we explored the effect of ABOi LT on recipients from the perspective of biliary microbiota and metabonomics. Methods: Liver transplant (LT) recipients treated at our center were enrolled in the study. In total, 6 ABOi LT recipients and 12 ABOc LT recipients were enrolled, and we collected their bile five times (during LT and at 2 days, 1 week, 2 weeks and 1 month after LT). The collected samples were used for 16S ribosomal RNA sequencing and liquid chromatography mass spectrometry analysis. Results: We obtained 90 bile samples. Whether in group ABOi LT or ABOc LT, the most common phyla in all of the samples were Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The most common genera were Lactobacillus, Weissella, Klebsiella, Pantoea and Lactococcus. There was no significant difference in the diversity between the two groups at 1 week, 2 weeks and 1 month after LT. However, the biggest disparities between the ABOi LT recipients and ABOc LT recipients were observed 2 days after LT, including increased biodiversity with a higher ACE, Chao1, OBS and Shannon index (p < 0.05), and more Staphylococcus in ABOi LT and binary−Jaccard dissimilarity, which indicated varying β-diversity (p = 0.046). These differences were not observed at 1 week, 2 weeks and 1 month after LT. The principal coordinate analysis (PCoA) revealed that the composition of the bile microbiota did not change significantly within 1 month after LT by longitudinal comparison. In an analysis of the bile components, the metabolites were not significantly different every time. However, four enrichment KEGG pathways were observed among the groups. Conclusion: These findings suggest that ABOi LT under the desensitization protocol with rituximab did not significantly affect the biliary microbiota and metabolites of recipients.
Collapse
Affiliation(s)
- Min Xiao
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Zhenmiao Wan
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xin Lin
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Di Wang
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhitao Chen
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yangjun Gu
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Songming Ding
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Shusen Zheng
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| | - Qiyong Li
- Department of Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou 310004, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Correspondence: (S.Z.); (Q.L.)
| |
Collapse
|
11
|
Wang JS, Liu JC. Intestinal microbiota in the treatment of metabolically associated fatty liver disease. World J Clin Cases 2022; 10:11240-11251. [PMID: 36387806 PMCID: PMC9649557 DOI: 10.12998/wjcc.v10.i31.11240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 02/05/2023] Open
Abstract
Metabolically associated fatty liver disease (MAFLD) is a common cause of chronic liver disease, the hepatic manifestation of metabolic syndrome. Despite the increasing incidence of MAFLD, no effective treatment is available. Recent research indicates a link between the intestinal microbiota and liver diseases such as MAFLD. The composition and characteristics of the intestinal microbiota and therapeutic perspectives of MAFLD are reviewed in the current study. An imbalance in the intestinal microbiota increases intestinal permeability and exposure of the liver to adipokines. Furthermore, we focused on reviewing the latest "gut-liver axis" targeted therapy.
Collapse
Affiliation(s)
- Ji-Shuai Wang
- Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Jin-Chun Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
12
|
Girlanda R, Liggett JR, Jayatilake M, Kroemer A, Guerra JF, Hawksworth JS, Radkani P, Matsumoto CS, Zasloff M, Fishbein TM. The Microbiome and Metabolomic Profile of the Transplanted Intestine with Long-Term Function. Biomedicines 2022; 10:biomedicines10092079. [PMID: 36140180 PMCID: PMC9495872 DOI: 10.3390/biomedicines10092079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
We analyzed the fecal microbiome by deep sequencing of the 16S ribosomal genes and the metabolomic profiles of 43 intestinal transplant recipients to identify biomarkers of graft function. Stool samples were collected from 23 patients with stable graft function five years or longer after transplant, 15 stable recipients one-year post-transplant and four recipients with refractory rejection and graft loss within one-year post-transplant. Lactobacillus and Streptococcus species were predominant in patients with stable graft function both in the short and long term, with a microbiome profile consistent with the general population. Conversely, Enterococcus species were predominant in patients with refractory rejection as compared to the general population, indicating profound dysbiosis in the context of graft dysfunction. Metabolomic analysis demonstrated significant differences between the three groups, with several metabolites in rejecting recipients clustering as a distinct set. Our study suggests that the bacterial microbiome profile of stable intestinal transplants is similar to the general population, supporting further application of this non-invasive approach to identify biomarkers of intestinal graft function.
Collapse
Affiliation(s)
- Raffaelle Girlanda
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Correspondence:
| | - Jedson R. Liggett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Naval Medical Center Portsmouth, Portsmouth, VA 23704, USA
| | - Meth Jayatilake
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Juan Francisco Guerra
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Jason Solomon Hawksworth
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, MD 20812, USA
| | - Pejman Radkani
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Cal S. Matsumoto
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Michael Zasloff
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| | - Thomas M. Fishbein
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital, Center for Translational Transplant Medicine, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
13
|
Lee SK, Jhun J, Lee SY, Choi S, Choi SS, Park MS, Lee SY, Cho KH, Lee AR, Ahn J, Choi HJ, You YK, Sung PS, Jang JW, Bae SH, Yoon SK, Cho ML, Choi JY. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients. Gut Microbes 2022; 14:2102885. [PMID: 35951731 PMCID: PMC9377238 DOI: 10.1080/19490976.2022.2102885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of gastroenterology and hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Yoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sukjung Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | | | - Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - A Ram Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- Division of gastroenterology and hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,CONTACT Mi-La Cho Rheumatism Research Center, Catholic Institutes of Medical Science, The Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul137-040, Korea
| | - Jong Young Choi
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea,Jong Young Choi Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, #222 Banpo-Daero, Seocho-gu, Seoul06591, Republic of Korea
| |
Collapse
|
14
|
Wong HJ, Lim WH, Ng CH, Tan DJH, Bonney GK, Kow AWC, Huang DQ, Siddiqui MS, Noureddin M, Syn N, Muthiah MD. Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Front Med (Lausanne) 2022; 9:873523. [PMID: 35620719 PMCID: PMC9127379 DOI: 10.3389/fmed.2022.873523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Patients undergoing liver transplant (LTX) typically confront a challenging postoperative journey. A dysbiotic gut microbiome is associated with the development of complications, including post-LTX allograft rejection, metabolic diseases and de novo or recurrent cancer. A major explanation of this are the bipartite interactions between the gut microbiota and host immunity, which modulates the alloimmune response towards the liver allograft. Furthermore, bacterial translocation from dysbiosis causes pathogenic changes in the concentrations of microbial metabolites like lipopolysaccharides, short-chain fatty acids (SCFAs) and Trimethylamine-N-Oxide, with links to cardiovascular disease development and diabetes mellitus. Gut dysbiosis also disrupts bile acid metabolism, with implications for various post-LTX metabolic diseases. Certain taxonomy of microbiota such as lactobacilli, F.prausnitzii and Bacteroides appear to be associated with these undesired outcomes. As such, an interesting but as yet unproven hypothesis exists as to whether induction of a “beneficial” composition of gut microbiota may improve prognosis in LTX patients. Additionally, there are roles of the microbiome as predictive and prognostic indicators for clinicians in improving patient care. Hence, the gut microbiome represents an exceptionally exciting avenue for developing novel prognostic, predictive and therapeutic applications.
Collapse
Affiliation(s)
- Hon Jen Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Glenn K Bonney
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Alfred W C Kow
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Centre, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| | - Nicholas Syn
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|
15
|
Abstract
Liver transplantation (LT) is the only curative therapy in patients with end-stage liver disease with excellent long-term survival; however, LT recipients are at risk of significant complications. Among these complications are biliary complications with an incidence ranging from 5 to 32% and associated with significant post-LT morbidity and mortality. Prompt recognition and management are critical as these complications have been associated with mortality rates up to 19% and retransplantation rates up to 13%. An important limitation of published studies is that a large proportion does not discriminate between anastomotic strictures and nonanastomotic strictures. This review aims to summarize our current understanding of risk factors and natural history, diagnostic testing, and treatment options for post-LT biliary strictures.
Collapse
Affiliation(s)
- Matthew Fasullo
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University (VCU) Medical Center, Richmond, Virginia.,Division of Gastroenterology and Hepatology, Central Virginia Veterans Affairs Medicine Center, Richmond, Virginia
| | - Tilak Shah
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University (VCU) Medical Center, Richmond, Virginia.,Division of Gastroenterology and Hepatology, Central Virginia Veterans Affairs Medicine Center, Richmond, Virginia
| | - Huiping Zhou
- Department of Microbiology and Immunology, VCU and McGuire Veterans Affairs Medical Center, Richmond, Virginia
| | - Mohammad S Siddiqui
- Division of Gastroenterology and Hepatology, Virginia Commonwealth University (VCU) Medical Center, Richmond, Virginia
| |
Collapse
|
16
|
Liu Z, Xu J, Que S, Geng L, Zhou L, Mardinoglu A, Zheng S. Recent Progress and Future Direction for the Application of Multiomics Data in Clinical Liver Transplantation. J Clin Transl Hepatol 2022; 10:363-373. [PMID: 35528975 PMCID: PMC9039708 DOI: 10.14218/jcth.2021.00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/14/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Omics data address key issues in liver transplantation (LT) as the most effective therapeutic means for end-stage liver disease. The purpose of this study was to review the current application and future direction for omics in LT. We reviewed the use of multiomics to elucidate the pathogenesis leading to LT and prognostication. Future directions with respect to the use of omics in LT are also described based on perspectives of surgeons with experience in omics. Significant molecules were identified and summarized based on omics, with a focus on post-transplant liver fibrosis, early allograft dysfunction, tumor recurrence, and graft failure. We emphasized the importance omics for clinicians who perform LTs and prioritized the directions that should be established. We also outlined the ideal workflow for omics in LT. In step with advances in technology, the quality of omics data can be guaranteed using an improved algorithm at a lower price. Concerns should be addressed on the translational value of omics for better therapeutic effects in patients undergoing LT.
Collapse
Affiliation(s)
- Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuping Que
- DingXiang Clinics, Hangzhou, Zhejiang, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Zhou
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Correspondence to: Adil Mardinoglu, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden. ORCID: https://orcid.org/0000-0002-4254-6090. Tel: +46-31-772-3140, Fax: +46-31-772-3801, E-mail: ; Shusen Zheng, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China. ORCID: https://orcid.org/0000-0003-1459-8261. Tel/Fax: +86-571-87236570, E-mail:
| | - Shusen Zheng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the diagnosis and treatment of organ Transplantation, CAMS, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Correspondence to: Adil Mardinoglu, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden. ORCID: https://orcid.org/0000-0002-4254-6090. Tel: +46-31-772-3140, Fax: +46-31-772-3801, E-mail: ; Shusen Zheng, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China. ORCID: https://orcid.org/0000-0003-1459-8261. Tel/Fax: +86-571-87236570, E-mail:
| |
Collapse
|
17
|
Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:microorganisms10020312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
|
18
|
Sivaraj S, Copeland JK, Malik A, Pasini E, Angeli M, Azhie A, Husain S, Kumar D, Allard J, Guttman DS, Humar A, Bhat M. Characterization and predictive functional profiles on metagenomic 16S rRNA data of liver transplant recipients: A longitudinal study. Clin Transplant 2021; 36:e14534. [PMID: 34781411 DOI: 10.1111/ctr.14534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Long-term survival after Liver Transplantation (LT) is often compromised by infectious and metabolic complications. We aimed to delineate alterations in intestinal microbiome (IM) over time that could contribute to medical complications compromising long-term survival following LT. Fecal samples from LT recipients were collected at 3 months (3 M) and 6 months (6 M) post-LT. The bacterial DNA was extracted using E.Z.N.A. Stool DNA Kit and 16S rRNA gene sequencing at V4 hypervariable region was performed. DADA2 and Phyloseq was implemented to analyze the taxonomic composition. Differentially abundant taxa were identified by metagenomeSeq and LEfSe. Piphillin, an Inferred functional metagenomic analysis tool was used to study the bacterial functional content. For comparison, healthy samples were extracted from NCBI and analyzed similarly. The taxonomic & functional profiles of LT recipients were validated with metagenomic sequencing data from animals exposed to immunosuppressants using Venny. Our findings provide a new perspective on longitudinal increase in specific IM communities post-LT along with an increase in bacterial genes associated with metabolic and infectious disease.
Collapse
Affiliation(s)
- Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Anshu Malik
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Amirhossein Azhie
- Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Shahid Husain
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Deepali Kumar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Johane Allard
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, Canada
| | - David S Guttman
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Atul Humar
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine, University Health Network, Toronto, Canada.,Division of Infectious Diseases, Department of Medicine University of Toronto, Toronto, Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, Ontario, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Czarnecka K, Czarnecka P, Tronina O, Bączkowska T, Durlik M. Multidirectional facets of obesity management in the metabolic syndrome population after liver transplantation. IMMUNITY INFLAMMATION AND DISEASE 2021; 10:3-21. [PMID: 34598315 PMCID: PMC8669703 DOI: 10.1002/iid3.538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
The obesity pandemic has resulted in an increasing demand for liver transplantation and has significantly altered the profile of liver transplant candidates in addition to affecting posttransplantation outcomes. In this review, we discuss a broad range of clinical approaches that warrant attention to provide comprehensive and patient‐centred medical care to liver transplant recipients, and to be prepared to confront the rapidly changing clinical challenges and ensuing dilemmas. Adipose tissue is a complex and metabolically active organ. Visceral fat deposition is a key predictor of overall obesity‐related morbidity and mortality. Limited pharmacological options are available for the treatment of obesity in the liver transplant population. Bariatric surgery may be an alternative in eligible patients. The rapidly increasing prevalence of nonalcoholic fatty liver disease (NAFLD) is a global concern; NAFLD affects both pre‐ and posttransplantation outcomes. Numerous studies have investigated pharmacological and nonpharmacological management of NAFLD and some of these have shown promising results. Liver transplant recipients are constantly exposed to numerous factors that result in intestinal microbiota alterations, which were linked to the development of obesity, diabetes type 2, metabolic syndrome (MS), NAFLD, and hepatocellular cancer. Microbiota modifications with probiotics and prebiotics bring gratifying results in the management of metabolic complications. Fecal microbiota transplantation (FMT) is successfully performed in many medical indications. However, the safety and efficacy profiles of FMT in immunocompromised patients remain unclear. Obesity together with immunosuppressive treatment, may affect the pharmacokinetic and/or pharmacodynamic properties of coadministered medications. Individualized immunosuppressive regimens are recommended following liver transplantation to address possible metabolic concerns. Effective and comprehensive management of metabolic complications is shown to yield multiple beneficial results in the liver transplant population and may bring gratifying results in improving long‐term survival rates.
Collapse
Affiliation(s)
- Kinga Czarnecka
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland
| | - Paulina Czarnecka
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland
| | - Olga Tronina
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland
| | - Teresa Bączkowska
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsa, Warsaw, Poland
| |
Collapse
|
20
|
Cao M, Peng Y, Lu Y, Zou Z, Chen J, Bottino R, Knoll M, Zhang H, Lin S, Pu Z, Sun L, Fang Z, Qiu C, Dai Y, Cai Z, Mou L. Controls of Hyperglycemia Improves Dysregulated Microbiota in Diabetic Mice. Transplantation 2021; 105:1980-1988. [PMID: 34416751 DOI: 10.1097/tp.0000000000003603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Type 1 diabetes (T1DM) is a chronic autoimmune disease characterized by T-cell-mediated destruction of insulin-producing beta cells. Evidence shows that patients with T1DM and mice used in specific diabetic models both exhibit changes in their intestinal microbiota and dysregulated microbiota contributes to the pathogenesis of T1DM. Islet transplantation (Tx) is poised to play an important role in the treatment of T1DM. However, whether treatment of T1DM with islet Tx can rescue dysregulated microbiota remains unclear. METHODS In this study, we induced diabetic C57BL/6 mice with streptozotocin. Then treatment with either insulin administration, or homogenic or allogenic islet Tx was performed to the diabetic mice. Total DNA was isolated from fecal pellets and high-throughput 16S rRNA sequencing was used to investigate intestinal microbiota composition. RESULTS The overall microbial diversity was comparable between control (nonstreptozotocin treated) and diabetic mice. Our results showed the ratio of the Bacteroidetes: Firmicutes between nondiabetic and diabetic mice was significant different. Treatment with islet Tx or insulin partially corrects the dysregulated bacterial composition. At the genus level, Bacteroides, Odoribacter, and Alistipes were associated with the progression and treatment efficacy of the disease, which may be used as a biomarker to predict curative effect of treatment for patients with T1DM. CONCLUSIONS Collectively, our results indicate that diabetic mice show changed microbiota composition and that treatment with insulin and islet Tx can partially correct the dysregulated microbiota.
Collapse
MESH Headings
- Animals
- Bacteria/classification
- Bacteria/genetics
- Bacteria/growth & development
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/microbiology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/microbiology
- Diabetes Mellitus, Type 1/therapy
- Dysbiosis
- Feces/microbiology
- Gastrointestinal Microbiome
- Glycemic Control
- Hypoglycemic Agents/pharmacology
- Insulin/pharmacology
- Islets of Langerhans Transplantation
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Ribotyping
- Streptozocin
- Tissue Culture Techniques
- Mice
Collapse
Affiliation(s)
- Mengtao Cao
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Yuanzheng Peng
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhicheng Zou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Jiao Chen
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| | - Michael Knoll
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA
| | - Hanchen Zhang
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Shan Lin
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zuhui Pu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Liang Sun
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhoubin Fang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Chuanghua Qiu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Clinical Laboratory Department, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Zhiming Cai
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Institute of Translational Medicine, Shenzhen University Health Science Center, Shenzhen University School of Medicine, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Dery KJ, Górski A, Międzybrodzki R, Farmer DG, Kupiec-Weglinski JW. Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation 2021; 105:1449-1458. [PMID: 33273319 DOI: 10.1097/tp.0000000000003565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterio(phages) are bacteria-infecting viruses that employ host translation machinery to replicate, and upon cell lysis, release new particles into the environment. As a result, phages are prey-specific, thus making targeted phage therapy (PT) possible. Indeed, pre- and posttransplant bacterial infections pose a substantial risk to allograft recipients in their clinical course. Moreover, with the increasing threat of antibiotic resistance, the interest in PT as a potential solution to the crisis of multidrug-resistant bacterial pathogens has rapidly grown. Although little is known about the specific characteristics of the phage-directed immune responses, recent studies indicate phages exert anti-inflammatory and immunomodulatory functions, which could be beneficial in allotransplantation (allo-Tx). PT targeting multidrug-resistant Klebsiella pneumoniae, Mycobacterium abscessus, and Pseudomonas aeruginosa have been successfully applied in renal, lung, and liver allo-Tx patients. In parallel, the gastrointestinal microbiota appears to influence allo-Tx immunity by modulating the endoplasmic reticulum stress and autophagy signaling pathways through hepatic EP4/CHOP/LC3B platforms. This review highlights the current relevant immunobiology, clinical developments, and management of PT, and lays the foundation for future potential standard care use of PT in allo-Tx to mitigate early allograft dysfunction and improve outcomes. In conclusion, with novel immunobiology and metabolomics insights, harnessing the potential of PT to modulate microbiota composition/diversity may offer safe and effective refined therapeutic means to reduce risks of infections and immunosuppression in allo-Tx recipients.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Infant Jesus Teaching Hospital, Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Douglas G Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
22
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:E44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
23
|
Sivaraj S, Chan A, Pasini E, Chen E, Lawendy B, Verna E, Watt K, Bhat M. Enteric dysbiosis in liver and kidney transplant recipients: a systematic review. Transpl Int 2020; 33:1163-1176. [PMID: 32640109 DOI: 10.1111/tri.13696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Several factors mediate intestinal microbiome (IM) alterations in transplant recipients, including immunosuppressive (IS) and antimicrobial drugs. Studies on the structure and function of the IM in the post-transplant scenario and its role in the development of metabolic abnormalities, infection, and cancer are limited. We conducted a systematic review to study the taxonomic changes in liver (LT) and kidney (KT) transplantation, and their potential contribution to post-transplant complications. The review also includes pre-transplant taxa, which may play a critical role in microbial alterations post-transplant. Two reviewers independently screened articles, and assessed risk of bias. The review identified 13 clinical studies, which focused on adult kidney and liver transplant recipients. Patient characteristics and methodologies varied widely between studies. Ten studies reported increased an abundance of opportunistic pathogens (Enterobacteriaceae, Enterococcaceae, Fusobacteriaceae, and Streptococcaceae) followed by butyrate-producing bacteria (Lachnospiraceae and Ruminococcaceae) in nine studies in post-transplant conditions. The current evidence is mostly based on observational data and studies with no proof of causality. Therefore, further studies exploring the bacterial gene functions rather than taxonomic changes alone are in demand to better understand the potential contribution of the IM in post-transplant complications.
Collapse
Affiliation(s)
- Saranya Sivaraj
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Anita Chan
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Elisa Pasini
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Emily Chen
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Bishoy Lawendy
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Elizabeth Verna
- Division of Digestive and Liver Diseases, Center for Liver Disease and Transplantation, Columbia University Irving Medical Center, New York, NY, USA
| | - Kymberly Watt
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mamatha Bhat
- Multi Organ Transplant Program, University Health Network, Toronto, ON, Canada.,Division of Gastroenterology and Hepatology, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Wood-Trageser M, Xu Q, Zeevi A, Randhawa P, Lesniak D, Demetris A. Precision transplant pathology. Curr Opin Organ Transplant 2020; 25:412-419. [PMID: 32520786 PMCID: PMC7737245 DOI: 10.1097/mot.0000000000000772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Transplant pathology contributes substantially to personalized treatment of organ allograft recipients. Rapidly advancing next-generation human leukocyte antigen (HLA) sequencing and pathology are enhancing the abilities to improve donor/recipient matching and allograft monitoring. RECENT FINDINGS The present review summarizes the workflow of a prototypical patient through a pathology practice, highlighting histocompatibility assessment and pathologic review of tissues as areas that are evolving to incorporate next-generation technologies while emphasizing critical needs of the field. SUMMARY Successful organ transplantation starts with the most precise pratical donor-recipient histocompatibility matching. Next-generation sequencing provides the highest resolution donor-recipient matching and enables eplet mismatch scores and more precise monitoring of donor-specific antibodies (DSAs) that may arise after transplant. Multiplex labeling combined with hand-crafted machine learning is transforming traditional histopathology. The combination of traditional blood/body fluid laboratory tests, eplet and DSA analysis, traditional and next-generation histopathology, and -omics-based platforms enables risk stratification and identification of early subclinical molecular-based changes that precede a decline in allograft function. Needs include software integration of data derived from diverse platforms that can render the most accurate assessment of allograft health and needs for immunosuppression adjustments.
Collapse
Affiliation(s)
- M.A. Wood-Trageser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| | - Qinyong Xu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| | - A. Zeevi
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| | - P. Randhawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| | - D. Lesniak
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| | - A.J. Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213 USA
- Division of Liver and Transplantation Pathology, Department of Pathology, University of Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Nakamura K, Kageyama S, Ito T, Hirao H, Kadono K, Aziz A, Dery KJ, Everly MJ, Taura K, Uemoto S, Farmer DG, Kaldas FM, Busuttil RW, Kupiec-Weglinski JW. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest 2019; 129:3420-3434. [PMID: 31329160 PMCID: PMC6668671 DOI: 10.1172/jci127550] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Although modifications of gut microbiota with antibiotics (Abx) influence mouse skin and cardiac allografts, its role in orthotopic liver transplantation (OLT) remains unknown. We aimed to determine whether and how recipient Abx pretreatment may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. Mice (C57BL/6) with or without Abx treatment (10 days) were transplanted with allogeneic (BALB/c) cold-stored (18 hours) livers, followed by liver and blood sampling (6 hours). We divided 264 human OLT recipients on the basis of duration of pre-OLT Abx treatment into control (Abx-free/Abx <10 days; n = 108) and Abx treatment (Abx ≥10days; n = 156) groups; OLT biopsy (Bx) samples were collected 2 hours after OLT (n = 52). Abx in mice mitigated IRI-stressed OLT (IRI-OLT), decreased CCAAT/enhancer-binding protein homologous protein (CHOP) (endoplasmic reticulum [ER] stress), enhanced LC3B (autophagy), and inhibited inflammation, whereas it increased serum prostaglandin E2 (PGE2) and hepatic PGE2 receptor 4 (EP4) expression. PGE2 increased EP4, suppressed CHOP, and induced autophagosome formation in hepatocyte cultures in an EP4-dependent manner. An EP4 antagonist restored CHOP, suppressed LC3B, and recreated IRI-OLT. Remarkably, human recipients of Abx treatment plus OLT (Abx-OLT), despite severe pretransplantation clinical acuity, had higher EP4 and LC3B levels but lower CHOP levels, which coincided with improved hepatocellular function (serum aspartate aminotransferase/serum aspartate aminotransferase [sALT/sAST]) and a decreased incidence of early allograft dysfunction (EAD). Multivariate analysis identified "Abx-free/Abx <10 days" as a predictive factor of EAD. This study documents the benefits of Abx pretreatment in liver transplant recipients, identifies ER stress and autophagy regulation by the PGE2/EP4 axis as a homeostatic underpinning, and points to the microbiome as a therapeutic target in OLT.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Antony Aziz
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|