1
|
Garg M, Johri S, Chakraborty K. Immunomodulatory role of mitochondrial DAMPs: a missing link in pathology? FEBS J 2023; 290:4395-4418. [PMID: 35731715 DOI: 10.1111/febs.16563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
In accordance with the endosymbiotic theory, mitochondrial components bear characteristic prokaryotic signatures, which act as immunomodulatory molecules when released into the extramitochondrial compartment. These endogenous immune triggers, called mitochondrial damage-associated molecular patterns (mtDAMPs), have been implicated in the pathogenesis of various diseases, yet their role remains largely unexplored. In this review, we summarise the available literature on mtDAMPs in diseases, with a special focus on respiratory diseases. We highlight the need to bolster mtDAMP research using a multipronged approach, to study their effect on specific cell types, receptors and machinery in pathologies. We emphasise the lacunae in the current understanding of mtDAMPs, particularly in their cellular release and the chemical modifications they undergo. Finally, we conclude by proposing additional effects of mtDAMPs in diseases, specifically their role in modulating the immune system.
Collapse
Affiliation(s)
- Mayank Garg
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saumya Johri
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Krishnendu Chakraborty
- Cardio-Respiratory Disease Biology, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
2
|
Kroneisl M, Spraakman NA, Koomen JV, Hijazi Z, Hoogstra-Berends FH, Leuvenink HGD, Struys MMRF, Henning RH, Nieuwenhuijs-Moeke GJ. Peri-Operative Kinetics of Plasma Mitochondrial DNA Levels during Living Donor Kidney Transplantation. Int J Mol Sci 2023; 24:13579. [PMID: 37686384 PMCID: PMC10487554 DOI: 10.3390/ijms241713579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
During ischemia and reperfusion injury (IRI), mitochondria may release mitochondrial DNA (mtDNA). mtDNA can serve as a propagator of further injury but in specific settings has anti-inflammatory capacities as well. Therefore, the aim of this study was to study the perioperative dynamics of plasma mtDNA during living donor kidney transplantation (LDKT) and its potential as a marker of graft outcome. Fifty-six donor-recipient couples from the Volatile Anesthetic Protection of Renal Transplants-1 (VAPOR-1) trial were included. Systemic venous, systemic arterial, and renal venous samples were taken at multiple timepoints during and after LDKT. Levels of mtDNA genes changed over time and between vascular compartments. Several donor, recipient, and transplantation-related variables significantly explained the course of mtDNA genes over time. mtDNA genes predicted 1-month and 24-month estimated glomerular filtration rate (eGFR) and acute rejection episodes in the two-year follow-up period. To conclude, mtDNA is released in plasma during the process of LDKT, either from the kidney or from the whole body in response to transplantation. While circulating mtDNA levels positively and negatively predict post-transplantation outcomes, the exact mechanisms and difference between mtDNA genes are not yet understood and need further exploration.
Collapse
Affiliation(s)
- Marie Kroneisl
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nora A. Spraakman
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jeroen V. Koomen
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Zeinab Hijazi
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Femke H. Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henri G. D. Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Gertrude J. Nieuwenhuijs-Moeke
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Zhang W, Wu Y, Zeng M, Yang C, Qiu Z, Liu R, Wang L, Zhong M, Chen Q, Liang W. Protective role of remote ischemic conditioning in renal transplantation and partial nephrectomy: A systematic review and meta-analysis of randomized controlled trials. Front Surg 2023; 10:1024650. [PMID: 37091267 PMCID: PMC10113469 DOI: 10.3389/fsurg.2023.1024650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Studies have shown that remote ischemic conditioning (RIC) can effectively attenuate ischemic-reperfusion injury in the heart and brain, but the effect on ischemic-reperfusion injury in patients with kidney transplantation or partial nephrectomy remains controversial. The main objective of this systematic review and meta-analysis was to investigate whether RIC provides renal protection after renal ischemia-reperfusion injury in patients undergoing kidney transplantation or partial nephrectomy. Methods A computer-based search was conducted to retrieve relevant publications from the PubMed database, Embase database, Cochrane Library and Web of Science database. We then conducted a systematic review and meta-analysis of randomized controlled trials that met our study inclusion criteria. Results Eleven eligible studies included a total of 1,145 patients with kidney transplantation or partial nephrectomy for systematic review and meta-analysis, among whom 576 patients were randomly assigned to the RIC group and the remaining 569 to the control group. The 3-month estimated glomerular filtration rate (eGFR) was improved in the RIC group, which was statistically significant between the two groups on kidney transplantation [P < 0.001; mean difference (MD) = 2.74, confidence interval (CI): 1.41 to 4.06; I 2 = 14%], and the 1- and 2-day postoperative Scr levels in the RIC group decreased, which was statistically significant between the two groups on kidney transplantation (1-day postoperative: P < 0.001; MD = 0.10, CI: 0.05 to 0.15, I 2 = 0; 2-day postoperative: P = 0.006; MD = 0.41, CI: 0.12 to 0.70, I 2 = 0), but at other times, there was no significant difference between the two groups in Scr levels. The incidence of delayed graft function (DGF) decreased, but there was no significant difference (P = 0.60; 95% CI: 0.67 to 1.26). There was no significant difference between the two groups in terms of cross-clamp time, cold ischemia time, warm ischemic time, acute rejection (AR), graft loss or length of hospital stay. Conclusion Our meta-analysis showed that the effect of remote ischemia conditioning on reducing serum creatinine (Scr) and improving estimate glomerular filtration rate (eGFR) seemed to be very weak, and we did not observe a significant protective effect of RIC on renal ischemic-reperfusion. Due to small sample sizes, more studies using stricter inclusion criteria are needed to elucidate the nephroprotective effect of RIC in renal surgery in the future.
Collapse
Affiliation(s)
- Wenfu Zhang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Department of Anesthesia, hospital of Traditional Chinese Medicine of Zhongshan, Zhongshan, China
| | - Yingting Wu
- Department of Critical Care Medicine Nursing, the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mingwang Zeng
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Chao Yang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Rongrong Liu
- Department of Neurology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lifeng Wang
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Maolin Zhong
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qiaoling Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Weidong Liang
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
- Anesthesia Surgery Center of the First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
4
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
5
|
Feng J, Chen Z, Liang W, Wei Z, Ding G. Roles of Mitochondrial DNA Damage in Kidney Diseases: A New Biomarker. Int J Mol Sci 2022; 23:ijms232315166. [PMID: 36499488 PMCID: PMC9735745 DOI: 10.3390/ijms232315166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The kidney is a mitochondria-rich organ, and kidney diseases are recognized as mitochondria-related pathologies. Intact mitochondrial DNA (mtDNA) maintains normal mitochondrial function. Mitochondrial dysfunction caused by mtDNA damage, including impaired mtDNA replication, mtDNA mutation, mtDNA leakage, and mtDNA methylation, is involved in the progression of kidney diseases. Herein, we review the roles of mtDNA damage in different setting of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). In a variety of kidney diseases, mtDNA damage is closely associated with loss of kidney function. The level of mtDNA in peripheral serum and urine also reflects the status of kidney injury. Alleviating mtDNA damage can promote the recovery of mitochondrial function by exogenous drug treatment and thus reduce kidney injury. In short, we conclude that mtDNA damage may serve as a novel biomarker for assessing kidney injury in different causes of renal dysfunction, which provides a new theoretical basis for mtDNA-targeted intervention as a therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Zhongping Wei
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan 430060, China
- Correspondence:
| |
Collapse
|
6
|
Li Y, Wang B, Wang L, Shi K, Zhao W, Gao S, Chen J, Ding C, Du J, Gao W. Postoperative day 1 serum cystatin C level predicts postoperative delayed graft function after kidney transplantation. Front Med (Lausanne) 2022; 9:863962. [PMID: 36035383 PMCID: PMC9411520 DOI: 10.3389/fmed.2022.863962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Delayed graft function (DGF) commonly occurs after kidney transplantation, but no clinical predictors for guiding post-transplant management are available. Materials and methods Data including demographics, surgery, anesthesia, postoperative day 1 serum cystatin C (S-CysC) level, kidney functions, and postoperative complications in 603 kidney transplant recipients who met the enrollment criteria from January 2017 to December 2018 were collected and analyzed to form the Intention-To-Treat (ITT) set. All perioperative data were screened using the least absolute shrinkage and selection operator. The discrimination, calibration, and clinical effectiveness of the predictor were verified with area under curve (AUC), calibration plot, clinical decision curve, and impact curve. The predictor was trained in Per-Protocol set, validated in the ITT set, and its stability was further tested in the bootstrap resample data. Result Patients with DGF had significantly higher postoperative day 1 S-CysC level (4.2 ± 1.2 vs. 2.8 ± 0.9 mg/L; P < 0.001), serum creatinine level (821.1 ± 301.7 vs. 554.3 ± 223.2 μmol/L; P < 0.001) and dialysis postoperative (74 [82.2%] vs. 25 [5.9%]; P < 0.001) compared with patients without DGF. Among 41 potential predictors, S-CysC was the most effective in the parsimonious model, and its diagnostic cut-off value was 3.80 mg/L with the risk score (OR, 13.45; 95% CI, 8.02–22.57; P < 0.001). Its specificity and sensitivity indicated by AUC was 0.832 (95% CI, 0.779–0.884; P < 0.001) with well fit calibration. S-CysC yielded up to 50% of clinical benefit rate with 1:4 of cost/benefit ratio. Conclusion The postoperative day 1 S-CysC level predicts DGF and may be used as a predictor of DGF but warrants further study.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Anesthesiology, 521 Hospital of Norinco Group, Xi’an, China
| | - Bo Wang
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Le Wang
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kewei Shi
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wangcheng Zhao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Sai Gao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiayu Chen
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chenguang Ding
- Department of Renal Transplantation, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Junkai Du
- Department of Emergency, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wei Gao,
| | - Wei Gao
- Department of Anesthesiology and Center for Brain Science and Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Junkai Du,
| |
Collapse
|
7
|
Müderrisoğlu İH, Sezgin A. A New Concept in Donor Selection for Cardiac Transplant Patients. EXP CLIN TRANSPLANT 2022; 20:48-50. [DOI: 10.6002/ect.donorsymp.2022.l29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Kang SW, Kang SW, Ban JY, Park MS. Identification of Multiple Hub Genes in Acute Kidney Injury after Kidney Transplantation by Bioinformatics Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:681. [PMID: 35630098 PMCID: PMC9145685 DOI: 10.3390/medicina58050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Background and Objectives: The molecular mechanisms of the development of acute kidney injury (AKI) after kidney transplantation are not yet clear. The aim of this study was to confirm the genes and mechanisms related to AKI after transplantation. Materials and Methods: To investigate potential genetic targets for AKI, an analysis of the gene expression omnibus database was used to identify key genes and pathways. After identification of differentially expressed genes, Kyoto Encyclopedia of Genes and Genome pathway enrichment analyses were performed. We identified the hub genes and established the protein-protein interaction network. Results: Finally, we identified 137 differentially expressed genes (59 upregulated genes and 16 downregulated genes). AKAP12, AMOT, C3AR1, LY96, PIK3AP1, PLCD4, PLCG2, TENM2, TLR2, and TSPAN5 were filtrated by the hub genes related to the development of post-transplant AKI from the Protein-Protein Interaction (PPI) network. Conclusions: This may provide important evidence of the diagnostic and therapeutic biomarker of AKI.
Collapse
Affiliation(s)
- Sang-Wook Kang
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea;
| | - Sung-Wook Kang
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA 70112, USA;
| | - Ju-Yeon Ban
- Department of Dental Pharmacology, School of Dentistry, Dankook University, Cheonan 31116, Korea
| | - Min-Su Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
9
|
A Review of Current and Emerging Trends in Donor Graft-Quality Assessment Techniques. J Clin Med 2022; 11:jcm11030487. [PMID: 35159939 PMCID: PMC8836899 DOI: 10.3390/jcm11030487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The number of patients placed on kidney transplant waiting lists is rapidly increasing, resulting in a growing gap between organ demand and the availability of kidneys for transplantation. This organ shortage has forced medical professionals to utilize marginal kidneys from expanded criteria donors (ECD) to broaden the donor pool and shorten wait times for patients with end-stage renal disease. However, recipients of ECD kidney grafts tend to have worse outcomes compared to those receiving organs from standard criteria donors (SCD), specifically increased risks of delayed graft function (DGF) and primary nonfunction incidence. Thus, representative methods for graft-quality assessment are strongly needed, especially for ECDs. Currently, graft-quality evaluation is limited to interpreting the donor’s recent laboratory tests, clinical risk scores, the visual evaluation of the organ, and, in some cases, a biopsy and perfusion parameters. The last few years have seen the emergence of many new technologies designed to examine organ function, including new imaging techniques, transcriptomics, genomics, proteomics, metabolomics, lipidomics, and new solutions in organ perfusion, which has enabled a deeper understanding of the complex mechanisms associated with ischemia-reperfusion injury (IRI), inflammatory process, and graft rejection. This review summarizes and assesses the strengths and weaknesses of current conventional diagnostic methods and a wide range of new potential strategies (from the last five years) with respect to donor graft-quality assessment, the identification of IRI, perfusion control, and the prediction of DGF.
Collapse
|
10
|
Longnus SL, Rutishauser N, Gillespie MN, Reichlin T, Carrel TP, Sanz MN. Mitochondrial Damage-associated Molecular Patterns as Potential Biomarkers in DCD Heart Transplantation: Lessons From Myocardial Infarction and Cardiac Arrest. Transplant Direct 2022; 8:e1265. [PMID: 34934807 PMCID: PMC8683216 DOI: 10.1097/txd.0000000000001265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) has become a real option to increase graft availability. However, given that DCD organs are exposed to the potentially damaging conditions of warm ischemia before procurement, new strategies for graft evaluation are of particular value for the safe expansion of DCD heart transplantation. Mitochondria-related parameters are very attractive as biomarkers because of their intimate association with cardiac ischemia-reperfusion injury. In this context, a group of mitochondrial components, called mitochondrial damage-associated molecular patterns (mtDAMPs), released by stressed cells, holds great promise. mtDAMPs may be released at different stages of DCD cardiac donation and may act as indicators of graft quality. Because of the lack of information available for DCD grafts, we consider that relevant information can be obtained from other acute cardiac ischemic conditions. Thus, we conducted a systematic review of original research articles in which mtDAMP levels were assessed in the circulation of patients with acute myocardial infarction and cardiac arrest. We conclude that 4 mtDAMPs, ATP, cytochrome c, mitochondrial DNA, and succinate, are rapidly released into the circulation after the onset of ischemia, and their concentrations increase with reperfusion. Importantly, circulating levels of mtDAMPs correlate with cardiac damage and may be used as prognostic markers for patient survival in these conditions. Taken together, these findings support the concept that mtDAMPs may be of use as biomarkers to assess the transplant suitability of procured DCD hearts, and ultimately aid in facilitating the safe, widespread adoption of DCD heart transplantation.
Collapse
Affiliation(s)
- Sarah L. Longnus
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nina Rutishauser
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mark N. Gillespie
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL
- Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thierry P. Carrel
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maria N. Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Hao C, Zhang J, Zhang F, Wu J, Cao H, Wang W. Mitochondrial DNA may act as a biomarker to predict donor-kidney quality. Clin Transplant 2021; 35:e14469. [PMID: 34448256 DOI: 10.1111/ctr.14469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
Kidney transplantation is the best therapy for end-stage renal disease. Demand for kidney transplantation rises year-on-year, and the gap between kidney supply and demand remains large. To meet this clinical need, a gradual expansion in the supply of donors is required. However, clinics lack appropriate tools capable of quickly and accurately predicting post-transplant renal allograft function, and thus assess donor-kidney quality before transplantation. Mitochondrial DNA (mtDNA) is a key component of damage-associated molecular patterns (DAMPs) and plays an important part in ischemia-reperfusion injury (IRI), accelerating the progression of IRI by inducing inflammation and type I interferon responses. mtDNA is known to be closely involved in delayed graft function (DGF) and acute kidney injury (AKI) after transplantation. Thus, mtDNA is a potential biomarker able to predict post-transplant renal allograft function. This review summarizes mtDNA biology, the role mtDNA plays in renal transplantation, outlines advances in detecting mtDNA, and details mtDNA's able to predict post-transplant renal allograft function. We aim to elucidate the potential value of mtDNA as a biomarker in the prediction of IRI, and eventually provide help for predicting donor-kidney quality.
Collapse
Affiliation(s)
- Changzhen Hao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Huawei Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Palmisano A, Gandolfini I, Delsante M, Cantarelli C, Fiaccadori E, Cravedi P, Maggiore U. Acute Kidney Injury (AKI) before and after Kidney Transplantation: Causes, Medical Approach, and Implications for the Long-Term Outcomes. J Clin Med 2021; 10:1484. [PMID: 33918444 PMCID: PMC8038198 DOI: 10.3390/jcm10071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a common finding in kidney donors and recipients. AKI in kidney donor, which increases the risk of delayed graft function (DGF), may not by itself jeopardize the short- and long-term outcome of transplantation. However, some forms of AKI may induce graft rejection, fibrosis, and eventually graft dysfunction. Therefore, various strategies have been proposed to identify conditions at highest risk of AKI-induced DGF, that can be treated by targeting the donor, the recipient, or even the graft itself with the use of perfusion machines. AKI that occurs early post-transplant after a period of initial recovery of graft function may reflect serious and often occult systemic complications that may require prompt intervention to prevent graft loss. AKI that develops long after transplantation is often related to nephrotoxic drug reactions. In symptomatic patients, AKI is usually associated with various systemic medical complications and could represent a risk of mortality. Electronic systems have been developed to alert transplant physicians that AKI has occurred in a transplant recipient during long-term outpatient follow-up. Herein, we will review most recent understandings of pathophysiology, diagnosis, therapeutic approach, and short- and long-term consequences of AKI occurring in both the donor and in the kidney transplant recipient.
Collapse
Affiliation(s)
- Alessandra Palmisano
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
| | - Ilaria Gandolfini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
- Nephrology Unit, Parma University Hospital, 43126 Parma, Italy
| | - Marco Delsante
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
- Nephrology Unit, Parma University Hospital, 43126 Parma, Italy
| | - Chiara Cantarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
- Nephrology Unit, Parma University Hospital, 43126 Parma, Italy
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Umberto Maggiore
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (I.G.); (M.D.); (C.C.); (E.F.); (U.M.)
- Nephrology Unit, Parma University Hospital, 43126 Parma, Italy
| |
Collapse
|
13
|
Han F, Sun Q, Huang Z, Li H, Ma M, Liao T, Luo Z, Zheng L, Zhang N, Chen N, Hong L, Na N, Sun Q. Donor plasma mitochondrial DNA is associated with antibody-mediated rejection in renal allograft recipients. Aging (Albany NY) 2021; 13:8440-8453. [PMID: 33714205 PMCID: PMC8034952 DOI: 10.18632/aging.202654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/22/2021] [Indexed: 11/25/2022]
Abstract
We previously showed that donor plasma mitochondrial DNA (dmtDNA) levels were correlated with renal allograft function. The aim of the current study was to determine whether dmtDNA levels are associated with the occurrence of antibody-mediated rejection (ABMR). This is a retrospective open cohort study comprised of 167 donors and 323 recipients enrolled from January 2015 to December 2017. We quantified the mtDNA level present in donor plasma using quantitative real-time polymerase chain reaction. The average plasma dmtDNA level in the acute rejection (AR) group was higher than that of the control group (0.156 versus 0.075, p<0.001). Multivariate logistic regression analysis showed that dmtDNA levels were also significantly associated with AR (OR=1.588, 95% CI 1.337-4.561, p<0.001). When the dmtDNA level was >0.156, the probability of AR was 62.9%. The plasma dmtDNA level in the ABMR group was significantly higher than that of the T cell-mediated rejection group (0.185 versus 0.099, p=0.032). The area under the receiver operating characteristic curve of dmtDNA for prediction of ABMR was as high as 0.910 (95% CI 0.843-0.977). We demonstrated that plasma dmtDNA was an independent risk factor for ABMR, which is valuable in organ evaluation. dmtDNA level is a possible first predictive marker for ABMR.
Collapse
Affiliation(s)
- Fei Han
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qipeng Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhengyu Huang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Heng Li
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Maolin Ma
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tao Liao
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihuang Luo
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lingling Zheng
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, Henan University, Kaifeng, China
| | - Liangqing Hong
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ning Na
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiquan Sun
- Organ Transplantation Research Institution, Division of Kidney Transplantation, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Zhou Y, Cheng D, Jiang T. The role of donor-derived cell-free DNA in the detection of renal allograft injury. Nephrol Ther 2021; 17:12-17. [DOI: 10.1016/j.nephro.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/28/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
|
15
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
16
|
|
17
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|