1
|
Wan S, Wang S, He X, Song C, Wang J. Noninvasive diagnosis of interstitial fibrosis in chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2024; 46:2367021. [PMID: 38938187 PMCID: PMC11216256 DOI: 10.1080/0886022x.2024.2367021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
RATIONALE AND OBJECTIVES Researchers have delved into noninvasive diagnostic methods of renal fibrosis (RF) in chronic kidney disease, including ultrasound (US), magnetic resonance imaging (MRI), and radiomics. However, the value of these diagnostic methods in the noninvasive diagnosis of RF remains contentious. Consequently, the present study aimed to systematically delineate the accuracy of the noninvasive diagnosis of RF. MATERIALS AND METHODS A systematic search covering PubMed, Embase, Cochrane Library, and Web of Science databases for all data available up to 28 July 2023 was conducted for eligible studies. RESULTS We included 21 studies covering 4885 participants. Among them, nine studies utilized US as a noninvasive diagnostic method, eight studies used MRI, and four articles employed radiomics. The sensitivity and specificity of US for detecting RF were 0.81 (95% CI: 0.76-0.86) and 0.79 (95% CI: 0.72-0.84). The sensitivity and specificity of MRI were 0.77 (95% CI: 0.70-0.83) and 0.92 (95% CI: 0.85-0.96). The sensitivity and specificity of radiomics were 0.69 (95% CI: 0.59-0.77) and 0.78 (95% CI: 0.68-0.85). CONCLUSIONS The current early noninvasive diagnostic methods for RF include US, MRI, and radiomics. However, this study demonstrates that US has a higher sensitivity for the detection of RF compared to MRI. Compared to US, radiomics studies based on US did not show superior advantages. Therefore, challenges still exist in the current radiomics approaches for diagnosing RF, and further exploration of optimized artificial intelligence (AI) algorithms and technologies is needed.
Collapse
Affiliation(s)
- Shanshan Wan
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shiping Wang
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xinyu He
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Chao Song
- Department of Radiology, The Affiliated Anning First People’s Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jiaping Wang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Afsar B, Afsar RE, Caliskan Y, Lentine KL. Mineralocorticoid receptor blockage in kidney transplantation: too much of a good thing or not? Int Urol Nephrol 2024:10.1007/s11255-024-04256-6. [PMID: 39470940 DOI: 10.1007/s11255-024-04256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Although, kidney transplantation (KT) is the best treatment option for patients with end-stage kidney disease, long-term complications including chronic kidney allograft disease (CKAD) and major adverse cardiovascular events (MACE) are common. To decrease these complications new therapeutic options are necessary. Mineralocorticoid receptor antagonists (MRAs) are one of the promising drugs in this context. In the general population, MRAs had favorable effects on blood pressure regulation, MACE, proteinuria and progression of chronic kidney disease. In the context of KT, there are limited studies showing beneficial effects such as reducing proteinuria and oxidative stress. In this review, we performed a narrative review to assess the use and impact of MRAs in kidney transplant recipients. We found that in KTRs, MRAs are safe and they have favorable or neutral impact on blood pressure, glomerular filtration rate, urinary protein/albumin excretion, and oxidative stress. No data was found regarding major cardiovascular adverse events.
Collapse
Affiliation(s)
- Baris Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA.
| | - Rengin Elsurer Afsar
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Yasar Caliskan
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| | - Krista L Lentine
- School of Medicine, Division of Nephrology, Saint Louis University, SSM Health Saint Louis University Hospital, St. Louis, MO, USA
| |
Collapse
|
3
|
Bleich E, Vonbrunn E, Büttner-Herold M, Amann K, Daniel C. Macrophage-Induced Pro-Fibrotic Gene Expression in Tubular Cells after Ischemia/Reperfusion Is Paralleled but Not Directly Mediated by C5a/C5aR1 Signaling. Life (Basel) 2024; 14:1031. [PMID: 39202772 PMCID: PMC11355820 DOI: 10.3390/life14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemia/reperfusion (I/R) is inevitable during kidney transplantation and causes acute kidney injury (AKI), which affects immediate outcome and leads to chronic changes such as fibrotic remodeling of the graft. We investigated pro-fibrotic signaling after I/R, focusing on the complement component and receptor C5a/C5aR1 and macrophage/tubule crosstalk. Male Dark Agouti rats were subjected to I/R and their kidneys were harvested 10 min, 6 h, 24 h, 3 days, 5 days and 8 weeks after reperfusion. The development of renal fibrosis was assessed by the detection of Vimentin (VIM), α-smooth muscle actin (α-SMA) and collagen by immunohistochemistry and Sirius Red staining, respectively. The characterization of C5a/C5aR1 activity and C5aR1+ cells was performed by multiplex mRNA analysis, ELISA, immunofluorescence flow cytometry and in situ hybridization in animal models and cell culture analyses. In the cell culture experiments, we focused on macrophage/tubule cell crosstalk in co-culture experiments and mimicked in vivo conditions by hypoxia/reoxygenation and supplementation with C5a. Already 6-24 h after the induction of I/R in the rat model, C5a concentration in the plasma was significantly increased compared to the control. The matrix components VIM and α-SMA peaked on day 5 and declined after 8 weeks, when an increase in collagen was detected using Sirius Red. In contrast to early I/R-induced C5a activation, renal C5ar1 expression was maximal at day 5 and C5 expression increased until week 8, indicating that the renal upregulation of expression is not required for early complement activation. C5aR1 mRNA was detected in neutrophils and macrophages, but not in proximal tubular cells in the injured kidneys. The macrophage/tubular cell co-culture experiments showed that macrophages were mainly responsible for the increased expression of fibrosis-associated genes in tubule cells (ACTA2, VIM, SNAI1, TGFB1 and FGF-2), and hypoxia/reoxygenation had a partially enhancing effect. A direct pro-fibrotic effect of C5a was not observed. Increased TGF-ß levels were dependent on the differentiation of macrophages to the M2 subtype. In conclusion, the early activation of mesenchymal markers in tubular epithelial cells leads to long-term fibrotic remodeling characterized by VIM expression and driven by TGF-ß-dependent macrophage/tubular crosstalk. The chemoattractive properties of complement C5a may contribute to the recruitment of pro-fibrotic macrophages.
Collapse
Affiliation(s)
| | | | | | | | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, 91054 Erlangen, Germany; (E.B.); (E.V.); (M.B.-H.); (K.A.)
| |
Collapse
|
4
|
Koehler FC, Späth MR, Meyer AM, Müller RU. Fueling the success of transplantation through nutrition: recent insights into nutritional interventions, their interplay with gut microbiota and cellular mechanisms. Curr Opin Organ Transplant 2024; 29:284-293. [PMID: 38861189 DOI: 10.1097/mot.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The role of nutrition in organ health including solid organ transplantation is broadly accepted, but robust data on nutritional regimens remains scarce calling for further investigation of specific dietary approaches at the different stages of organ transplantation. This review gives an update on the latest insights into nutritional interventions highlighting the potential of specific dietary regimens prior to transplantation aiming for organ protection and the interplay between dietary intake and gut microbiota. RECENT FINDINGS Nutrition holds the potential to optimize patients' health prior to and after surgery, it may enhance patients' ability to cope with the procedure-associated stress and it may accelerate their recovery from surgery. Nutrition helps to reduce morbidity and mortality in addition to preserve graft function. In the case of living organ donation, dietary preconditioning strategies promise novel approaches to limit ischemic organ damage during transplantation and to identify the underlying molecular mechanisms of diet-induced organ protection. Functioning gut microbiota are required to limit systemic inflammation and to generate protective metabolites such as short-chain fatty acids or hydrogen sulfide. SUMMARY Nutritional intervention is a promising therapeutic concept including the pre- and rehabilitation stage in order to improve the recipients' outcome after solid organ transplantation.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
5
|
Feng D, Gui Z, Xu Z, Zhang J, Ni B, Wang Z, Liu J, Fei S, Chen H, Sun L, Gu M, Tan R. Rictor/mTORC2 signalling contributes to renal vascular endothelial-to-mesenchymal transition and renal allograft interstitial fibrosis by regulating BNIP3-mediated mitophagy. Clin Transl Med 2024; 14:e1686. [PMID: 38769658 PMCID: PMC11106512 DOI: 10.1002/ctm2.1686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms. METHODS The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout. RESULTS Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout. CONCLUSIONS Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.
Collapse
Affiliation(s)
- Dengyuan Feng
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zeping Gui
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhen Xu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of UrologyThe Affiliated Taizhou People's Hospital of Nanjing Medical UniversityTaizhouChina
| | - Jianjian Zhang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Bin Ni
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zijie Wang
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Jiawen Liu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Shuang Fei
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hao Chen
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Sun
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Min Gu
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Urologythe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Ruoyun Tan
- Department of Urologythe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
7
|
Yamanaga S, Hidaka Y, Kawabata C, Toyoda M, Tanaka K, Yamamoto Y, Inadome A, Takeda A, Yokomizo H. Water intake, baseline biopsy, and graft function after living donor kidney transplantation. Sci Rep 2024; 14:3715. [PMID: 38355944 PMCID: PMC10866883 DOI: 10.1038/s41598-024-54163-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Increased water intake is recommended for kidney transplant recipients; however, its efficacy remains controversial. We hypothesized that pre-existing histological findings of the allograft might modulate the impact of water intake. We retrospectively analyzed 167 adults with living-donor kidney transplants (April 2011-May 2020; median observation period, 77 months) whose baseline biopsy data were available. We compared the chronic-change group (n = 38) with the control group (n = 129) to assess the impact of self-reported daily water intake on the estimated glomerular filtration rate (eGFR). The range distribution of water intake was as follows: - 1000 ml (n = 4), 1000-1500 ml (n = 23), 1500-2000 ml (n = 64), 2000-2500 ml (n = 57), 2500-3000 ml (n = 16), and 3000 - ml (n = 3). Donor age was significantly higher in the chronic-change group. In the control group, the ΔeGFR/year increase was correlated with water intake. However, the increase in the water intake of the chronic-change group significantly decreased ΔeGFR/year (1000-1500 ml: + 1.95 ml/min/1.73 m2 and > 2000 ml: - 1.92 ml/min/1.73 m2, p = 0.014). This study suggested a potential influence of increased water intake on recipients with marginal grafts in living donor kidney transplantation.
Collapse
Affiliation(s)
- Shigeyoshi Yamanaga
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan.
| | - Yuji Hidaka
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan
| | - Chiaki Kawabata
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Mariko Toyoda
- Department of Nephrology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Tanaka
- Department of Surgery, Kyoto University, Kyoto, Japan
| | - Yasuhiro Yamamoto
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Akito Inadome
- Department of Urology, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Asami Takeda
- Department of Nephrology, Japanese Red Cross Nagoya Daini Hospital, Aichi, Japan
| | - Hiroshi Yokomizo
- Department of Surgery, Japanese Red Cross Kumamoto Hospital, 2-1-1 Nagamine Minami, Higashi-ku, Kumamoto, 861-8520, Japan
| |
Collapse
|
8
|
van Leeuwen LL, Ruigrok MJR, Kessler BM, Leuvenink HGD, Olinga P. Targeted delivery of galunisertib using machine perfusion reduces fibrogenesis in an integrated ex vivo renal transplant and fibrogenesis model. Br J Pharmacol 2024; 181:464-479. [PMID: 37596999 DOI: 10.1111/bph.16220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibrosis in kidney allografts is a major post-transplant complication that contributes to graft failure. Lately, multiple potent inhibitors of fibrosis-related pathways have been developed such as galunisertib, an inhibitor of the transforming growth factor-beta (TGF-β/TGFβ1) signalling pathway. This drug, however, poses risks for adverse effects when administered systemically. Therefore, we devised a new repurposing strategy in which galunisertib is administered ex vivo. We combined machine perfusion and tissue slices to explore the antifibrotic effects of galunisertib in renal grafts. EXPERIMENTAL APPROACH Porcine kidneys were subjected to 30 min of warm ischaemia, 24 h of oxygenated hypothermic machine perfusion and 6 h of normothermic machine perfusion with various treatments (i.e. untreated control, TGFβ1, galunisertib or TGFβ1 + galunisertib; n = 8 kidneys per group). To determine whether effects persisted upon ceasing treatment, kidney slices were prepared from respective kidneys and incubated for 48 h. KEY RESULTS Galunisertib treatment improved general viability without negatively affecting renal function or elevating levels of injury markers or by-products of oxidative stress during perfusion. Galunisertib also reduced inflammation and, more importantly, reduced the onset of fibrosis after 48 h of incubation. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate the value of using machine perfusion for administering antifibrotic drugs such as galunisertib, proving it to be an effective example of repurposing.
Collapse
Affiliation(s)
- L Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Nuffield Department of Medicine, Centre for Medicines Discovery, Target Discovery Institute, University of Oxford, Oxford, UK
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Mitchel J R Ruigrok
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Benedikt M Kessler
- Nuffield Department of Medicine, Centre for Medicines Discovery, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
9
|
Kong W, Wang J, Wang M, Ni A, Huang X, Chen L, Zhou Q, Wang H, Chen J, Han F. The correlation of interstitial change with renal prognosis in patients with myeloperoxidase-ANCA-associated glomerulonephritis: a single-center retrospective analysis. Clin Rheumatol 2024; 43:377-386. [PMID: 37646859 DOI: 10.1007/s10067-023-06753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
OBJECTS We aim to explore the correlation between active/chronic tubulointerstitial injury and renal survival, and to compare their predictive value in patients with myeloperoxidase (MPO)-anti-neutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis (AAGN). METHOD A total of 225 patients with MPO-AAGN diagnosed between February 2004 and December 2020 were included. Survival and univariate/multivariate Cox regression analyses were used to analyze the prognostic value of interstitial inflammation and interstitial fibrosis/tubular atrophy (IF/TA). RESULTS Of the 225 patients, 73 (32.4%) patients developed end-stage renal disease (ESRD) requiring maintenance dialysis. Interstitial inflammation>50% and IF/TA>50% were important predictors for ESRD in MPO-AAGN in multivariate Cox regression analysis adjusted by age, gender, estimated glomerular filtration rate (eGFR)≤15 ml/min/1.73m2, and normal glomeruli% (classified by <25%, 25-50%, >50%). Furthermore, we conducted stratified Cox regression analysis and found different results in the subgroups of eGFR>15 ml/min/1.73m2 and eGFR≤15 ml/min/1.73m2. Interstitial inflammation>50% and IF/TA>50% were significant risk factors for ESRD in the subgroup of eGFR>15 ml/min/1.73m2, but not or less significant in the subgroup of eGFR≤15 ml/min/1.73m2. Similarly, the survival analysis according to interstitial inflammation>50%/≤50% and IF/TA>50%/≤50% showed significant differences in the subgroup of eGFR>15 ml/min/1.73m2, but not or less significant in the subgroup of eGFR≤15 ml/min/1.73m2. CONCLUSIONS Interstitial inflammation>50% and IF/TA>50% were prognostic factors for renal survival in MPO-AAGN. In particular, interstitial inflammation and IF/TA had a better predictive ability in the subgroup of eGFR>15 ml/min/1.73m2. Key Points • Interstitial inflammation>50% and IF/TA>50% can help to predict renal survival in MPO-AAGN. • Both interstitial inflammation and IF/TA had a better predictive ability in the subgroup of eGFR>15 ml/min/1.73m2 than those in the subgroup of eGFR≤15 ml/min/1.73m2.
Collapse
Affiliation(s)
- Weiwei Kong
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Jiahui Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Meifang Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Anqi Ni
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Xiaohan Huang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Liangliang Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, 79 Qingchun Road, Zhejiang, 310003, Hangzhou, China.
| |
Collapse
|
10
|
Zhang J, Zhang Y, Feng D, Zhou H, Gui Z, Zheng M, Hang Z, Gu M, Tan R. Disruption of RCAN1.4 expression mediated by YY1/HDAC2 modulates chronic renal allograft interstitial fibrosis. Cell Death Discov 2023; 9:271. [PMID: 37507403 PMCID: PMC10382480 DOI: 10.1038/s41420-023-01574-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic allograft dysfunction (CAD) is a major factor that hinders kidney transplant survival in the long run. Epithelial-mesenchymal transition (EMT) has been confirmed to significantly contribute to interstitial fibrosis/tubular atrophy (IF/TA), which is the main histopathological feature of CAD. Aberrant expression of the regulator of calcineurin 1 (RCAN1), recognized as an endogenous inhibitor of the calcineurin phosphatase, has been shown to be extensively involved in various kidney diseases. However, it remains unclear how RCAN1.4 regulates IF/TA formation in CAD patients. Herein, an in vivo mouse renal transplantation model and an in vitro model of human renal tubular epithelial cells (HK-2) treated with tumor necrosis factor-α (TNF-α) were employed. Our results proved that RCAN1.4 expression was decreased in vivo and in vitro, in addition to the up-regulation of Yin Yang 1 (YY1), a transcription factor that has been reported to convey multiple functions in chronic kidney disease (CKD). Knocking in of RCAN1.4 efficiently attenuated chronic renal allograft interstitial fibrosis in vivo and inhibited TNF-α-induced EMT in vitro through regulating anti-oxidative stress and the calcineurin/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. In addition, suppression of YY1 mediated by shRNA or siRNA alleviated TNF-α-induced EMT through abolishing reactive species partly in an RCAN1.4-dependent manner. Notably, we confirmed that YY1 negatively regulated RCAN1.4 transcription by directly interacting with the RCAN1.4 promoter. In addition, histone deacetylase 2 (HDAC2) interacted with YY1 to form a multi-molecular complex, which was involved in TNF-α-induced RCAN1.4 transcriptional repression. Therefore, RCAN1.4 is suggested to be modulated by the YY1/HDAC2 transcription repressor complex in an epigenetic manner, which is a mediated nephroprotective effect partly through modulating O2⋅- generation and the calcineurin/NFATc1 signaling pathway. Thus, the YY1-RCAN1.4 axis constitutes an innovative target for IF/TA treatment in CAD patients.
Collapse
Affiliation(s)
- Jianjian Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Yao Zhang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Dengyuan Feng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Hai Zhou
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zeping Gui
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ming Zheng
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Zhou Hang
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Min Gu
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Ruoyun Tan
- Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 210029, Nanjing, China.
| |
Collapse
|
11
|
Abstract
When discovered in the early 2000s, interleukin-33 (IL-33) was characterized as a potent driver of type 2 immunity and implicated in parasite clearance, as well as asthma, allergy, and lung fibrosis. Yet research in other models has since revealed that IL-33 is a highly pleiotropic molecule with diverse functions. These activities are supported by elusive release mechanisms and diverse expression of the IL-33 receptor, STimulation 2 (ST2), on both immune and stromal cells. Interestingly, IL-33 also supports type 1 immune responses during viral and tumor immunity and after allogeneic hematopoietic stem cell transplantation. Yet the IL-33-ST2 axis is also critical to the establishment of systemic homeostasis and tissue repair and regeneration. Despite these recent findings, the mechanisms by which IL-33 governs the balance between immunity and homeostasis or can support both effective repair and pathogenic fibrosis are poorly understood. As such, ongoing research is trying to understand the potential reparative and regulatory versus pro-inflammatory and pro-fibrotic roles for IL-33 in transplantation. This review provides an overview of the emerging regenerative role of IL-33 in organ homeostasis and tissue repair as it relates to transplantation immunology. It also outlines the known impacts of IL-33 in commonly transplanted solid organs and covers the envisioned roles for IL-33 in ischemia-reperfusion injury, rejection, and tolerance. Finally, we give a comprehensive summary of its effects on different cell populations involved in these processes, including ST2 + regulatory T cells, innate lymphoid cell type 2, as well as significant myeloid cell populations.
Collapse
|
12
|
Huang X, Nie F, Zhu J, Liu L, Wang N. Application value of shear-wave elastography combined with monochrome superb microvascular imaging in renal allograft chronic rejection. Clin Hemorheol Microcirc 2022; 82:303-311. [PMID: 36057814 DOI: 10.3233/ch-221443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Conventional ultrasound (US), which include gray scale US and Doppler US, is the first-line imaging modality for the evaluation of renal allograft; however, conventional US indicators have limitations. OBJECTIVE To explore the application value of shear-wave elastography (SWE) combined with monochrome superb microvascular imaging (mSMI) in renal allograft chronic rejection (CR). METHODS From November 2021 to February 2022 in the Lanzhou University Second Hospital, the US features of 54 patients with renal allograft were retrospectively analyzed. Patients were categorized into two groups: stable group(n = 44) and CR group(n = 10), with clinical diagnosis as reference standard. The vascular index (VI) on mSMI and parenchymal stiffness were measured in the middle cortex of all renal allografts and receiver operating characteristic (ROC) curves were drawn to evaluate the feasibility of differentiation. Statistically significant US features and biochemical indicators such as creatinine were scored, and the results of the scores were analyzed by ROC curve. RESULTS The VI on mSMI of the stable group (49.5±2.0) was significantly greater than that of the CR group (33.8±5.9) (P = 0.028). There was a statistically significant difference in parenchymal stiffness between stable group (16.2kPa±1.2) and CR group (33.9kPa±6.6) (P = 0.027). The sensitivity was 90% and specificity was 81.8% of the scores in the differentiation of stable group from CR group (cut-off value, 2; P = 0.000). CONCLUSION SWE combined with mSMI may help differentiate stable renal allograft from renal allograft CR and have the potential application value in the diagnosis of renal allograft CR.
Collapse
Affiliation(s)
- Xiao Huang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Ju Zhu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Luping Liu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| | - Nan Wang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Cuiyingmen, Chengguan District, Lanzhou, China.,Gansu Province Clinical Research Center for Ultrasonography, Lanzhou, China
| |
Collapse
|
13
|
Adam BA. Importance of Confounding Factors in the Evaluation of Surrogate Measures for Kidney Transplant Fibrosis. KIDNEY360 2022; 3:1829-1830. [PMID: 36514406 PMCID: PMC9717621 DOI: 10.34067/kid.0005852022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Benjamin A Adam
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Chauveau B, Merville P, Soulabaille B, Taton B, Kaminski H, Visentin J, Vermorel A, Bouzgarrou M, Couzi L, Grenier N. Magnetic Resonance Elastography as Surrogate Marker of Interstitial Fibrosis in Kidney Transplantation: A Prospective Study. KIDNEY360 2022; 3:1924-1933. [PMID: 36514413 PMCID: PMC9717636 DOI: 10.34067/kid.0004282022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Background Fibrosis progression is a major prognosis factor in kidney transplantation. Its assessment requires an allograft biopsy, which remains an invasive procedure at risk of complications. Methods We assessed renal stiffness by magnetic resonance elastography (MRE) as a surrogate marker of fibrosis in a prospective cohort of kidney transplant recipients compared with the histologic gold standard. Interstitial fibrosis was evaluated by three methods: the semi-quantitative Banff ci score, a visual quantitative evaluation by a pathologist, and a computer-assisted quantitative evaluation. MRE-derived stiffness was assessed at the superior, median, and inferior poles of the allograft. Results We initially enrolled 73 patients, but only 55 had measurements of their allograft stiffness by MRE before an allograft biopsy. There was no significant correlation between MRE-derived stiffness at the biopsy site and the ci score (ρ=-0.25, P=0.06) or with the two quantitative assessments (pathologist: ρ=-0.25, P=0.07; computer assisted: ρ=-0.21, P=0.12). We observed negative correlations between the stiffness of both the biopsy site and the whole allograft, with either the glomerulosclerosis percentage (ρ=-0.32, P=0.02 and ρ=-0.31, P=0.02, respectively) and the overall nephron fibrosis percentage, defined as the mean of the percentages of glomerulosclerosis and interstitial fibrosis (ρ=-0.30, P=0.02 and ρ=-0.28, P=0.04, respectively). At patient level, mean MRE-derived stiffness was similar across the three poles of the allograft (±0.25 kPa). However, a high variability of mean stiffness was found between patients, suggesting a strong influence of confounding factors. Finally, no significant correlation was found between mean MRE-derived stiffness and the slope of eGFR (P=0.08). Conclusions MRE-derived stiffness does not directly reflect the extent of fibrosis in kidney transplantation.
Collapse
Affiliation(s)
- Bertrand Chauveau
- CHU de Bordeaux, Service de Pathologie, Hôpital Pellegrin, Place Amélie Raba Léon, Bordeaux, France,Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| | - Pierre Merville
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Bruno Soulabaille
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Benjamin Taton
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Hannah Kaminski
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Jonathan Visentin
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Laboratoire d’Immunologie et Immunogénétique, Hôpital Pellegrin, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Mounir Bouzgarrou
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| | - Lionel Couzi
- Université de Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France,CHU de Bordeaux, Service de Néphrologie, Transplantation Dialyse, Aphérèses, Hôpital Pellegrin, Bordeaux, France
| | - Nicolas Grenier
- CHU de Bordeaux, Service d’Imagerie Diagnostique et Interventionnelle de l’Adulte, Hôpital Pellegrin, France
| |
Collapse
|