1
|
Masuda S, Lemaitre F, Barten MJ, Bergan S, Shipkova M, van Gelder T, Vinks S, Wieland E, Bornemann-Kolatzki K, Brunet M, de Winter B, Dieterlen MT, Elens L, Ito T, Johnson-Davis K, Kunicki PK, Lawson R, Lloberas N, Marquet P, Millan O, Mizuno T, Moes DJAR, Noceti O, Oellerich M, Pattanaik S, Pawinski T, Seger C, van Schaik R, Venkataramanan R, Walson P, Woillard JB, Langman LJ. Everolimus Personalized Therapy: Second Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2024:00007691-990000000-00267. [PMID: 39331837 DOI: 10.1097/ftd.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/09/2024] [Indexed: 09/29/2024]
Abstract
ABSTRACT The Immunosuppressive Drugs Scientific Committee of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology established the second consensus report to guide Therapeutic Drug Monitoring (TDM) of everolimus (EVR) and its optimal use in clinical practice 7 years after the first version was published in 2016. This version provides information focused on new developments that have arisen in the last 7 years. For the general aspects of the pharmacology and TDM of EVR that have retained their relevance, readers can refer to the 2016 document. This edition includes new evidence from the literature, focusing on the topics updated during the last 7 years, including indirect pharmacological effects of EVR on the mammalian target of rapamycin complex 2 with the major mechanism of direct inhibition of the mammalian target of rapamycin complex 1. In addition, various concepts and technical options to monitor EVR concentrations, improve analytical performance, and increase the number of options available for immunochemical analytical methods have been included. Only limited new pharmacogenetic information regarding EVR has emerged; however, pharmacometrics and model-informed precision dosing have been constructed using physiological parameters as covariates, including pharmacogenetic information. In clinical settings, EVR is combined with a decreased dose of calcineurin inhibitors, such as tacrolimus and cyclosporine, instead of mycophenolic acid. The literature and recommendations for specific organ transplantations, such as that of the kidneys, liver, heart, and lungs, as well as for oncology and pediatrics have been updated. EVR TDM for pancreatic and islet transplantation has been added to this edition. The pharmacodynamic monitoring of EVR in organ transplantation has also been updated. These updates and additions, along with the previous version of this consensus document, will be helpful to clinicians and researchers treating patients receiving EVR.
Collapse
Affiliation(s)
- Satohiro Masuda
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, IRSET-UMR S 1085, Rennes, France
- INSERM, Centre d'Investigation Clinique 1414, Rennes, France
- FHU SUPPORT, Rennes, France
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Norway
| | | | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Vinks
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- NDA Partners, A Propharma Group Company, Washington District of Columbia
| | | | | | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Brenda de Winter
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Maja-Theresa Dieterlen
- Laboratory Management Research Laboratory, Cardiac Surgery Clinic, Heart Center Leipzig GmbH, University Hospital, Leipzig, Germany
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenetic and Pharmacokinetics Research Group (PMGK) Louvain Drug for Research Institute (LDRI), Catholic University of Louvain, (UCLouvain), Brussels, Belgium
| | - Taihei Ito
- Department of Organ Transplant Surgery; Fujita Health University School of Medicine, Toyoake Aichi, Japan
| | - Kamisha Johnson-Davis
- University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Pawel K Kunicki
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Roland Lawson
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
| | - Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Pierre Marquet
- University of Limoges, Inserm U1248, Pharmacology & Transplantation, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, France
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ofelia Noceti
- National Center for Liver Transplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Smita Pattanaik
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Tomasz Pawinski
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | | | - Ron van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Phil Walson
- University Medical School, Göttingen, Germany
| | - Jean-Baptiste Woillard
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU de Limoges, Limoges, France; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
2
|
Zheng Z, Sun H, Hu X, Xuan Z, Fu M, Bai Y, Du Y, Liu B, Sui X, Zheng J, Shao C. Prevention and treatment strategies for kidney transplant recipients in the context of long-term existence of COVID-19. Front Med (Lausanne) 2024; 11:1287836. [PMID: 38633308 PMCID: PMC11021598 DOI: 10.3389/fmed.2024.1287836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
The sudden outbreak of coronavirus disease 2019 (COVID-19) in early 2020 posed a massive threat to human life and caused an economic upheaval worldwide. Kidney transplant recipients (KTRs) became susceptible to infection during the COVID-19 pandemic owing to their use of immunosuppressants, resulting in increased hospitalization and mortality rates. Although the current epidemic situation is alleviated, the long-term existence of COVID-19 still seriously threatens the life and health of KTRs with low immunity. The Omicron variant, a highly infectious but less-pathogenic strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised concerns among transplant physicians regarding managing KTRs diagnosed with this variant. However, currently, there are no clear and unified guidelines for caring for KTRs infected with this variant. Therefore, we aimed to summarize the ongoing research on drugs that can treat Omicron variant infections in KTRs and explore the potential of adjusting immunotherapy strategies to enhance their responsiveness to vaccines. Herein, we discuss the situation of KTRs since the emergence of COVID-19 and focus on various prevention and treatment strategies for KTRs since the Omicron variant outbreak. We hope to assist physicians in managing KTRs in the presence of long-term COVID-19 variants.
Collapse
Affiliation(s)
- Zeyuan Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Huimin Sun
- Central Laboratory, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyan Hu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zuodong Xuan
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Meiling Fu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yang Bai
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yifan Du
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Bin Liu
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiuyuan Sui
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianzhong Zheng
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
3
|
Elmahdi R, Ward D, Ernst MT, Poulsen G, Hallas J, Pottegård A, Jess T. Impact of immunosuppressive therapy on SARS-CoV-2 mRNA vaccine effectiveness in patients with immune-mediated inflammatory diseases: a Danish nationwide cohort study. BMJ Open 2024; 14:e077408. [PMID: 38387988 PMCID: PMC10882296 DOI: 10.1136/bmjopen-2023-077408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE Patients receiving immunosuppressives have been excluded from trials for SARS-CoV-2 vaccine efficacy. Investigation of immunosuppressants' impact on effectiveness of vaccines, particularly in patients with immune-mediated inflammatory diseases (IMID), is therefore required. DESIGN We performed a nationwide cohort study to assess the risk of COVID-19 infection in vaccinated patients with IMID exposed to immunosuppressives compared with IMID unexposed to immunosuppressives. Exposure to immunosuppressives in the 120 days before receiving the second SARS-CoV-2 mRNA vaccination was assessed. Patients were followed from date of second vaccination and weighted Cox models were used to estimate the risk of infection associated with immunosuppressives. Secondary outcomes included hospitalisation and death associated with a positive SARS-CoV-2 test. Risk of infection by immunosuppressant drug class was also analysed. SETTING This study used population-representative data from Danish national health registries in the period from 1 January to 30 November 2021. RESULTS Overall, 152 440 patients were followed over 19 341 person years. Immunosuppressants were associated with a significantly increased risk of infection across IMID (HR: 1.4, 95% CI 1.2 to 1.5), in inflammatory bowel disease (IBD) (HR: 1.6, 95% CI 1.4 to 1.9) and arthropathy (HR: 1.3, 95% CI 1.1 to 1.4) but not psoriasis (HR: 1.1, 95% CI 0.9 to 1.4). Immunosuppressants were also associated with an increased risk of hospitalisation across IMID (HR: 1.4, 95% CI 1.1 to 2.0), particularly in IBD (HR: 2.1, 95% CI 1.0 to 4.1). No significantly increased risk of death in immunosuppressant exposed patients was identified. Analyses by immunosuppressant drug class showed increased COVID-19 infection and hospitalisation with anti-tumour necrosis factor (TNF), systemic corticosteroid, and rituximab and other immunosuppressants in vaccinated patients with IMID. CONCLUSION Immunosuppressive therapies reduced effectiveness of mRNA SARS-CoV-2 vaccination against infection and hospitalisation in patients with IMID. Anti-TNF, systemic corticosteroids, and rituximab and other immunosuppressants were particularly associated with these risks.
Collapse
Affiliation(s)
- Rahma Elmahdi
- Department of Clinical Medicine, Aalborg Universitet, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| | - Daniel Ward
- Department of Clinical Medicine, Aalborg Universitet, Copenhagen, Denmark
| | - Martin T Ernst
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Gry Poulsen
- Department of Clinical Medicine, Aalborg Universitet, Copenhagen, Denmark
| | - Jesper Hallas
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Anton Pottegård
- Clinical Pharmacology and Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Syddanmark, Denmark
| | - Tine Jess
- Department of Clinical Medicine, Aalborg Universitet, Copenhagen, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, North Denmark Region, Denmark
| |
Collapse
|
4
|
Herrera S, Aguado JM, Candel FJ, Cordero E, Domínguez-Gil B, Fernández-Ruiz M, Los Arcos I, Len Ò, Marcos MÁ, Muñez E, Muñoz P, Rodríguez-Goncer I, Sánchez-Céspedes J, Valerio M, Bodro M. Executive summary of the consensus statement of the group for the study of infection in transplantation and other immunocompromised host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the treatment of SARS-CoV-2 infection in solid organ transplant recipients. Transplant Rev (Orlando) 2023; 37:100788. [PMID: 37591117 DOI: 10.1016/j.trre.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Affiliation(s)
- Sabina Herrera
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain
| | - Jose M Aguado
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Francisco Javier Candel
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, Hospital Clínico Universitario San Carlos, Madrid 28040, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital Clínico San Carlos, Madrid, Spain
| | - Elisa Cordero
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | | | - Mario Fernández-Ruiz
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Ibai Los Arcos
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | - Òscar Len
- Infectious Diseases Department, Hospital Universitari Vall D'Hebron, Barcelona, Spain
| | | | - Elena Muñez
- Infectious Diseases Unit, Internal Medicine Department, University Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Patricia Muñoz
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Infectious Diseases Unit, Hospital Universitario 12 de Octubre (Madrid), Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Javier Sánchez-Céspedes
- Infectious Diseases Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina Sevilla, Sevilla, Spain
| | - Maricela Valerio
- Department of Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, 9 Madrid, Spain
| | - Marta Bodro
- Department of Infectious Diseases, Hospital Clínic, IDIBAPS (Institut D'Investigacions Biomèdiques Agust Pi I Sunyer), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
5
|
Manzia TM, Sensi B, Conte LE, Siragusa L, Angelico R, Frongillo F, Tisone G. Evaluation of Humoral Response following SARS-CoV-2 mRNA-Based Vaccination in Liver Transplant Recipients Receiving Tailored Immunosuppressive Therapy. J Clin Med 2023; 12:6913. [PMID: 37959382 PMCID: PMC10650358 DOI: 10.3390/jcm12216913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Background: The role of tailored immunosuppression (IS) in the development of the humoral response (HR) to SARS-CoV-2 mRNA-based vaccination in liver transplant (LT) recipients is unknown. Methods: This is a single-centre prospective study of patients who underwent LT between January 2015 and December 2021 and who have received three doses of mRNA-based SARS-CoV-2 vaccination. Patients undergoing Tacrolimus-based immunosuppression (TAC-IS) were compared with those undergoing Everolimus-based immunosuppression (EVR-IS). Patients receiving the TAC-EVR combination were divided into two groups based on trough TAC concentrations, i.e., above or below 5 ng/mL. HR (analysed with ECLIA) was assessed at 30 to 135 days after vaccination. The primary outcome was the presence of a positive antibody titre (≥0.8 U/mL). Secondary outcomes were the presence of a highly protective antibody titre (≥142 U/mL), median antibody titre, and incidence of COVID-19. Results: Sixty-one participants were included. Twenty-four (40%) were receiving TAC-IS and thirty-seven (60%) were receiving EVR-IS. At the median follow-up of 116 (range: 89-154) days, there were no significant differences in positive antibody titre (95.8% vs. 94.6%; p = 0.8269), highly-protective antibody titre (83.3% vs. 81.1%; p = 0.8231), median antibody titre (2410 [IQ range 350-2500] vs. 1670 [IQ range 380-2500]; p = 0.9450), and COVID-19 incidence (0% vs. 5.4%; p = 0.5148). High serum creatinine and low estimated glomerular filtration rate were risk factors for a weak or absent HR. Conclusions: Three doses of mRNA-based SARS-CoV-2 vaccination yielded a highly protective HR in LT recipients. The use of TAC or EVR-based IS does not appear to influence HR or antibody titre, while renal disease is a risk factor for a weak or null HR.
Collapse
Affiliation(s)
- Tommaso Maria Manzia
- Department of Surgical Science, Università degli Studi di Roma “Tor Vergata”, 00133 Rome, Italy (B.S.)
| | - Bruno Sensi
- Department of Surgical Science, Università degli Studi di Roma “Tor Vergata”, 00133 Rome, Italy (B.S.)
| | - Luigi Eduardo Conte
- Department of Surgical Science, Università degli Studi di Roma “Tor Vergata”, 00133 Rome, Italy (B.S.)
| | - Leandro Siragusa
- Department of Surgical Science, Università degli Studi di Roma “Tor Vergata”, 00133 Rome, Italy (B.S.)
| | - Roberta Angelico
- Department of Surgical Science, Università degli Studi di Roma “Tor Vergata”, 00133 Rome, Italy (B.S.)
| | - Francesco Frongillo
- Department of Surgery-Transplantation Service, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Giuseppe Tisone
- Department of Surgery-Transplantation Service, Catholic University of the Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
6
|
Fylaktou A, Stai S, Kasimatis E, Xochelli A, Nikolaidou V, Papadopoulou A, Myserlis G, Lioulios G, Asouchidou D, Giannaki M, Yannaki E, Tsoulfas G, Papagianni A, Stangou M. Humoral and Cellular Immunity Are Significantly Affected in Renal Transplant Recipients, following Vaccination with BNT162b2. Vaccines (Basel) 2023; 11:1670. [PMID: 38006002 PMCID: PMC10674678 DOI: 10.3390/vaccines11111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Renal transplant recipients (RTRs) tend to mount weaker immune responses to vaccinations, including vaccines against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS Humoral immunity was assessed using anti-receptor binding domain (RBD) and neutralizing antibodies (NAb) serum levels measured by ELISA, and cellular immunity was assessed using T-, B-, NK, natural killer-like T (NKT)-cell subpopulations, and monocytes measured by flow cytometry, and also specific T-cell immunity, at predefined time points after BNT162b2 vaccination, in 57 adult RTRs. RESULTS Administration of three booster doses was necessary to achieve anti-RBD and NAb protective levels in almost all patients (92.98%). Ab production, at several time points, was positively correlated with the corresponding renal function and inversely correlated with hemodialysis vintage (HDV) and treatment with mycophenolic acid (MPA). A gradual rise in several cell subpopulations, including total lymphocytes (p = 0.026), memory B cells (p = 0.028), activated CD4 (p = 0.005), and CD8 cells (p = 0.001), was observed even after the third vaccination dose, while a significant reduction in CD3+PD1+ (p = 0.002), NKT (p = 0.011), and activated NKT cells (p = 0.034) was noted during the same time interval. Moreover, SARS-CoV-2-specific T-cells were present in 41% of the patients who were unable to develop Nabs, and their positivity rates four months after the second dose were in inverse correlation with monocytes (p = 0.045) and NKT cells (p = 0.01). CONCLUSIONS SARS-CoV-2-specific T-cell responses preceded the humoral ones, while two booster doses were needed for this group of immunocompromised patients to mount a protective immune response.
Collapse
Affiliation(s)
- Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Stamatia Stai
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Efstratios Kasimatis
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
| | - Aliki Xochelli
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Vasiliki Nikolaidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Anastasia Papadopoulou
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Grigorios Myserlis
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Georgios Lioulios
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Despoina Asouchidou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece; (A.F.); (A.X.); (V.N.); (D.A.)
| | - Maria Giannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Evangelia Yannaki
- Hematology Department-Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center, “George Papanikolaou” Hospital, 57010 Thessaloniki, Greece; (A.P.); (M.G.); (E.Y.)
| | - Georgios Tsoulfas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Transplant Surgery, Hippokration Hospital, 54642 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Maria Stangou
- Department of Nephrology, Hippokration Hospital, 54642 Thessaloniki, Greece; (S.S.); (E.K.); (G.L.); (A.P.)
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
7
|
Messchendorp AL, Gansevoort RT. Vaccinated kidney transplant recipients are yet not sufficiently protected against COVID-19. Nephrol Dial Transplant 2023; 38:2423-2425. [PMID: 37370226 PMCID: PMC10615622 DOI: 10.1093/ndt/gfad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 06/29/2023] Open
Affiliation(s)
- A Lianne Messchendorp
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Malahe SRK, Hartog YD, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Remmerswaal EBM, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JS, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. The role of interleukin-21 in COVID-19 vaccine-induced B cell-mediated immune responses in patients with kidney disease and kidney transplant recipients. Am J Transplant 2023; 23:1411-1424. [PMID: 37270109 PMCID: PMC10234364 DOI: 10.1016/j.ajt.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023]
Abstract
T-cell-mediated help to B cells is required for the development of humoral responses, in which the cytokine interleukin (IL)-21 is key. Here, we studied the mRNA-1273 vaccine-induced SARS-CoV-2-specific memory T-cell IL-21 response, memory B cell response, and immunoglobulin (Ig)G antibody levels in peripheral blood at 28 days after the second vaccination by ELISpot and the fluorescent bead-based multiplex immunoassay, respectively. We included 40 patients with chronic kidney disease (CKD), 34 patients on dialysis, 63 kidney transplant recipients (KTR), and 47 controls. We found that KTR, but not patients with CKD and those receiving dialysis, showed a significantly lower number of SARS-CoV-2-specific IL-21 producing T cells than controls (P < .001). KTR and patients with CKD showed lower numbers of SARS-CoV-2-specific IgG-producing memory B cells when compared with controls (P < .001 and P = .01, respectively). The T-cell IL-21 response was positively associated with the SARS-CoV-2-specific B cell response and the SARS-CoV-2 spike S1-specific IgG antibody levels (both Pearson r = 0.5; P < .001). In addition, SARS-CoV-2-specific B cell responses were shown to be IL-21 dependent. Taken together, we show that IL-21 signaling is important in eliciting robust B cell-mediated immune responses in patients with kidney disease and KTR.
Collapse
Affiliation(s)
- S Reshwan K Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Wim J R Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Debbie van Baarle
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands; Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Alicia M Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dimitri A Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - A Lianne Messchendorp
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Renate G van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Frederike J Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan-Stephan Sanders
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Marcia M L Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marlies E J Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
9
|
Bell S, Perkins GB, Anandh U, Coates PT. COVID and the Kidney: An Update. Semin Nephrol 2023; 43:151471. [PMID: 38199827 DOI: 10.1016/j.semnephrol.2023.151471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, has led to a global pandemic that continues to be responsible for ongoing health issues for people worldwide. Immunocompromised individuals such as kidney transplant recipients and dialysis patients have been and continue to be among the most affected, with poorer outcomes after infection, impaired response to COVID-19 vaccines, and protracted infection. The pandemic also has had a significant impact on patients with underlying chronic kidney disease (CKD), with CKD increasing susceptibility to COVID-19, risk of hospital admission, and mortality. COVID-19 also has been shown to lead to acute kidney injury (AKI) through both direct and indirect mechanisms. The incidence of COVID-19 AKI has been decreasing as the pandemic has evolved, but continues to be associated with adverse patient outcomes correlating with the severity of AKI. There is also increasing evidence examining the longer-term effect of COVID-19 on the kidney demonstrating continued decline in kidney function several months after infection. This review summarizes the current evidence examining the impact of COVID-19 on the kidney, covering both the impact on patients with CKD, including patients receiving kidney replacement therapy, in addition to discussing COVID-19 AKI.
Collapse
Affiliation(s)
- Samira Bell
- Division of Population Health and Genomics, University of Dundee, Dundee, Scotland.
| | - Griffith B Perkins
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| | - Urmila Anandh
- Department of Nephrology, Amrita Hospitals, Faridabad, Haryana, India
| | - P Toby Coates
- University of Adelaide, South Australia, 5005 Australia; Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide
| |
Collapse
|
10
|
Subramanian V. Susceptibility to SARS-CoV-2 Infection and Immune Responses to COVID-19 Vaccination Among Recipients of Solid Organ Transplants. J Infect Dis 2023; 228:S34-S45. [PMID: 37539762 PMCID: PMC10401623 DOI: 10.1093/infdis/jiad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Solid organ transplant recipients (SOTRs) are at high risk for infections including SARS-CoV-2, primarily due to use of immunosuppressive therapies that prevent organ rejection. Furthermore, these immunosuppressants are typically associated with suboptimal responses to vaccination. While COVID-19 vaccines have reduced the risk of COVID-19-related morbidity and mortality in SOTRs, breakthrough infection rates and death remain higher in this population compared with immunocompetent individuals. Approaches to enhancing response in SOTRs, such as through administration of additional doses and heterologous vaccination, have resulted in increased seroresponse and antibody levels. In this article, safety and immunogenicity of mRNA COVID-19 vaccines in SOTRs are explored by dose. Key considerations for clinical practice and the current vaccine recommendations for SOTRs are discussed within the context of the dynamic COVID-19 vaccination guideline landscape. A thorough understanding of these topics is essential for determining public health and vaccination strategies to help protect immunocompromised populations, including SOTRs.
Collapse
Affiliation(s)
- Vijay Subramanian
- Transplant Institute, Tampa General Hospital and University of South Florida Morsani School of Medicine, Tampa, Florida, USA
| |
Collapse
|
11
|
Gamberini MR, Zuccato C, Zurlo M, Cosenza LC, Finotti A, Gambari R. Effects of Sirolimus Treatment on Fetal Hemoglobin Production and Response to SARS-CoV-2 Vaccination: A Case Report Study. Hematol Rep 2023; 15:432-439. [PMID: 37489374 PMCID: PMC10366771 DOI: 10.3390/hematolrep15030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
The β-thalassemias are a group of monogenic hereditary hematological disorders caused by deletions and/or mutations of the β-globin gene, leading to low or absent production of adult hemoglobin (HbA). For β-thalassemia, sirolimus has been under clinical consideration in two trials (NCT03877809 and NCT04247750). A reduced immune response to anti-SARS-CoV-2 vaccination has been reported in organ recipient patients treated with the immunosuppressant sirolimus. Therefore, there was some concern regarding the fact that monotherapy with sirolimus would reduce the antibody response after SARS-CoV-2 vaccination. In the representative clinical case reported in this study, sirolimus treatment induced the expected increase of fetal hemoglobin (HbF) but did not prevent the production of anti-SARS-CoV-2 IgG after vaccination with mRNA-1273 (Moderna). In our opinion, this case report should stimulate further studies on β-thalassemia patients under sirolimus monotherapy in order to confirm the safety (or even the positive effects) of sirolimus with respect to the humoral response to anti-SARS-CoV-2 vaccination. In addition, considering the extensive use of sirolimus for the treatment of other human pathologies (for instance, in organ transplantation, systemic lupus erythematosus, autoimmune cytopenia, and lymphangioleiomyomatosis), this case report study might be of general interest, as large numbers of patients are currently under sirolimus treatment.
Collapse
Affiliation(s)
- Maria Rita Gamberini
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Unità Operativa Interdipartimentale di Day Hospital della Talassemia e delle Emoglobinopatie, Arcispedale S. Anna di Ferrara, 44124 Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center "Chiara Gemmo and Elio Zago" for the Research on Thalassemia, Università degli Studi di Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
12
|
Hausinger RI, Bachmann Q, Crone-Rawe T, Hannane N, Monsef I, Haller B, Heemann U, Skoetz N, Kreuzberger N, Schmaderer C. Effectiveness, Immunogenicity and Harms of Additional SARS-CoV-2 Vaccine Doses in Kidney Transplant Recipients: A Systematic Review. Vaccines (Basel) 2023; 11:vaccines11040863. [PMID: 37112775 PMCID: PMC10141039 DOI: 10.3390/vaccines11040863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) who have a highly impaired immune response are in need of intensified and safe vaccination strategies to achieve seroconversion and prevent severe disease. METHODS We searched the Web of Science Core Collection, the Cochrane COVID-19 Study Register and the WHO COVID-19 global literature on coronavirus disease from January 2020 to 22 July 2022 for prospective studies that assessed immunogenicity and efficacy after three or more SARS-CoV-2 vaccine doses. RESULTS In 37 studies on 3429 patients, de novo seroconversion after three and four vaccine doses ranged from 32 to 60% and 25 to 37%. Variant-specific neutralization was 59 to 70% for Delta and 12 to 52% for Omicron. Severe disease after infection was rarely reported but all concerned KTRs lacked immune responses after vaccination. Studies investigating the clinical course of COVID-19 found remarkably higher rates of severe disease than in the general population. Serious adverse events and acute graft rejections were very rare. Substantial heterogeneity between the studies limited their comparability and summary. CONCLUSION Additional SARS-CoV-2 vaccine doses are potent and safe in general terms as well as regarding transplant-specific outcomes whilst the Omicron wave remains a significant threat to KTRs without adequate immune responses.
Collapse
Affiliation(s)
- Renate Ilona Hausinger
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Quirin Bachmann
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Timotius Crone-Rawe
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nora Hannane
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ina Monsef
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Haller
- Institute for AI and Informatics in Medicine, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nicole Skoetz
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Nina Kreuzberger
- Evidence-Based Medicine, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum Rechts der Isar, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
13
|
Deguchi H, Sakamoto A, Nakamura N, Okabe Y, Miura Y, Iida T, Yoshimura M, Haga N, Nabeshima S, Masutani K. Antibody acquisition after second and third SARS-CoV-2 vaccinations in Japanese kidney transplant patients: a prospective study. Clin Exp Nephrol 2023; 27:574-582. [PMID: 36914824 PMCID: PMC10010649 DOI: 10.1007/s10157-023-02334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Kidney transplant patients have lower antibody acquisition after SARS-CoV-2 vaccination. The efficacy of vaccines in Japanese kidney transplant patients with specific characteristics, such as predominant living-donor, ABO-incompatible kidney transplant, and low-dose immunosuppression, requires verification. METHODS We conducted a prospective study to estimate anti-SARS-CoV-2 antibody levels in 105 kidney transplant patients and 57 controls. Blood samples were obtained before vaccination, 1, 3, and 6 months after second vaccination, and 1 month after third vaccination. We investigated antibody acquisition rates, antibody levels, and factors associated with antibody acquisition. RESULTS One month after second vaccination, antibody acquisition was 100% in the controls but only 36.7% in the kidney transplant group (P < 0.001). Antibody levels in positive kidney transplant patients were also lower than in the controls (median, 4.9 arbitrary units vs 106.4 arbitrary units, respectively, P < 0.001). Years after kidney transplant (odds ratio 1.107, 95% confidence interval 1.012-1.211), ABO-incompatible kidney transplant (odds ratio 0.316, 95% confidence interval 0.101-0.991) and mycophenolate mofetil use (odds ratio 0.177, 95% confidence interval 0.054-0.570) were significant predictors for antibody acquisition after second vaccination. After third vaccination, antibody positivity in the kidney transplant group increased to 75.3%, and antibody levels in positive patients were 71.7 arbitrary units. No factors were associated with de novo antibody acquisition. CONCLUSIONS In Japanese kidney transplant patients, years after kidney transplant, ABO-incompatible kidney transplant and mycophenolate mofetil use were predictors for antibody acquisition after second vaccination. Third vaccination improves antibody status even in patients who were seronegative after the second vaccination.
Collapse
Affiliation(s)
- Hidetaka Deguchi
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Atsuhiko Sakamoto
- Department of General Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Nobuyuki Nakamura
- Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshifumi Miura
- Department of General Surgery, Hara-Sanshin Hospital, Fukuoka, Japan
| | | | - Michinobu Yoshimura
- Department of Microbiology and Immunology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Nobuhiro Haga
- Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shigeki Nabeshima
- Department of General Medicine, Fukuoka University Hospital, Fukuoka, Japan
| | - Kosuke Masutani
- Division of Nephrology and Rheumatology, Department of Internal Medicine, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
14
|
O’Callaghan JM. Transplant Trial Watch. Transpl Int 2023; 36:11202. [PMID: 37025500 PMCID: PMC10070464 DOI: 10.3389/ti.2023.11202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 04/08/2023]
Affiliation(s)
- John Matthew O’Callaghan
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
- Centre for Evidence in Transplantation, University of Oxford, Oxford, United Kingdom
- *Correspondence: John Matthew O’Callaghan,
| |
Collapse
|
15
|
Comparison of the Immune Response After an Extended Primary Series of COVID-19 Vaccination in Kidney Transplant Recipients Receiving Standard Versus Mycophenolic Acid-sparing Immunosuppressive Regimen. Transplant Direct 2022; 8:e1393. [PMID: 36312516 PMCID: PMC9605792 DOI: 10.1097/txd.0000000000001393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
UNLABELLED Two doses of coronavirus disease 2019 vaccination provide suboptimal immune response in transplant patients. Mycophenolic acid (MPA) is one of the most important factors that blunts the immune response. We studied the immune response to the extended primary series of 2 doses of AZD1222 and a single dose of BNT162b2 in kidney transplant patients who were on the standard immunosuppressive regimen compared to those on the MPA-sparing regimen. METHODS The kidney transplant recipients who were enrolled into the study were divided into 2 groups based on their immunosuppressive regimen. Those on the standard immunosuppressive regimen received tacrolimus (TAC), MPA, and prednisolone (standard group). The patients in the MPA-sparing group received mammalian target of rapamycin inhibitors (mTORi) with low dose TAC plus prednisolone (MPA-sparing group). The vaccination consisted of 2 doses of AZD1222 and a single dose of BNT162b2. RESULTS A total of 115 patients completed the study. There were 76 (66.08%) patients in the standard group and 39 (33.91%) patients in the MPA-sparing group. The overall median anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S antibody level at 4 wk after vaccine completion was 676.64 (interquartile range = 6.02-3644.03) BAU/mL with an 80% seroconversion rate. The MPA-sparing group achieved higher anti-SARS-CoV-2 S antibody level compared to the standard group (3060.69 and 113.91 BAU/mL, P < 0.001). The seroconversion rate of MPA-sparing and standard groups were 97.4% and 71.1%, respectively (P < 0.001). The anti-HLA antibodies did not significantly increase after vaccination. CONCLUSIONS The extended primary series of 2 doses of AZD1222 and a single dose of BNT162b2 provided significant humoral immune response. The MPA-sparing regimen with mTORi and low dose TAC had a higher ant-SARS-CoV-2 S antibody level and seroconversion rate compared to the participants in the standard regimen.
Collapse
|
16
|
Banjongjit A, Phirom S, Phannajit J, Jantarabenjakul W, Paitoonpong L, Kittanamongkolchai W, Wattanatorn S, Prasithsirikul W, Eiam-Ong S, Avihingsanon Y, Hansasuta P, Vanichanan J, Townamchai N. Benefits of Switching Mycophenolic Acid to Sirolimus on Serological Response after a SARS-CoV-2 Booster Dose among Kidney Transplant Recipients: A Pilot Study. Vaccines (Basel) 2022; 10:vaccines10101685. [PMID: 36298550 PMCID: PMC9609831 DOI: 10.3390/vaccines10101685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022] Open
Abstract
Kidney transplant recipients (KTRs) have a suboptimal immune response to COVID-19 vaccination due to the effects of immunosuppression, mostly mycophenolic acid (MPA). This study investigated the benefits of switching from the standard immunosuppressive regimen (tacrolimus (TAC), MPA, and prednisolone) to a regimen of mammalian target of rapamycin inhibitor (mTORi), TAC and prednisolone two weeks pre- and two weeks post-BNT162b2 booster vaccination. A single-center, opened-label pilot study was conducted in KTRs, who received two doses of ChAdOx-1 and a single dose of BNT162b2. The participants were randomly assigned to continue the standard regimen (control group, n = 14) or switched to a sirolimus (an mTORi), TAC, and prednisolone (switching group, n = 14) regimen two weeks before and two weeks after receiving a booster dose of BNT162b2. The anti-SARS-CoV-2 S antibody level after vaccination in the switching group was significantly greater than the control group (4051.0 [IQR 3142.0-6466.0] BAU/mL vs. 2081.0 [IQR 1077.0-3960.0] BAU/mL, respectively; p = 0.01). One participant who was initially seronegative in the control group remained seronegative after the booster dose. These findings suggest humoral immune response benefits of switching the standard immunosuppressive regimen to the regimen of mTORi, TAC, and prednisolone in KTRs during vaccination.
Collapse
Affiliation(s)
- Athiphat Banjongjit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Supitchaya Phirom
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jeerath Phannajit
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Clinical Epidemiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watsamon Jantarabenjakul
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Leilani Paitoonpong
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wonngarm Kittanamongkolchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Mahachakri Sirindhorn Clinical Research Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Salin Wattanatorn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | | | - Somchai Eiam-Ong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Yingyos Avihingsanon
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pokrath Hansasuta
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
| | - Jakapat Vanichanan
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natavudh Townamchai
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Renal Immunology and Renal Transplant Research Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|
17
|
Factors Associated With COVID-19 Vaccine Response in Transplant Recipients: A Systematic Review and Meta-analysis. Transplantation 2022; 106:2068-2075. [PMID: 35761439 PMCID: PMC9521391 DOI: 10.1097/tp.0000000000004256] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The rapid development and universal access to vaccines represent a milestone in combating the coronavirus disease 2019 (COVID-19) pandemic. However, there are major concerns about vaccine response in immunocompromised populations in particular transplant recipients. In the present study, we aim to comprehensively assess the humoral response to COVID-19 vaccination in both orthotopic organ transplant and allogeneic hematopoietic stem cell transplant recipients. METHODS We performed a systematic review and meta-analysis of 96 studies that met inclusion criteria. RESULTS The pooled rates of seroconversion were 49% (95% confidence interval [CI], 43%-55%) in transplant recipients and 99% (95% CI, 99%-99%) in healthy controls after the second dose of vaccine. The pooled rate was 56% (95% CI, 49%-63%) in transplant recipients after the third dose. Immunosuppressive medication is the most prominent risk factor associated with seroconversion failure, but different immunosuppressive regimens are associated with differential outcomes in this respect. Calcineurin inhibitors, steroids, or mycophenolate mofetil/mycophenolic acid are associated with an increased risk of seroconversion failure, whereas azathioprine or mammalian target of rapamycin inhibitors do not. Advanced age, short interval from receiving the vaccine to the time of transplantation, or comorbidities confers a higher risk for seroconversion failure. CONCLUSIONS Transplant recipients compared with the general population have much lower rates of seroconversion upon receiving COVID-19 vaccines. Immunosuppressants are the most prominent factors associated with seroconversion, although different types may have differential effects.
Collapse
|
18
|
Kantauskaite M, Müller L, Hillebrandt J, Lamberti J, Fischer S, Kolb T, Ivens K, Koch M, Andree M, Lübke N, Schmitz M, Luedde T, Orth HM, Feldt T, Schaal H, Adams O, Schmidt C, Kittel M, Königshausen E, Rump LC, Timm J, Stegbauer J. Immune response to third SARS-CoV-2 vaccination in seronegative kidney transplant recipients: Possible improvement by mycophenolate mofetil reduction. Clin Transplant 2022; 36:e14790. [PMID: 35997031 PMCID: PMC9539238 DOI: 10.1111/ctr.14790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 12/15/2022]
Abstract
Modification of vaccination strategies is necessary to improve the immune response to SARS-CoV-2 vaccination in kidney transplant recipients (KTRs). This multicenter observational study analyzed the effects of the third SARS-CoV-2 vaccination in previously seronegative KTRs with the focus on temporary mycophenolate mofetil (MMF) dose reduction within propensity matched KTRs. 56 out of 174 (32%) previously seronegative KTRs became seropositive after the third vaccination with only three KTRs developing neutralizing antibodies against the omicron variant. Multivariate logistic regression revealed that initial antibody levels, graft function, time after transplantation and MMF trough levels had an influence on seroconversion (P < .05). After controlling for confounders, the effect of MMF dose reduction before the third vaccination was calculated using propensity score matching. KTRs with a dose reduction of ≥33% showed a significant decrease in MMF trough levels to 1.8 (1.2-2.5) μg/ml and were more likely to seroconvert than matched controls (P = .02). Therefore, a MMF dose reduction of 33% or more before vaccination is a promising approach to improve success of SARS-CoV-2 vaccination in KTRs.
Collapse
Affiliation(s)
- Marta Kantauskaite
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Lisa Müller
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Jonas Hillebrandt
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Joshua Lamberti
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Svenja Fischer
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Thilo Kolb
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany,KfH Kuratorium für Dialyse und Nierentransplantation e.VKfH‐Nierenzentrum Moorenstrasse 5DüsseldorfGermany
| | - Katrin Ivens
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany,KfH Kuratorium für Dialyse und Nierentransplantation e.VKfH‐Nierenzentrum Moorenstrasse 5DüsseldorfGermany
| | - Michael Koch
- Medizinisches VersorgungszentrumNephrocare MettmannMettmannGermany
| | - Marcel Andree
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Nadine Lübke
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Michael Schmitz
- Department of NephrologyStädtisches Klinikum SolingenSolingenGermany
| | - Tom Luedde
- Department of GastroenterologyHepatology and Infectious diseasesMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Hans Martin Orth
- Department of GastroenterologyHepatology and Infectious diseasesMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Torsten Feldt
- Department of GastroenterologyHepatology and Infectious diseasesMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Heiner Schaal
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Ortwin Adams
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Claudia Schmidt
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Margarethe Kittel
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Eva Königshausen
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany,KfH Kuratorium für Dialyse und Nierentransplantation e.VKfH‐Nierenzentrum Moorenstrasse 5DüsseldorfGermany
| | - Lars C. Rump
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany,KfH Kuratorium für Dialyse und Nierentransplantation e.VKfH‐Nierenzentrum Moorenstrasse 5DüsseldorfGermany
| | - Jörg Timm
- Institute of VirologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany
| | - Johannes Stegbauer
- Department of NephrologyMedical FacultyUniversity Hospital DüsseldorfHeinrich‐Heine‐University DüsseldorfDüsseldorfGermany,KfH Kuratorium für Dialyse und Nierentransplantation e.VKfH‐Nierenzentrum Moorenstrasse 5DüsseldorfGermany
| |
Collapse
|
19
|
Enhanced Humoral Immune Response After COVID-19 Vaccination in Elderly Kidney Transplant Recipients on Everolimus Versus Mycophenolate Mofetil-containing Immunosuppressive Regimens: Erratum. Transplantation 2022; 106:e391. [PMID: 35895087 PMCID: PMC10473016 DOI: 10.1097/tp.0000000000004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|