1
|
Song B, Chen D, Liu Z, Cheng Y, Zhang Z, Han W, Zhang R, Gong Y. Stromal cell-derived factor-1 exerts opposing roles through CXCR4 and CXCR7 in angiotensin II-induced adventitial remodeling. Biochem Biophys Res Commun 2022; 594:38-45. [PMID: 35066378 DOI: 10.1016/j.bbrc.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/29/2021] [Accepted: 01/09/2022] [Indexed: 11/02/2022]
Abstract
Recent studies have emphasized the role of vascular adventitia inflammation and immune response in hypertension. It has been reported that stromal cell-derived factor-1 (SDF-1) plays various biological functions through its receptors C-X-C motif chemokine receptor 4 (CXCR4) and CXCR7 in tumor growth and tissue repair. However, it is unclear that whether SDF-1/CXCR4/CXCR7 axis is involved in hypertensive vascular remodeling. In the present study, the involvement of SDF-1/CXCR4/CXCR7 axis was evaluated with lentivirus-mediated shRNA of SDF-1 and CXCR7, CXCR4 antagonist AMD3100 and CXCR7 agonist VUF11207 in angiotensin II (AngII)-induced hypertensive mice and in cultured adventitial fibroblasts (AFs). Results showed that AngII infusion markedly increased SDF-1 expressed in vascular adventitia, but not in media and endothelium. Importantly, blockade of SDF-1/CXCR4 axis strikingly potentiated AngII-induced adventitial thickening and fibrosis, as indicated by enhanced collagen I deposition. In contrast, CXCR7 shRNA largely attenuated AngII-induced adventitial thickness and fibrosis, whereas CXCR7 activation with VUF11207 significantly potentiated AngII-induced adventitial thickening and fibrosis. In consistent with these in vivo study, CXCR4 inhibition with AMD3100 and CXCR7 activation with VUF11207 aggravated AngII-induced inflammation, proliferation and migration in cultured AFs. In summary, these results suggested that SDF-1 exerted opposing effects through CXCR4 and CXCR7 in AngII-induced vascular adventitial remodeling.
Collapse
Affiliation(s)
- Bei Song
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zixiong Liu
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zebei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Han
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanchun Gong
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Chan JS, Wang Y, Cornea V, Roy-Chaudhury P, Campos B. Early Adventitial Activation and Proliferation in a Mouse Model of Arteriovenous Stenosis: Opportunities for Intervention. Int J Mol Sci 2021; 22:ijms222212285. [PMID: 34830167 PMCID: PMC8623099 DOI: 10.3390/ijms222212285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Arteriovenous fistula (AVF) stenosis remains an important cause of AVF maturation failure, for which there are currently no effective therapies. We examined the pattern and phenotype of cellular proliferation at different timepoints in a mouse model characterized by a peri-anastomotic AVF stenosis. Methods: Standard immunohistochemical analyses for cellular proliferation and macrophage infiltration were performed at 2, 7 and 14 d on our validated mouse model of AVF stenosis to study the temporal profile, geographical location and cellular phenotype of proliferating and infiltrating cells in this model. Results: Adventitial proliferation and macrophage infiltration (into the adventitia) began at 2 d, peaked at 7 d and then declined over time. Surprisingly, there was minimal macrophage infiltration or proliferation in the neointimal region at either 7 or 14 d, although endothelial cell proliferation increased rapidly between 2 d and 7 d, and peaked at 14 d. Conclusions: Early and rapid macrophage infiltration and cellular proliferation within the adventitia could play an important role in the downstream pathways of both neointimal hyperplasia and inward or outward remodelling.
Collapse
Affiliation(s)
- Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Armed Forces Taoyuan General Hospital, Taoyuan 325, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-S.C.); (B.C.); Tel.: +886-3-4801611 (J.-S.C.); +1-513-558-0331 (B.C.); Fax: +886-3-4803634 (J.-S.C.)
| | - Yang Wang
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Virgilius Cornea
- Department of Pathology, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Prabir Roy-Chaudhury
- Department of Medicine, Division of Nephrology and Hypertension, University of North Carolina, Chapel Hill, NC 27599, USA;
- WG (Bill) Hefner Salisbury VA Medical Center, Salisbury, NC 27284, USA
| | - Begoña Campos
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
- Correspondence: (J.-S.C.); (B.C.); Tel.: +886-3-4801611 (J.-S.C.); +1-513-558-0331 (B.C.); Fax: +886-3-4803634 (J.-S.C.)
| |
Collapse
|
3
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
4
|
Wang A, Cao S, Aboelkassem Y, Valdez-Jasso D. Quantification of uncertainty in a new network model of pulmonary arterial adventitial fibroblast pro-fibrotic signalling. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190338. [PMID: 32448066 PMCID: PMC7287331 DOI: 10.1098/rsta.2019.0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/16/2020] [Indexed: 05/21/2023]
Abstract
Here, we present a novel network model of the pulmonary arterial adventitial fibroblast (PAAF) that represents seven signalling pathways, confirmed to be important in pulmonary arterial fibrosis, as 92 reactions and 64 state variables. Without optimizing parameters, the model correctly predicted 80% of 39 results of input-output and inhibition experiments reported in 20 independent papers not used to formulate the original network. Parameter uncertainty quantification (UQ) showed that this measure of model accuracy is robust to changes in input weights and half-maximal activation levels (EC50), but is more affected by uncertainty in the Hill coefficient (n), which governs the biochemical cooperativity or steepness of the sigmoidal activation function of each state variable. Epistemic uncertainty in model structure, due to the reliance of some network components and interactions on experiments using non-PAAF cell types, suggested that this source of uncertainty had a smaller impact on model accuracy than the alternative of reducing the network to only those interactions reported in PAAFs. UQ highlighted model parameters that can be optimized to improve prediction accuracy and network modules where there is the greatest need for new experiments. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
| | | | | | - Daniela Valdez-Jasso
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92092, USA
| |
Collapse
|
5
|
The Selective RNA Polymerase I Inhibitor CX-5461 Mitigates Neointimal Remodeling in a Modified Model of Rat Aortic Transplantation. Transplantation 2018; 102:1674-1683. [DOI: 10.1097/tp.0000000000002372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Macrophage-stimulated microRNA expression in mural cells promotes transplantation-induced neointima formation. Oncotarget 2018; 8:30100-30111. [PMID: 28415796 PMCID: PMC5444729 DOI: 10.18632/oncotarget.16279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 01/16/2023] Open
Abstract
In this study, we tested the possibility that macrophages might contribute to neointima formation by stimulating microRNA expressions in mural cells. Thoracic aortas from F344 rats were transplanted into recipient Lewis rats. Clodronate liposome was used for in vivo macrophage depletion. Using miR-21 as a prototypic example of vascular enriched microRNA, we showed that macrophage depletion reduced the expression level of miR-21, which was upregulated in the allograft. This effect of macrophage depletion was accompanied by attenuations in neointimal hyperplasia and transplantation-induced vascular inflammation. Using in vitro assays, we identified that macrophages might stimulate miR-21 expression in smooth muscle cells and adventitial fibroblasts via the release of tumor necrosis factor-α. We also showed that silencing of miR-21 suppressed tumor necrosis factor-induced proliferation, migration, and inflammatory responses in mural cells. Our results suggest that macrophage may promote transplantation-induced neointima formation by stimulating miR-21 expression in vascular mural cells, which promotes mural cell proliferation, migration and/or inflammation. Moreover, we have established that tumor necrosis factor-α has a major role in mediating this paracrine process.
Collapse
|
7
|
Wang J, Wang Y, Wang J, Guo X, Chan EC, Jiang F. Adventitial Activation in the Pathogenesis of Injury-Induced Arterial Remodeling: Potential Implications in Transplant Vasculopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:838-845. [PMID: 29341889 DOI: 10.1016/j.ajpath.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/28/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022]
Abstract
Transplant vasculopathy is one of the major causes of chronic rejection after solid organ transplantation. The pathogenic mechanisms of transplant vasculopathy are still poorly understood. Herein, we summarize current evidence suggesting that activation of the tunica adventitia may be involved in the pathogenesis of transplant vasculopathy. Adventitia is an early responder to various vascular injuries and plays an integral role in eliciting vascular inflammation and remodeling. Accumulation of macrophages in the adventitia promotes the development of vascular remodeling by releasing a variety of paracrine factors that have profound impacts on vascular mural cells. Targeting adventitial macrophages has been shown to be effective for repressing transplantation-induced arterial remodeling in animal models. Adventitia also fosters angiogenesis, and neovascularization of the adventitial layer may facilitate the transport of inflammatory cells through the arterial wall. Further investigations are warranted to clarify whether inhibiting adventitial oxidative stress and/or adventitial neovascularization are better strategies for preventing transplant vasculopathy.
Collapse
Affiliation(s)
- Jianli Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Yuan Wang
- Department of Emergency, Qilu Hospital of Shandong University, Jinan, China
| | - Jingjing Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China
| | - Elsa C Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Fan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Shandong University, Jinan, China; Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health), Qilu Hospital of Shandong University, Jinan, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Tesfamariam B. Periadventitial local drug delivery to target restenosis. Vascul Pharmacol 2017; 107:S1537-1891(17)30235-5. [PMID: 29247786 DOI: 10.1016/j.vph.2017.12.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/18/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
The adventitia functions as a dynamic compartment for cell trafficking into and out of the artery wall, and communicates with medial and intimal cells. The resident cells in the tunica adventitia play an integral role in the regulation of vessel wall structure, repair, tone, and remodeling. Following injury to the vascular wall, adventitial fibroblasts are activated, which proliferate and differentiate into migratory myofibroblasts, and initiate inflammation through the secretion of soluble factors such as chemokines, cytokines, and adhesion molecules. The secreted factors subsequently promote leukocyte recruitment and extravasation into the media and intima. The adventitia generates reactive oxygen species and growth factors that participate in cell proliferation, migration, and hypertrophy, resulting in intimal thickening. The adventitial vasa vasorum undergoes neovascularization and serves as a port of entry for the delivery of inflammatory cells and resident stem/progenitor cells into the intima, and thus facilitates vascular remodeling. This review highlights the contribution of multilineage cells in the adventitia along with de-differentiated smooth muscle-like cells to the formation of neointimal hyperplasia, and discusses the potential of periadventitial local drug delivery for the prevention of vascular restenosis.
Collapse
Affiliation(s)
- Belay Tesfamariam
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Bldg 22, Rm 4176, Silver Spring, MD, United States.
| |
Collapse
|
9
|
Xu JY, Chang NB, Li T, Jiang R, Sun XL, He YZ, Jiang J. Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts. J Cell Biochem 2017; 118:1921-1927. [PMID: 28218456 DOI: 10.1002/jcb.25941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/17/2017] [Indexed: 11/12/2022]
Abstract
The phenotypic modulation of vascular adventitial fibroblasts plays an important role in vascular remodeling. Evidence have shown that endothelial cells and adventitial fibroblasts interact under certain conditions. In this study, we investigated the influence of endothelial cells on the phenotypic modulation of adventitial fibroblasts. Endothelial cells and adventitial fibroblasts from rat thoracic aorta were cultivated in a co-culture system and adventitial fibroblasts were induced with angiotensin II (Ang II). Collagen I and alpha smooth muscle actin (α-SMA) expression and migration of adventitial fibroblasts were analyzed. Ang II upregulated the expression of collagen I and α-SMA and the migration of adventitial fibroblasts. Adventitial fibroblasts-endothelial cells co-culturing attenuated the effects of Ang II. Homocysteine-treated endothelial cells, which are functionally impaired, were less inhibitory of the phenotypic modulation of adventitial fibroblasts. Supplementation of endothelial cells with L-arginine (L-Arg) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) enhanced the trends, while with L-NG-nitroarginine methyl ester (L-NAME) or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) the opposite effect was observed. Under the influence of Ang II, adventitial fibroblasts were prone to undergo phenotypic modulation, which was closely related to vascular remodeling. Our study showed that endothelial cells influenced fibroblast phenotypic transformation and such effect would be mediated through the nitric oxide (NO)/cGMP signaling pathway. J. Cell. Biochem. 118: 1921-1927, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jia-Ying Xu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Neng-Bin Chang
- Department of Anatomy, College of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Rui Jiang
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Lei Sun
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan-Zheng He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Jiang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Sun M, Ji J, Guo X, Liu W, Wang Y, Ma S, Hu W, Wang J, Jiang F. Early adventitial activation characterized by NADPH oxidase expression and neovascularization in an aortic transplantation model. Exp Mol Pathol 2015; 100:67-73. [PMID: 26655438 DOI: 10.1016/j.yexmp.2015.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/02/2015] [Indexed: 12/16/2022]
Abstract
Increasing evidence has suggested that arterial adventitia may contribute to pathological vessel remodeling by producing reactive oxygen species and promoting neovascularization. However, these processes have not been studied yet in transplantation-induced vascular pathologies. We characterized the dynamic changes in NADPH oxidase expression and adventitial angiogenic response in a model of allograft aortic transplantation. The thoracic aorta from Fischer 344 rats were transplanted into the abdominal aorta of Lewis rats. Graft specimens were collected on days 0.5, 3, 7, and 14 for morphometry, immunohistochemistry, immunofluorescence staining, and quantitative PCR tests. Following transplantation, adventitial thickening was found as early as day 3, while neointima was observed from day 7. As compared to normal adventitial tissue, the expression levels of NADPH oxidase subunits gp91phox and p47phox in graft adventitia were elevated from day 3 and further increased up to day 14. Immunohistochemistry staining showed that infiltrating macrophages appeared to be a major source of NADPH oxidase expression. Increases in NADPH oxidase expression were also detected in fibroblasts isolated from the graft adventitia. Gene silencing of p47phox significantly suppressed proliferation and migration of the graft fibroblast cells. We also showed that adventitial thickening was accompanied by increased adventitial neovascularization; at day 14, there was a positive correlation between the density of adventitial microvessels and the neointimal thickness. Transplantation injury induces NADPH oxidase expression and neovascularization in the adventitia, raising the possibility that the activated adventitia may represent a target site for prevention of transplantation-induced transplant vasculopathy.
Collapse
Affiliation(s)
- Mengyao Sun
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Jian Ji
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China; Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Xiaotong Guo
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Wenjun Liu
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Yanyan Wang
- Qilu Hospital, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Siqin Ma
- School of Stomatology, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Weicheng Hu
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Jianli Wang
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| | - Fan Jiang
- Institute of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
11
|
Hilbe M, Robert N, Pospischil A, Gerspach C. Pulmonary Arterial Lesions in New World Camelids in Association With Dicrocoelium dendriticum and Fasciola hepatica Infection. Vet Pathol 2015; 52:1202-9. [DOI: 10.1177/0300985814564978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Switzerland, dicrocoeliasis is regarded as the most significant parasitic infection of llamas and alpacas. Fasciola hepatica infestation is also a problem but less common. The aim of the present retrospective study was to evaluate the lungs of New World camelids (NWCs) for evidence of arterial hypertension in association with liver changes due to liver fluke infestation. The lungs of 20 llamas and 20 alpacas with liver fluke infestation were histologically evaluated. The hematoxylin and eosin and van Gieson (VG)–elastica stains as well as immunohistology for the expression of α–smooth muscle actin (α-SMA) were used to visualize the structures of arterial walls. Parasitology of fecal matter (11 llamas and 17 alpacas) confirmed that most of these animals were infested with both Dicrocoelium dendriticum and other gastrointestinal parasites. In most cases (10/12 llamas, 4/6 alpacas), liver enzyme activity in serum was elevated. Histologically, arteries in the lungs of 9 of 20 llamas (45%) and 3 of 20 alpacas (15%) showed severe intimal and adventitial and slight to moderate medial thickening, which was confirmed with α-SMA and VG-elastica staining. All animals exhibited typical liver changes, such as fibrosis and biliary hyperplasia, in association with the presence of liver flukes. This study shows that liver flukes can induce proliferative changes in lung arteries in NWCs that resemble those seen with pulmonary arterial hypertension due to liver parasites in humans. However, the degree of liver fluke infestation was not correlated with the extent of liver damage, or with the amount of thoracic or abdominal effusion or pulmonary arterial changes.
Collapse
Affiliation(s)
- M. Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - N. Robert
- Institute of Animal Pathology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - A. Pospischil
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - C. Gerspach
- Department of Farm Animals, Clinic of Ruminants, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| |
Collapse
|
12
|
Xu F, Liu Y, Hu W. Adventitial fibroblasts from apoE(-/-) mice exhibit the characteristics of transdifferentiation into myofibroblasts. Cell Biol Int 2014; 37:160-6. [PMID: 23339104 DOI: 10.1002/cbin.10027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 11/07/2022]
Abstract
Adventitial fibroblasts (AFs) are the main cell type in the adventitia, however, their role in atherosclerosis remains unclear. We have investigate the role of AFs in atherosclerotic lesion formation by comparing the characteristics of AFs from apoE(-/-) to C57BL/6 mice. A minority of AFs from apoE(-/-) mice expressed α-SM-actin, but no α-SM-actin-positive cells were found in AFs from C57BL/6 mice. The content of total collagens, and the mRNA levels of collagen I and collagen III in AFs of apoE(-/-) mice, were higher than in C57BL/6 mice. AFs from apoE(-/-) mice proliferate and migrate faster, and synthesized more TGF-β(1) , MCP-1, and PDGF-b AFs from apoE(-/-) mice have the characteristics of transdifferentiation into myofibroblasts, including enhanced proliferation and migration, along with synthesis of collagens and cytokines compared to AFs from C57BL/6 mice. The histological and functional characteristics of AFs may contribute to early atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Fang Xu
- Department of Pathophysiology, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, China
| | | | | |
Collapse
|
13
|
Wang Z, Ren Z, Hu Z, Hu X, Zhang H, Wu H, Zhang M. Angiotensin-II induces phosphorylation of ERK1/2 and promotes aortic adventitial fibroblasts differentiating into myofibroblasts during aortic dissection formation. J Mol Histol 2013; 45:401-12. [DOI: 10.1007/s10735-013-9558-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
14
|
Grudzinska MK, Kurzejamska E, Hagemann N, Bojakowski K, Soin J, Lehmann MH, Reinecke H, Murry CE, Soderberg-Naucler C, Religa P. Monocyte chemoattractant protein 1-mediated migration of mesenchymal stem cells is a source of intimal hyperplasia. Arterioscler Thromb Vasc Biol 2013; 33:1271-9. [PMID: 23599443 DOI: 10.1161/atvbaha.112.300773] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Intimal hyperplasia is considered to be a healing response and is a major cause of vessel narrowing after injury, where migration of vascular progenitor cells contributes to pathological events, including transplant arteriosclerosis. APPROACH AND RESULTS In this study, we used a rat aortic-allograft model to identify the predominant cell types associated with transplant arteriosclerosis and to identify factors important in their recruitment into the graft. Transplantation of labeled adventitial tissues allowed us to identify the adventitia as a major source of cells migrating to the intima. RNA microarrays revealed a potential role for monocyte chemoattractant protein 1 (MCP-1), stromal cell-derived factor 1, regulated on activation, normal T cell expressed and secreted, and interferon-inducible protein 10 in the induced vasculopathy. MCP-1 induced migration of adventitial fibroblast cells. CCR2, the receptor for MCP-1, was coexpressed with CD90, CD44, NG2, or sca-1 on mesenchymal stem cells. In vivo experiments using MCP-1-deficient and CCR2-deficient mice confirmed an important role of MCP-1 in the formation of intimal hyperplasia in a mouse model of vascular injury. CONCLUSIONS The adventitia is a potentially important cellular source that contributes to intimal hyperplasia, and MCP-1 is a potent chemokine for the recruitment of adventitial vascular progenitor cells to intimal lesions.
Collapse
Affiliation(s)
- Monika K Grudzinska
- Experimental Cardiovascular Research Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li J, Liu S, Li W, Hu S, Xiong J, Shu X, Hu Q, Zheng Q, Song Z. Vascular smooth muscle cell apoptosis promotes transplant arteriosclerosis through inducing the production of SDF-1α. Am J Transplant 2012; 12:2029-43. [PMID: 22845908 DOI: 10.1111/j.1600-6143.2012.04082.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transplant arteriosclerosis is a leading cause of late allograft loss. Medial smooth muscle cell (SMC) apoptosis is considered to be an important event in transplant arteriosclerosis. However, the precise contribution of medial SMC apoptosis to transplant arteriosclerosis and the underlying mechanisms remain unclear. We transferred wild-type p53 to induce apoptosis of cultured SMCs. We found that apoptosis induces the production of SDF-1α from apoptotic and neighboring viable cells, resulting in increased SDF-1α in the culture media. Conditioned media from Ltv-p53-transferred SMCs activated PI3K/Akt/mTOR and MAPK/Erk signaling in a SDF-1α-dependent manner and thereby promoted mesenchymal stem cell (MSC) migration and proliferation. In a rat aorta transplantation model, lentivirus-mediated BclxL transfer selectively inhibits medial SMC apoptosis in aortic allografts, resulting in a remarkable decrease of SDF-1α both in allograft media and in blood plasma, associated with diminished recruitment of CD90(+)CD105(+) double-positive cells and impaired neointimal formation. Systemic administration of rapamycin or PD98059 also attenuated MSC recruitment and neointimal formation in the aortic allografts. These results suggest that medial SMC apoptosis is critical for the development of transplant arteriosclerosis through inducing SDF-1α production and that MSC recruitment represents a major component of vascular remodeling, constituting a relevant target and mechanism for therapeutic interventions.
Collapse
Affiliation(s)
- J Li
- Division of Liver Transplantation, Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Péault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 2011; 21:1299-308. [PMID: 21861688 DOI: 10.1089/scd.2011.0200] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that human pericytes, which encircle capillaries and microvessels, give rise in culture to genuine mesenchymal stem cells (MSCs). This raised the question as to whether all MSC are derived from pericytes. Pericytes and other cells defined on differential expression of CD34, CD31, and CD146 were sorted from the stromal vascular fraction of human white adipose tissue. Besides pericytes, CD34+ CD31- CD146- CD45- cells, which reside in the outmost layer of blood vessels, the tunica adventitia, natively expressed MSC markers and gave rise in culture to clonogenic multipotent progenitors identical to standard bone marrow-derived MSC. Despite common MSC features and developmental properties, adventitial cells and pericytes retain distinct phenotypes and genotypes through culture. However, in the presence of growth factors involved in vascular remodeling, adventitial cells acquire a pericytes-like phenotype. In conclusion, we demonstrate the co-existence of 2 separate perivascular MSC progenitors: pericytes in capillaries and microvessels and adventitial cells around larger vessels.
Collapse
Affiliation(s)
- Mirko Corselli
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, UCLA and Orthopaedic Hospital, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Vascular inflammation is implicated in both local and systemic inflammatory conditions. Endothelial activation and leukocyte extravasation are key events in vascular inflammation. Lately, the role of the stromal microenvironment as a source of proinflammatory stimuli has become increasingly appreciated. Stromal fibroblasts produce cytokines, growth factors and proteases that trigger and maintain acute and chronic inflammatory conditions. Fibroblasts have been associated with connective tissue pathologies such as scar formation and fibrosis, but recent research has also connected them with vascular dysfunctions. Fibroblasts are able to modulate endothelial cell functions in a paracrine manner, including proinflammatory activation and promotion of angiogenesis. They are also able to activate and attract leukocytes. Stromal fibroblasts can thus cause a proinflammatory switch in endothelial cells, and promote leukocyte infiltration into tissues. New insights in the role of adventitial fibroblasts have further strengthened the link between stromal fibroblasts and proinflammatory vascular functions. This review focuses on the role of fibroblasts in inducing and maintaining vascular inflammation, and describes recent findings and concepts in the field, along with examples of pathologic implications.
Collapse
Affiliation(s)
- A Enzerink
- Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
18
|
Grudzinska MK, Bojakowski K, Soin J, Stassen F, Söderberg-Nauclér C, Religa P. RCMV increases intimal hyperplasia by inducing inflammation, MCP-1 expression and recruitment of adventitial cells to intima. HERPESVIRIDAE 2010; 1:7. [PMID: 21429242 PMCID: PMC3063229 DOI: 10.1186/2042-4280-1-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 12/23/2010] [Indexed: 02/06/2023]
Abstract
Background Cytomegalovirus (CMV) infection has been associated with accelerated transplant vasculopathy. In this study, we assessed the effects of acute rat CMV (RCMV) infection on vessel remodeling in transplant vasculopathy, focusing on allograft morphology, inflammation and contribution of adventitial cells to intimal hyperplasia. Methods Infrarenal aorta was locally infected with RCMV and transplanted from female F344 rats to male Lewis rats. Graft samples were collected 2 and 8 weeks after transplantation and analyzed for intimal hyperplasia, collagen degradation and inflammation. Transplantation of aorta followed by transplantation of RCMV infected and labeled isogenic adventitia were performed to study migration of adventitial cells towards the intima. Results Intimal hyperplasia was increased threefold in infected allografts. RCMV induced apoptosis in the media, expression of matrix metalloproteinase 2, and decreased collagen deposits. Macrophage infiltration was increased in the infected allografts and resulted in increased production of MCP-1. RCMV-infected macrophages were observed in the adventitia and intima. Cells derived from infected adventitia migrated towards the intima of the allograft. Conclusions RCMV enhances infiltration of macrophages to the allografts, and thereby increases MCP-1 production and inflammation, followed by recruitment of adventitial cells to the intima and accelerated intimal hyperplasia.
Collapse
Affiliation(s)
- Monika K Grudzinska
- Experimental Cardiovascular Research Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Krzysztof Bojakowski
- Department of General, Vascular and Oncologic Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Soin
- Department of General Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | - Frank Stassen
- Maastricht University Medical Center, Maastricht, The Netherlands
| | - Cecilia Söderberg-Nauclér
- Experimental Cardiovascular Research Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Piotr Religa
- Experimental Cardiovascular Research Unit, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Wong SL, Huang Y. Adventitia as a critical player in the functional integrity of arteries. - Additional support for novel clinical procedures -. Circ J 2010; 74:854-5. [PMID: 20424333 DOI: 10.1253/circj.cj-10-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|