1
|
Halloran PF, Reeve J, Mackova M, Madill-Thomsen KS, Demko Z, Olymbios M, Campbell P, Melenovsky V, Gong T, Hall S, Stehlik J. Comparing Plasma Donor-derived Cell-free DNA to Gene Expression in Endomyocardial Biopsies in the Trifecta-Heart Study. Transplantation 2024; 108:1931-1942. [PMID: 38538559 PMCID: PMC11335077 DOI: 10.1097/tp.0000000000004986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Plasma donor-derived cell-free DNA (dd-cfDNA) is used to screen for rejection in heart transplants. We launched the Trifecta-Heart study ( ClinicalTrials.gov No. NCT04707872), an investigator-initiated, prospective trial, to examine the correlations between genome-wide molecular changes in endomyocardial biopsies (EMBs) and plasma dd-cfDNA. The present report analyzes the correlation of plasma dd-cfDNA with gene expression in EMBs from 4 vanguard centers and compared these correlations with those in 604 kidney transplant biopsies in the Trifecta-Kidney study ( ClinicalTrials.gov No. NCT04239703). METHODS We analyzed 137 consecutive dd-cfDNA-EMB pairs from 70 patients. Plasma %dd-cfDNA was measured by the Prospera test (Natera Inc), and gene expression in EMBs was assessed by Molecular Microscope Diagnostic System using machine-learning algorithms to interpret rejection and injury states. RESULTS Top transcripts correlating with dd-cfDNA were related to genes increased in rejection such as interferon gamma-inducible genes (eg, HLA-DMA ) but also with genes induced by injury and expressed in macrophages (eg, SERPINA1 and HMOX1 ). In gene enrichment analysis, the top dd-cfDNA-correlated genes reflected inflammation and rejection pathways. Dd-cfDNA correlations with rejection genes in EMB were similar to those seen in kidney transplant biopsies, with somewhat stronger correlations for TCMR genes in hearts and ABMR genes in kidneys. However, the correlations with parenchymal injury-induced genes and macrophage genes were much stronger in hearts. CONCLUSIONS In this first analysis of Trifecta-Heart study, dd-cfDNA correlates significantly with molecular rejection but also with injury and macrophage infiltration, reflecting the proinflammatory properties of injured cardiomyocytes. The relationship supports the utility of dd-cfDNA in clinical management of heart transplant recipients.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics Center, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Transcriptome Sciences Inc, Edmonton, AB, Canada
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Center, Edmonton, AB, Canada
- Transcriptome Sciences Inc, Edmonton, AB, Canada
| | - Martina Mackova
- Alberta Transplant Applied Genomics Center, Edmonton, AB, Canada
- Transcriptome Sciences Inc, Edmonton, AB, Canada
| | - Katelynn S. Madill-Thomsen
- Alberta Transplant Applied Genomics Center, Edmonton, AB, Canada
- Transcriptome Sciences Inc, Edmonton, AB, Canada
| | | | | | | | | | | | | | - Josef Stehlik
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Halloran PF, Madill-Thomsen KS, Böhmig G, Bromberg J, Budde K, Barner M, Mackova M, Chang J, Einecke G, Eskandary F, Gupta G, Myślak M, Viklicky O, Akalin E, Alhamad T, Anand S, Arnol M, Baliga R, Banasik M, Bingaman A, Blosser CD, Brennan D, Chamienia A, Chow K, Ciszek M, de Freitas D, Dęborska-Materkowska D, Debska-Ślizień A, Djamali A, Domański L, Durlik M, Fatica R, Francis I, Fryc J, Gill J, Gill J, Glyda M, Gourishankar S, Grenda R, Gryczman M, Hruba P, Hughes P, Jittirat A, Jurekovic Z, Kamal L, Kamel M, Kant S, Kasiske B, Kojc N, Konopa J, Lan J, Mannon R, Matas A, Mazurkiewicz J, Miglinas M, Müller T, Narins S, Naumnik B, Patel A, Perkowska-Ptasińska A, Picton M, Piecha G, Poggio E, Bloudíčkova SR, Samaniego-Picota M, Schachtner T, Shin S, Shojai S, Sikosana MLN, Slatinská J, Smykal-Jankowiak K, Solanki A, Veceric Haler Ž, Vucur K, Weir MR, Wiecek A, Włodarczyk Z, Yang H, Zaky Z. Subthreshold rejection activity in many kidney transplants currently classified as having no rejection. Am J Transplant 2024:S1600-6135(24)00461-1. [PMID: 39117038 DOI: 10.1016/j.ajt.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Most kidney transplant patients who undergo biopsies are classified as having no rejection based on consensus thresholds. However, we hypothesized that because these patients have normal adaptive immune systems, T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) may exist as subthreshold activity in some transplants currently classified as no rejection. To examine this question, we studied genome-wide microarray results from 5086 kidney transplant biopsies (from 4170 patients). An updated molecular archetypal analysis designated 56% of biopsies as no rejection. Subthreshold molecular TCMR and/or ABMR activity molecular activity was detectable as elevated classifier scores in many biopsies classified as no rejection, with ABMR activity in many TCMR biopsies and TCMR activity in many ABMR biopsies. In biopsies classified as no rejection histologically and molecularly, molecular TCMR classifier scores correlated with increases in histologic TCMR features and molecular injury, lower estimated glomerular filtration rate, and higher risk of graft loss, and molecular ABMR activity correlated with increased glomerulitis and donor-specific antibody. No rejection biopsies with high subthreshold TCMR or ABMR activity had a higher probability of having TCMR or ABMR, respectively, diagnosed in a future biopsy. We conclude that many kidney transplant recipients have unrecognized subthreshold TCMR or ABMR activity, with significant implications for future problems.
Collapse
Affiliation(s)
- Philip F Halloran
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | | | - Georg Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria
| | | | - Klemens Budde
- Department of Nephrology, Charite-Medical University of Berlin, Germany
| | | | | | | | - Gunilla Einecke
- Department of Nephrology, Medical University of Hannover, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Austria
| | - Gaurav Gupta
- Department of Internal Medicine, Division of Nephrology, Virginia Commonwealth University, USA
| | - Marek Myślak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Experimental and Clinical Medicine, Czech Republic
| | - Enver Akalin
- Albert Einstein College of Medicine, Montefiore Medical Center, USA
| | - Tarek Alhamad
- Division of Nephrology, Washington University at St. Louis, USA
| | | | - Miha Arnol
- Department of Nephrology, University of Ljubljana, Slovenia
| | | | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Medical University of Wrocław, Poland
| | - Adam Bingaman
- Department of Surgery, Methodist Transplant and Specialty Hospital, USA
| | | | - Daniel Brennan
- Department of Medicine, Johns Hopkins University School of Medicine, USA
| | - Andrzej Chamienia
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdańsk, Poland
| | - Kevin Chow
- Department of Nephrology, The Royal Melbourne Hospital, Australia
| | - Michał Ciszek
- Department of Immunology, Transplantology and Internal Diseases, Warsaw Medical University, Poland
| | - Declan de Freitas
- Department of Renal Research, Manchester Royal Infirmary, United Kingdom
| | | | - Alicja Debska-Ślizień
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdańsk, Poland
| | | | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University, Poland
| | - Magdalena Durlik
- Department of Transplantology, Immunology, Nephrology and Internal Diseases, Warsaw Medical University, Poland
| | - Richard Fatica
- Department of Kidney Medicine, Cleveland Clinic Foundation, USA
| | | | - Justyna Fryc
- 1st Department of Nephrology and Transplantation With Dialysis Unit, Medical University in Bialystok, Poland
| | | | | | | | - Sita Gourishankar
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Poland
| | - Marta Gryczman
- Department of Nephrology and Kidney Transplantation, Pomeranian Medical University, Poland
| | - Petra Hruba
- Department of Nephrology, Institute for Experimental and Clinical Medicine, Czech Republic
| | - Peter Hughes
- Department of Nephrology, The Royal Melbourne Hospital, Australia
| | | | - Zeljka Jurekovic
- Renal Replacement Therapy, Department of Nephrology, University Hospital Merkur, Croatia
| | - Layla Kamal
- Division of Nephrology, Department of Medicine, Virginia Commonwealth University, USA
| | | | - Sam Kant
- Division of Nephrology & Comprehensive Transplant Center, Department of Medicine, Johns Hopkins University School of Medicine, USA
| | | | - Nika Kojc
- Department of Pathology, University of Ljubljana, Slovenia
| | - Joanna Konopa
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdańsk, Poland
| | | | - Roslyn Mannon
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, USA
| | - Arthur Matas
- Department of Surgery, Division of Transplantation, University on Minnesota, USA
| | | | - Marius Miglinas
- Nephrology and Kidney Transplantation Unit, Nephrology Center, Vilnius University Hospital Santaros Klinikos, Lithuania
| | - Thomas Müller
- Nephrology Department, University Hospital Zurich, Switzerland
| | | | - Beata Naumnik
- 1st Department of Nephrology and Transplantation With Dialysis Unit, Medical University in Bialystok, Poland
| | | | | | - Michael Picton
- Department of Renal Medicine, Manchester Royal Infirmary, United Kingdom
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Silesian Medical University, Poland
| | - Emilio Poggio
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, USA
| | | | | | - Thomas Schachtner
- Department of Surgery and Transplantation, University Hospital Zurich, Switzerland
| | - Sung Shin
- Department of Laboratory Medicine, University of Ulsan College of Medicine/Assan Medical Center, South Korea
| | - Soroush Shojai
- Division of Nephrology, Department of Medicine, University of Alberta, USA
| | - Majid L N Sikosana
- Department of Medicine, Division of Nephrology & Transplantation Immunology, University of Alberta, Canada
| | - Janka Slatinská
- Department of Nephrology, Institute for Experimental and Clinical Medicine, Czech Republic
| | | | | | | | - Ksenija Vucur
- Department of Nephrology, University Hospital Merkur, Croatia
| | - Matthew R Weir
- Department of Medicine, Division of Nephrology, University of Maryland, USA
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Silesian Medical University, Poland
| | | | - Harold Yang
- Department of Surgery, PinnacleHealth Transplant Associates, USA
| | | |
Collapse
|
3
|
Halloran PF, Madill-Thomsen K, Aliabadi-Zuckermann AZ, Cadeiras M, Crespo-Leiro MG, Depasquale EC, Deng M, Gökler J, Hall S, Jamil A, Kim DH, Kobashigawa J, Macdonald P, Melenovsky V, Patel J, Potena L, Shah K, Stehlik J, Zuckermann A. Redefining the molecular rejection states in 3230 heart transplant biopsies: Relationships to parenchymal injury and graft survival. Am J Transplant 2024; 24:1414-1426. [PMID: 38527588 DOI: 10.1016/j.ajt.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The first-generation Molecular Microscope (MMDx) system for heart transplant endomyocardial biopsies used expression of rejection-associated transcripts (RATs) to diagnose not only T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) but also acute injury. However, the ideal system should detect rejection without being influenced by injury, to permit analysis of the relationship between rejection and parenchymal injury. To achieve this, we developed a new rejection classification in an expanded cohort of 3230 biopsies: 1641 from INTERHEART (ClinicalTrials.gov NCT02670408), plus 1589 service biopsies added to improve the power of the machine learning algorithms. The new system used 6 rejection classifiers instead of RATs and generated 7 rejection archetypes: No rejection, 48%; Minor, 24%; TCMR1, 2.3%; TCMR2, 2.7%; TCMR/mixed, 2.7%; early-stage ABMR, 3.9%; and fully developed ABMR, 16%. Using rejection classifiers eliminated cross-reactions with acute injury, permitting separate assessment of rejection and injury. TCMR was associated with severe-recent injury and late atrophy-fibrosis and rarely had normal parenchyma. ABMR was better tolerated, seldom producing severe injury, but in later biopsies was often associated with atrophy-fibrosis, indicating long-term risk. Graft survival and left ventricular ejection fraction were reduced not only in hearts with TCMR but also in hearts with severe-recent injury and atrophy-fibrosis, even without rejection.
Collapse
Affiliation(s)
- Philip F Halloran
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | - Martin Cadeiras
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Marisa G Crespo-Leiro
- Advanced Heart Failure and Heart Transplant Unit, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| | | | - Mario Deng
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Johannes Gökler
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Aayla Jamil
- Baylor Scott & White Health, Dallas, Texas, USA
| | - Daniel H Kim
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jon Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Macdonald
- The Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Jignesh Patel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Keyur Shah
- Department of Cardiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Josef Stehlik
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Randhawa PS. Caveats in Interpretation of Molecular Diagnostics in Heart Allografts. Transplantation 2024; 108:1472-1475. [PMID: 38294835 DOI: 10.1097/tp.0000000000004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Histologic separation of injury, T cell-mediated rejection, or antibody-mediated rejection in allograft heart biopsies is difficult. A critical review of publications was performed to evaluate the caveats of using molecular diagnostics (MDX) to distinguish between these entities. Typically, only 1 to 2 fragments of unknown histologic appearance are evaluated. Archetype and molecular classifier analyses use gene lists derived from histologic labels and associated reproducibility issues influence the accuracy of the derived MDX classes. Archetypes A1, A2, and A3 archetypes created by bioinformatics were renamed no rejection, T cell-mediated rejection, and antibody-mediated rejection despite as little as 40% concordance with histologic diagnoses and overlapping archetype scores. Additional archetypes S4 and minor injury were created using arbitrary cutoffs based on visual examination of principal component analysis plots. Therapeutic implications of the numerous discrepancies with histology remain unexplored. Many MDX-derived observations are ambiguous and open to alternate logical explanations. Better molecular methods and more rigorous validation studies are needed to advance the field. Ideally, these methods should analyze all available biopsy fragments to minimize sampling issues. It is also desirable to incorporate spatial transcriptomics into the workflow, so that gene expression data can be directly compared with the underlying histology lesions.
Collapse
Affiliation(s)
- Parmjeet S Randhawa
- Department of Pathology, The Thomas E Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
5
|
DeFilippis EM, Sweigart B, Khush KK, Shah P, Agbor-Enoh S, Valantine HA, Vest AR. Sex-specific patterns of donor-derived cell-free DNA in heart transplant rejection: An analysis from the Genomic Research Alliance for Transplantation (GRAfT). J Heart Lung Transplant 2024; 43:1135-1141. [PMID: 38460620 PMCID: PMC11144097 DOI: 10.1016/j.healun.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Noninvasive methods for surveillance of acute rejection are increasingly used in heart transplantation (HT), including donor-derived cell-free DNA (dd-cfDNA). As other cardiac biomarkers differ by sex, we hypothesized that there may be sex-specific differences in the performance of dd-cfDNA for the detection of acute rejection. The purpose of the current study was to examine patterns of dd-cfDNA seen in quiescence and acute rejection in male and female transplant recipients. METHODS Patients enrolled in the Genomic Research Alliance for Transplantation who were ≥18 years at the time of HT were included. Rejection was defined by endomyocardial biopsy with acute cellular rejection (ACR) grade ≥2R and/or antibody-mediated rejection ≥ pAMR 1. dd-cfDNA was quantitated using shotgun sequencing. Median dd-cfDNA levels were compared between sexes during quiescence and rejection. The performance of dd-cfDNA by sex was assessed using area under the receiver operator characteristic (AUROC) curve. Allograft injury was defined as dd-cfDNA ≥0.25%. RESULTS One hundred fifty-one unique patients (49 female, 32%) were included in the analysis with 1,119 available dd-cfDNA measurements. Baseline characteristics including demographics and comorbidities were not significantly different between sexes. During quiescence, there were no significant sex differences in median dd-cfDNA level (0.04% [IQR 0.00, 0.16] in females vs 0.03% [IQR 0.00, 0.12] in males, p = 0.22). There were no significant sex differences in median dd-cfDNA for ACR (0.33% [0.21, 0.36] in females vs 0.32% [0.21, 1.10] in males, p = 0.57). Overall, median dd-cfDNA levels were higher in antibody-mediated rejection (AMR) than ACR but did not significantly differ by sex (0.50% [IQR 0.18, 0.82] in females vs 0.63% [IQR 0.32, 1.95] in males, p = 0.51). Elevated dd-cfDNA detected ACR/AMR with an AUROC of 0.83 in females and 0.89 in males, p-value for comparison = 0.16. CONCLUSIONS There were no significant sex differences in dd-cfDNA levels during quiescence and rejection. Performance characteristics were similar, suggesting similar diagnostic thresholds can be used in men and women for rejection surveillance.
Collapse
Affiliation(s)
- Ersilia M DeFilippis
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York
| | - Benjamin Sweigart
- Tufts Clinical and Translational Science Institute, Tufts Medical Center, Boston, Massachusetts
| | - Kiran K Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Palak Shah
- Heart Failure, Mechanical Circulatory Support and Transplant, Inova Schar Heart and Vascular, Falls Church, Virginia
| | - Sean Agbor-Enoh
- Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hannah A Valantine
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California
| | - Amanda R Vest
- Division of Cardiology, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
6
|
Fernandez Valledor A, Moeller CM, Rubinstein G, Rahman S, Oren D, Baranowska J, Lee C, Salazar R, Hennecken C, Rahman A, Elad B, Lotan D, DeFilippis EM, Yunis A, Fried J, Raihkelkar J, Oh KT, Bae D, Lin E, Lee SH, Regan M, Yuzelpolskaya M, Colombo P, Majure DT, Latif F, Clerkin KD, Sayer GT, Uriel N. Clinical Utility of the Molecular Microscope Diagnostic System in a Real-World Transplant Cohort: Moving Towards a New Paradigm. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.24.24309444. [PMID: 38978641 PMCID: PMC11230306 DOI: 10.1101/2024.06.24.24309444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objectives To evaluate the clinical implications of adjunctive molecular gene expression analysis (MMDx ) of biopsy specimens in heart transplant (HT ) recipients with suspected rejection. Introduction Histopathological evaluation remains the standard method for rejection diagnosis in HT. However, the wide interobserver variability combined with a relatively common incidence of "biopsy-negative" rejection has raised concerns about the likelihood of false-negative results. MMDx, which uses gene expression to detect early signs of rejection, is a promising test to further refine the assessment of HT rejection. Methods Single-center prospective study of 418 consecutive for-cause endomyocardial biopsies performed between November 2022 and May 2024. Each biopsy was graded based on histology and assessed for rejection patterns using MMDx. MMDx results were deemed positive if borderline or definitive rejection was present. The impact of MMDx results on clinical management was evaluated. Primary outcomes were 1-year survival and graft dysfunction following MMDx-guided clinical management. Secondary outcomes included changes in donor-specific antibodies, MMDx gene transcripts, and donor-derived cell-free DNA (dd-cfDNA) levels. Results We analyzed 418 molecular samples from 237 unique patients. Histology identified rejection in 32 cases (7.7%), while MMDx identified rejection in 95 cases (22.7%). Notably, in 79 of the 95 cases where MMDx identified rejection, histology results were negative, with the majority of these cases being antibody-mediated rejection (62.1%). Samples with rejection on MMDx were more likely to show a combined elevation of dd-cfDNA and peripheral blood gene expression profiling than those with borderline or negative MMDx results (36.7% vs 28.0% vs 10.3%; p<0.001). MMDx results led to the implementation of specific antirejection protocols or changes in immunosuppression in 20.4% of cases, and in 73.4% of cases where histology was negative and MMDx showed rejection. 1-year survival was better in the positive MMDx group where clinical management was guided by MMDx results (87.0% vs 78.6%; log rank p=0.0017). Conclusions In our cohort, MMDx results more frequently indicated rejection than histology, often leading to the initiation of antirejection treatment. Intervention guided by positive MMDx results was associated with improved outcomes. Graphical abstract
Collapse
|
7
|
Nikolova A, Agbor-Enoh S, Bos S, Crespo-Leiro M, Ensminger S, Jimenez-Blanco M, Minervini A, Perch M, Segovia J, Vos R, Khush K, Potena L. European Society for Organ Transplantation (ESOT) Consensus Statement on the Use of Non-invasive Biomarkers for Cardiothoracic Transplant Rejection Surveillance. Transpl Int 2024; 37:12445. [PMID: 38962472 PMCID: PMC11221358 DOI: 10.3389/ti.2024.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/04/2024] [Indexed: 07/05/2024]
Abstract
While allograft rejection (AR) continues to threaten the success of cardiothoracic transplantation, lack of accurate and repeatable surveillance tools to diagnose AR is a major unmet need in the clinical management of cardiothoracic transplant recipients. Endomyocardial biopsy (EMB) and transbronchial biopsy (TBBx) have been the cornerstone of rejection monitoring since the field's incipience, but both suffer from significant limitations, including poor concordance of biopsy interpretation among pathologists. In recent years, novel molecular tools for AR monitoring have emerged and their performance characteristics have been evaluated in multiple studies. An international working group convened by ESOT has reviewed the existing literature and provides a series of recommendations to guide the use of these biomarkers in clinical practice. While acknowledging some caveats, the group recognized that Gene-expression profiling and donor-derived cell-free DNA (dd-cfDNA) may be used to rule out rejection in heart transplant recipients, but they are not recommended for cardiac allograft vasculopathy screening. Other traditional biomarkers (NT-proBNP, BNP or troponin) do not have sufficient evidence to support their use to diagnose AR. Regarding lung transplant, dd-cfDNA could be used to rule out clinical rejection and infection, but its use to monitor treatment response is not recommended.
Collapse
Affiliation(s)
- Andriana Nikolova
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sean Agbor-Enoh
- Genomic Research Alliance for Transplantation (GRAfT) and Laboratory of Applied Precision Omics, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, MD, United States
- Lung Transplantation, Department of Medicine, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle uponTyne, United Kingdom
- Institute of Transplantation, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle uponTyne, United Kingdom
| | - Marisa Crespo-Leiro
- Cardiology Department, Complexo Hospitalario Universitario A Coruna (CHUAC), Instituto de Investigación Biomédica A Coruña (INIBIC), Universitade de Coruna (UDC), Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares/Network Biomedical Research Center—Cardiovascular Diseases (CIBERCV), La Coruna, Spain
| | - Stephan Ensminger
- Klinik für Herz- und Thorakale Gefäßchirurgie, Universitäres Herzzentrum Lübeck, Lübeck, Germany
| | - Marta Jimenez-Blanco
- Cardiology Department, University Hospital Ramón y Cajal (Madrid), Centro de Investigación Biomedica en Red—Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Annamaria Minervini
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Righospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Javier Segovia
- Cardiology Department, Puerta de Hierro Majadahonda University Hospital, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana/Puerta de Hierro Health Research Institute—Segovia de Arana (IDIPHISA), Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares/Network Biomedical Research Center—Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Robin Vos
- Department of Respiratory Diseases, UZ Leuven, and Lung Transplant Unit, Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Kiran Khush
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
8
|
Madill-Thomsen K, Halloran P. Precision diagnostics in transplanted organs using microarray-assessed gene expression: concepts and technical methods of the Molecular Microscope® Diagnostic System (MMDx). Clin Sci (Lond) 2024; 138:663-685. [PMID: 38819301 PMCID: PMC11147747 DOI: 10.1042/cs20220530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
There is a major unmet need for improved accuracy and precision in the assessment of transplant rejection and tissue injury. Diagnoses relying on histologic and visual assessments demonstrate significant variation between expert observers (as represented by low kappa values) and have limited ability to assess many biological processes that produce little histologic changes, for example, acute injury. Consensus rules and guidelines for histologic diagnosis are useful but may have errors. Risks of over- or under-treatment can be serious: many therapies for transplant rejection or primary diseases are expensive and carry risk for significant adverse effects. Improved diagnostic methods could alleviate healthcare costs by reducing treatment errors, increase treatment efficacy, and serve as useful endpoints for clinical trials of new agents that can improve outcomes. Molecular diagnostic assessments using microarrays combined with machine learning algorithms for interpretation have shown promise for increasing diagnostic precision via probabilistic assessments, recalibrating standard of care diagnostic methods, clarifying ambiguous cases, and identifying potentially missed cases of rejection. This review describes the development and application of the Molecular Microscope® Diagnostic System (MMDx), and discusses the history and reasoning behind many common methods, statistical practices, and computational decisions employed to ensure that MMDx scores are as accurate and precise as possible. MMDx provides insights on disease processes and highly reproducible results from a comparatively small amount of tissue and constitutes a general approach that is useful in many areas of medicine, including kidney, heart, lung, and liver transplants, with the possibility of extrapolating lessons for understanding native organ disease states.
Collapse
Affiliation(s)
- Katelynn S. Madill-Thomsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Applied Genomics Center, University of Alberta, Edmonton, AB, Canada
| | - Philip F. Halloran
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Applied Genomics Center, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Robert ME, Ciacci C, Lebwohl B. Opportunities for Improving Biopsy and Non-Biopsy-Based Diagnosis of Celiac Disease. Gastroenterology 2024; 167:79-89. [PMID: 38302007 DOI: 10.1053/j.gastro.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The accumulating data regarding a non-biopsy diagnosis of celiac disease has led to its adoption in certain scenarios, although debate on whether and when to use non-biopsy criteria in clinical practice is ongoing. Despite the growing popularity and evidence basis for a biopsy-free approach to diagnosis in the context of highly elevated serologies, there will continue to be a role for a biopsy in some groups. This review summarizes the current evidence supporting a non-biopsy approach and arguments supporting continued reliance on biopsy, and focuses on opportunities to improve both approaches.
Collapse
Affiliation(s)
- Marie E Robert
- Department of Pathology, Medicine (Digestive Diseases) and Human and Translational Immunology, Yale University School of Medicine, New Haven, Connecticut
| | - Carolina Ciacci
- Department of Medicine, Surgery, Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Salerno, Italy.
| | - Benjamin Lebwohl
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
10
|
Urie RR, Morris A, Farris D, Hughes E, Xiao C, Chen J, Lombard E, Feng J, Li JZ, Goldstein DR, Shea LD. Biomarkers from subcutaneous engineered tissues predict acute rejection of organ allografts. SCIENCE ADVANCES 2024; 10:eadk6178. [PMID: 38748794 PMCID: PMC11095459 DOI: 10.1126/sciadv.adk6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Invasive graft biopsies assess the efficacy of immunosuppression through lagging indicators of transplant rejection. We report on a microporous scaffold implant as a minimally invasive immunological niche to assay rejection before graft injury. Adoptive transfer of T cells into Rag2-/- mice with mismatched allografts induced acute cellular allograft rejection (ACAR), with subsequent validation in wild-type animals. Following murine heart or skin transplantation, scaffold implants accumulate predominantly innate immune cells. The scaffold enables frequent biopsy, and gene expression analyses identified biomarkers of ACAR before clinical signs of graft injury. This gene signature distinguishes ACAR and immunodeficient respiratory infection before injury onset, indicating the specificity of the biomarkers to differentiate ACAR from other inflammatory insult. Overall, this implantable scaffold enables remote evaluation of the early risk of rejection, which could potentially be used to reduce the frequency of routine graft biopsy, reduce toxicities by personalizing immunosuppression, and prolong transplant life.
Collapse
Affiliation(s)
- Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Diana Farris
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chengchuan Xiao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Lombard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiane Feng
- Animal Phenotyping Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jun Z. Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Baldwin WM, Valujskikh A, Fairchild RL. Gaining Deeper Insights Into Mechanisms of T Cell-mediated Acute Kidney Graft Injury. Transplantation 2024; 108:825-826. [PMID: 38526430 DOI: 10.1097/tp.0000000000004830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Affiliation(s)
- William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
12
|
Halloran PF, Madill-Thomsen K, Mackova M, Aliabadi-Zuckermann AZ, Cadeiras M, Crespo-Leiro MG, Depasquale EC, Deng M, Gökler J, Hall SA, Kim DH, Kobashigawa J, Macdonald P, Potena L, Shah K, Stehlik J, Zuckermann A, Reeve J. Molecular states associated with dysfunction and graft loss in heart transplants. J Heart Lung Transplant 2024; 43:508-518. [PMID: 38042442 DOI: 10.1016/j.healun.2023.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
BACKGROUND We explored the changes in gene expression correlating with dysfunction and graft failure in endomyocardial biopsies. METHODS Genome-wide microarrays (19,462 genes) were used to define mRNA changes correlating with dysfunction (left ventricular ejection fraction [LVEF] ≤ 55) and risk of graft loss within 3 years postbiopsy. LVEF data was available for 1,013 biopsies and survival data for 779 patients (74 losses). Molecular classifiers were built for predicting dysfunction (LVEF ≤ 55) and postbiopsy 3-year survival. RESULTS Dysfunction is correlated with dedifferentiation-decreased expression of normal heart transcripts, for example, solute carriers, along with increased expression of inflammation genes. Many genes with reduced expression in dysfunction were matrix genes such as fibulin 1 and decorin. Gene ontology (GO) categories suggested matrix remodeling and inflammation, not rejection. Genes associated with the risk of failure postbiopsy overlapped dysfunction genes but also included genes affecting microcirculation, for example, arginase 2, which reduces NO production, and endothelin 1. GO terms also reflected increased glycolysis and response to hypoxia, but decreased VEGF and angiogenesis pathways. T cell-mediated rejection was associated with reduced survival and antibody-mediated rejection with relatively good survival, but the main determinants of survival were features of parenchymal injury. Both dysfunction and graft loss were correlated with increased biopsy expression of BNP (gene NPPB). Survival probability classifiers divided hearts into risk quintiles, with actuarial 3-year postbiopsy survival >95% for the highest versus 50% for the lowest. CONCLUSIONS Dysfunction in transplanted hearts reflects dedifferentiation, decreased matrix genes, injury, and inflammation. The risk of short-term loss includes these changes but is also associated with microcirculation abnormalities, glycolysis, and response to hypoxia.
Collapse
Affiliation(s)
- Philip F Halloran
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | - Martina Mackova
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | - Mario Deng
- Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Johannes Gökler
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Daniel H Kim
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Peter Macdonald
- The Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Luciano Potena
- Heart Failure and Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Keyur Shah
- Department of Cardiology, Virginia Commonwealth University, Richmond, Virginia
| | - Josef Stehlik
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Jeff Reeve
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Baldwin WM, Valujskikh A, Fairchild RL. Gaining Deeper Insights Into Mechanisms of T Cell-Mediated Acute Kidney Graft Injury. Transplantation 2024; 108:308-309. [PMID: 38254278 DOI: 10.1097/tp.0000000000004893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Affiliation(s)
- William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
14
|
Koubský K, Gebauer R, Poruban R, Vojtovič P, Materna O, Melenovský V, Hošková L, Netuka I, Burkert J, Janoušek J. Establishing a nationwide pediatric heart transplantation program with mid-term results comparable to worldwide data - The Czech experience. Pediatr Transplant 2024; 28:e14626. [PMID: 37853942 DOI: 10.1111/petr.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Heart transplantation (HTx) is an established therapeutic option for children with end-stage heart failure. Comprehensive pediatric nationwide HTx program was introduced in 2014 in the Czech Republic. The aim of this study was to evaluate its mid-term characteristics and outcomes and to compare them with international data. METHODS Retrospective observational study, including all patients who underwent HTx from June 2014 till December 2022. Data from the institutional database were used for descriptive statistics and survival analyses. RESULTS A total of 30 HTx were performed in 29 patients with congenital heart disease (CHD, N = 15, single ventricular physiology in 10 patients) and cardiomyopathy (CMP, N = 14). Ten patients were bridged to HTx by durable left ventricular assist devices (LVADs) for a mean duration of 104 (SD 89) days. There was one early and one late death during median follow-up of 3.3 (IQR 1.3-6.1) years. Survival probability at 5 years after HTx was 93%. Two patients underwent re-transplantation (one of them in an adult center). Significant rejection-free survival at 1, 3, and 6 years after HTx was 76%, 63%, and 63%, respectively. CONCLUSIONS The introduced pediatric HTx program reflects the complexity of the treated population, with half of the patients having complex CHD and one-third being bridged to HTx by LVADs. Mid-term results are comparable to worldwide data. The data confirm the possibility of establishing a successful nationwide pediatric HTx program in a relatively small population country with well-developed pediatric cardiovascular care and other transplantation programs.
Collapse
Affiliation(s)
- Karel Koubský
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Roman Gebauer
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Rudolf Poruban
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Pavel Vojtovič
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Ondřej Materna
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Vojtěch Melenovský
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Lenka Hošková
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Ivan Netuka
- Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Jan Burkert
- Department of Transplantation and Tissue Bank, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jan Janoušek
- Children's Heart Centre, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
15
|
Kveton M, Hudec L, Vykopal I, Halinkovic M, Laco M, Felsoova A, Benesova W, Fabian O. Digital pathology in cardiac transplant diagnostics: from biopsies to algorithms. Cardiovasc Pathol 2024; 68:107587. [PMID: 37926351 DOI: 10.1016/j.carpath.2023.107587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/03/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
In the field of heart transplantation, the ability to accurately and promptly diagnose cardiac allograft rejection is crucial. This comprehensive review explores the transformative role of digital pathology and computational pathology, especially through machine learning, in this critical domain. These methodologies harness large datasets to extract subtle patterns and valuable information that extend beyond human perceptual capabilities, potentially enhancing diagnostic outcomes. Current research indicates that these computer-based systems could offer accuracy and performance matching, or even exceeding, that of expert pathologists, thereby introducing more objectivity and reducing observer variability. Despite promising results, several challenges such as limited sample sizes, diverse data sources, and the absence of standardized protocols pose significant barriers to the widespread adoption of these techniques. The future of digital pathology in heart transplantation diagnostics depends on utilizing larger, more diverse patient cohorts, standardizing data collection, processing, and evaluation protocols, and fostering collaborative research efforts. The integration of various data types, including clinical, demographic, and imaging information, could further refine diagnostic precision. As researchers address these challenges and promote collaborative efforts, digital pathology has the potential to become an integral part of clinical practice, ultimately improving patient care in heart transplantation.
Collapse
Affiliation(s)
- Martin Kveton
- Third Faculty of Medicine, Charles University, Prague, Czech Republic; Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Lukas Hudec
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Ivan Vykopal
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Matej Halinkovic
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Miroslav Laco
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Andrea Felsoova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Histology and Embryology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Wanda Benesova
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Ondrej Fabian
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| |
Collapse
|
16
|
Hammond ME, Zollinger C, Vidic A, Snow GL, Stehlik J, Alharethi RA, Kfoury AG, Drakos S, Hammond MEH. Donor Age, Sex, and Cause of Death and Their Relationship to Heart Transplant Recipient Cardiac Death. J Clin Med 2023; 12:7629. [PMID: 38137698 PMCID: PMC10744178 DOI: 10.3390/jcm12247629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies indicate that donor innate immune responses participate in initiating and accelerating innate responses and allorecognition in the recipient. These immune responses negatively affect recipient outcomes and predispose recipients to cardiovascular death (CV death). We hypothesized that a donor cause of death (COD) associated with higher levels of innate immune response would predispose recipients to more adverse outcomes post-transplant, including CV death. METHODS We performed a single-institution retrospective analysis comparing donor characteristics and COD to recipient adverse cardiovascular outcomes. We analyzed the medical records of local adult donors (age 18-64) in a database of donors where adequate data was available. Donor age was available on 706 donors; donor sex was available on 730 donors. We linked donor characteristics (age and sex) and COD to recipient CV death. The data were analyzed using logistic regression, the log-rank test of differences, and Tukey contrast. RESULTS Donor age, female sex, and COD of intracranial hemorrhage were significantly associated with a higher incidence of recipient CV death. CONCLUSIONS In this single institution study, we found that recipients with hearts from donors over 40 years, donors who were female, or donors who died with a COD of intracranial hemorrhage had a higher frequency of CV death. Donor monitoring and potential treatment of innate immune activation may decrease subsequent recipient innate responses and allorecognition stimulated by donor-derived inflammatory signaling, which leads to adverse outcomes.
Collapse
Affiliation(s)
- Margo E. Hammond
- Department of Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Charles Zollinger
- Intermountain Donor Services, 6065 S Fashion Blvd, Murray, UT 84107, USA;
| | - Andrija Vidic
- Department of Cardiology, University of Kansas Hospital, 4000 Cambridge St., Kansas City, KS 66160, USA;
| | - Gregory L. Snow
- Department of Statistics, Brigham Young University, Provo, UT 84602, USA;
| | - Joseph Stehlik
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - Rami A. Alharethi
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Abdallah G. Kfoury
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| | - Stavros Drakos
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
| | - M Elizabeth H. Hammond
- Department of Cardiology, University of Utah Hospital, 50 N Medical Drive, Salt Lake City, UT 84132, USA; (J.S.); (S.D.)
- Cardiac Transplant Program, Intermountain Medical Center, 5252 S Intermountain Drive, Salt Lake City, UT 84157, USA; (R.A.A.); (A.G.K.)
| |
Collapse
|
17
|
Mehlman Y, Valledor AF, Moeller C, Rubinstein G, Lotan D, Rahman S, Oh KT, Bae D, DeFilippis EM, Lin EF, Lee SH, Raikhelkar JK, Fried J, Theodoropoulos K, Colombo PC, Yuzefpolskaya M, Latif F, Clerkin KJ, Sayer GT, Uriel N. The utilization of molecular microscope in management of heart transplant recipients in the era of noninvasive monitoring. Clin Transplant 2023; 37:e15131. [PMID: 37897211 DOI: 10.1111/ctr.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION Monitoring for graft rejection is a fundamental tenet of post-transplant follow-up. In heart transplantation (HT) in particular, rejection has been traditionally assessed with endomyocardial biopsy (EMB). EMB has potential complications and noted limitations, including interobserver variability in interpretation. Additional tests, such as basic cardiac biomarkers, cardiac imaging, gene expression profiling (GEP) scores, donor-derived cell-free DNA (dd-cfDNA) and the novel molecular microscope diagnostic system (MMDx) have become critical tools in rejection surveillance beyond standard EMB. METHODS This paper describes an illustrative case followed by a review of MMDx within the context of other noninvasive screening modalities for rejection. CONCLUSIONS We suggest MMDx be used to assist with early detection of rejection in cases of discordance between EMB and other noninvasive studies.
Collapse
Affiliation(s)
- Yonatan Mehlman
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Andrea Fernendez Valledor
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Cathrine Moeller
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Gal Rubinstein
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Dor Lotan
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Salwa Rahman
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Kyung T Oh
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - David Bae
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Ersilia M DeFilippis
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Edward F Lin
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Sun Hi Lee
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Jayant K Raikhelkar
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Justin Fried
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Kleanthis Theodoropoulos
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Paolo C Colombo
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Melana Yuzefpolskaya
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Farhana Latif
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Kevin J Clerkin
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel T Sayer
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| | - Nir Uriel
- Division of Cardiology, Center for Advanced Cardiac Care, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
18
|
Alam A, Van Zyl J, McKean S, Abdelrehim A, Patel R, Milligan G, Hall S. Rejection! Or is it? Correlation among molecular microscope diagnostic system, histopathology and clinical judgement following heart transplantation. Transpl Immunol 2023; 81:101924. [PMID: 37648034 DOI: 10.1016/j.trim.2023.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/17/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Little is known about clinical decision making among discordant findings concerning for rejection with endomyocardial biopsy (EMBx) and Molecular Microscope Diagnostic System (MMDx) in patients following heart transplantation. METHODS Two hundred and twenty-eight corresponding EMBx and MMDx specimens from 135 adult heart transplant patients were retrospectively reviewed. Rejection was classified as t-cell mediated rejection ≥2R and/or antibody mediated rejection ≥1. Clinical decision making among concordant and discordant cases of EMBx and MMDx results were reviewed. RESULTS Patient characteristics were comparable between concordant and discordant patient groups (median age 60 yrs., 76% male, and 71% White). A total of 167/228 specimens (73%) were concordant for no rejection with 98% agreement in clinical decision making and 25/228 (11%) concordant for rejection with 64% agreement in clinical decision making. Among the 36/228 (16%) discordant samples, clinical decision-making agreed on treatment for rejection in five of the MMDx samples and three of the EMBx samples. CONCLUSIONS MMDx can be an additional tool to diagnose rejection not detected by the traditional EMBx and influence clinical decision making in guiding appropriate treatment. Ongoing investigation into the clinical utility of MMDx is warranted to determine the significance of discordant findings among diagnostic modalities when assessing for rejection.
Collapse
Affiliation(s)
- Amit Alam
- New York University, New York, NY, USA.
| | | | - Staci McKean
- Baylor University Medical Center, Dallas, TX, USA
| | | | - Raksha Patel
- Baylor University Medical Center, Dallas, TX, USA
| | | | - Shelley Hall
- Baylor University Medical Center, Dallas, TX, USA
| |
Collapse
|
19
|
Gauthier PT, Mackova M, Hirji A, Weinkauf J, Timofte IL, Snell GI, Westall GP, Havlin J, Lischke R, Zajacová A, Simonek J, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran K, Halloran PF. Defining a natural killer cell-enriched molecular rejection-like state in lung transplant transbronchial biopsies. Am J Transplant 2023; 23:1922-1938. [PMID: 37295720 DOI: 10.1016/j.ajt.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In lung transplantation, antibody-mediated rejection (AMR) diagnosed using the International Society for Heart and Lung Transplantation criteria is uncommon compared with other organs, and previous studies failed to find molecular AMR (ABMR) in lung biopsies. However, understanding of ABMR has changed with the recognition that ABMR in kidney transplants is often donor-specific antibody (DSA)-negative and associated with natural killer (NK) cell transcripts. We therefore searched for a similar molecular ABMR-like state in transbronchial biopsies using gene expression microarray results from the INTERLUNG study (#NCT02812290). After optimizing rejection-selective transcript sets in a training set (N = 488), the resulting algorithms separated an NK cell-enriched molecular rejection-like state (NKRL) from T cell-mediated rejection (TCMR)/Mixed in a test set (N = 488). Applying this approach to all 896 transbronchial biopsies distinguished 3 groups: no rejection, TCMR/Mixed, and NKRL. Like TCMR/Mixed, NKRL had increased expression of all-rejection transcripts, but NKRL had increased expression of NK cell transcripts, whereas TCMR/Mixed had increased effector T cell and activated macrophage transcripts. NKRL was usually DSA-negative and not recognized as AMR clinically. TCMR/Mixed was associated with chronic lung allograft dysfunction, reduced one-second forced expiratory volume at the time of biopsy, and short-term graft failure, but NKRL was not. Thus, some lung transplants manifest a molecular state similar to DSA-negative ABMR in kidney and heart transplants, but its clinical significance must be established.
Collapse
Affiliation(s)
| | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | | | | | - Jan Simonek
- University Hospital Motol, Prague, Czech Republic
| | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Washington University in St Louis, St. Louis, Missouri, USA
| | | | - Bartosz Kubisa
- Pomeranian Medical University of Szczecin, Szczecin, Poland
| | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Baran DA. Anything But a Biopsy: The Quest for Noninvasive Alternatives in Heart Transplantation. Transplantation 2023; 107:1875-1876. [PMID: 37143200 DOI: 10.1097/tp.0000000000004623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- David A Baran
- Department of Cardiology, Advanced Heart Failure, Transplant and MCS, Cleveland Clinic Heart, Vascular and Thoracic Institute, Weston, FL
| |
Collapse
|
21
|
Hsu PS, Liu ST, Chiu YL, Tsai CS. The Functional Role of Myogenin in Cardiomyoblast H9c2 Cells Treated with High Glucose and Palmitic Acid: Insights into No-Rejection Heart Transplantation. Int J Mol Sci 2023; 24:13031. [PMID: 37685838 PMCID: PMC10487901 DOI: 10.3390/ijms241713031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Various pathological alterations, including lipid-deposition-induced comparative cardiac lipotoxicity, contribute to cardiac aging in the failing heart. A decline in endogenous myogenin proteins can lead to the reversal of muscle cell differentiation and the creation of mononucleated muscle cells. Myogenin may be a specific regulator of adaptive responses to avoid pathological hypertrophy in the heart. Hence, it is important to understand the regulation of myogenin expression and functions in response to exposure to varied stresses. In this study, we first examined and verified the cytotoxic effect of palmitic acid on H9c2 cells. The reduction in myogenin mRNA and protein expression by palmitic acid was independent of the effect of glucose. Meanwhile, the induction of cyclooxygenase 2 and activating transcription factor 3 mRNAs and proteins by palmitic acid was dependent on the presence of glucose. In addition, palmitic acid failed to disrupt cell cycle progression when H9c2 cells were treated with no glucose. Next, we examined the functional role of myogenin in palmitic-acid-treated H9c2 cells and found that myogenin may be involved in palmitic-acid-induced mitochondrial and cytosolic ROS generation, cellular senescence, and mitochondrial membrane potential. Finally, the GSE150059 dataset was deposited in the Gene Expression Omnibus website and the dataset was further analyzed via the molecular microscope diagnostic system (MMDx), demonstrating that many heart transplant biopsies currently diagnosed as no rejection have mild molecular-antibody-mediated rejection-related changes. Our data show that the expression levels of myogenin were lower than the average level in the studied population. Combining these results, we uncover part of the functional role of myogenin in lipid- and glucose-induced cardiac cell stresses. This finding provides valuable insight into the differential role of fatty-acid-associated gene expression in cardiovascular tissues. Additionally, the question of whether this gene expression is regulated by myogenin also highlights the usefulness of a platform such as MMDx-Heart and can help elucidate the functional role of myogenin in heart transplantation.
Collapse
Affiliation(s)
- Po-Shun Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (S.-T.L.); (Y.-L.C.)
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan; (S.-T.L.); (Y.-L.C.)
| | - Chien-Sung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|