1
|
Abstract
Solid organ transplantation is a life-saving treatment for people with end-stage organ disease. Immune-mediated transplant rejection is a common complication that decreases allograft survival. Although immunosuppression is required to prevent rejection, it also increases the risk of infection. Some infections, such as cytomegalovirus and BK virus, can promote inflammatory gene expression that can further tip the balance toward rejection. BK virus and other infections can induce damage that resembles the clinical pathology of rejection, and this complicates accurate diagnosis. Moreover, T cells specific for viral infection can lead to rejection through heterologous immunity to donor antigen directly mediated by antiviral cells. Thus, viral infections and allograft rejection interact in multiple ways that are important to maintain immunologic homeostasis in solid organ transplant recipients. Better insight into this dynamic interplay will help promote long-term transplant survival.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jane C Tan
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA
- Geriatric Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
2
|
Heterologous Immunity of Virus-Specific T Cells Leading to Alloreactivity: Possible Implications for Solid Organ Transplantation. Viruses 2021; 13:v13122359. [PMID: 34960628 PMCID: PMC8706157 DOI: 10.3390/v13122359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Exposure of the adaptive immune system to a pathogen can result in the activation and expansion of T cells capable of recognizing not only the specific antigen but also different unrelated antigens, a process which is commonly referred to as heterologous immunity. While such cross-reactivity is favourable in amplifying protective immune responses to pathogens, induction of T cell-mediated heterologous immune responses to allo-antigens in the setting of solid organ transplantation can potentially lead to allograft rejection. In this review, we provide an overview of murine and human studies investigating the incidence and functional properties of virus-specific memory T cells cross-reacting with allo-antigens and discuss their potential relevance in the context of solid organ transplantation.
Collapse
|
3
|
Microbiome analysis, the immune response and transplantation in the era of next generation sequencing. Hum Immunol 2021; 82:883-901. [PMID: 34364710 DOI: 10.1016/j.humimm.2021.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
The human gastrointestinal tract, skin and mucosal surfaces are inhabited by a complex system of bacteria, viruses, fungi, archaea, protists, and eukaryotic parasites with predominance of bacteria and bacterial viruses (bacteriophages). Collectively these microbes form the microbiota of the microecosystem of humans. Recent advancement in technologies for nucleic acid isolation from various environmental samples, feces and body secretions and advancements in shotgun throughput massive parallel DNA and RNA sequencing along with 16S ribosomal gene sequencing have unraveled the identity of otherwise unknown microbial entities constituting the human microecosystem. The improved transcriptome analysis, technological developments in biochemical analytical methods and availability of complex bioinformatics tools have allowed us to begin to understand the metabolome of the microbiome and the biochemical pathways and potential signal transduction pathways in human cells in response to microbial infections and their products. Also, developments in human whole genome sequencing, targeted gene sequencing of histocompatibility genes and other immune response associated genes by Next Generation Sequencing (NGS) have allowed us to have a better conceptualization of immune responses, and alloimmune responses. These modern technologies have enabled us to dive into the intricate relationship between commensal symbiotic and pathogenic microbiome and immune system. For the most part, the commensal symbiotic microbiota helps to maintain normal immune homeostasis besides providing healthy nutrients, facilitating digestion, and protecting the skin, mucosal and intestinal barriers. However, changes in diets, administration of therapeutic agents like antibiotics, chemotherapeutic agents, immunosuppressants etc. along with certain host factors including human histocompatibility antigens may alter the microbial ecosystem balance by causing changes in microbial constituents, hierarchy of microbial species and even dysbiosis. Such alterations may cause immune dysregulation, breach of barrier protection and lead to immunopathogenesis rather than immune homeostasis. The effects of human microbiome on immunity, health and disease are currently under intense research with cutting edge technologies in molecular biology, biochemistry, and bioinformatics along with tremendous ability to characterize immune response at single cell level. This review will discuss the contemporary status on human microbiome immune system interactions and their potential effects on health, immune homeostasis and allograft transplantation.
Collapse
|
4
|
Cordero E, Bulnes-Ramos A, Aguilar-Guisado M, González Escribano F, Olivas I, Torre-Cisneros J, Gavaldá J, Aydillo T, Moreno A, Montejo M, Fariñas MC, Carratalá J, Muñoz P, Blanes M, Fortún J, Suárez-Benjumea A, López-Medrano F, Roca C, Lara R, Pérez-Romero P. Effect of Influenza Vaccination Inducing Antibody Mediated Rejection in Solid Organ Transplant Recipients. Front Immunol 2020; 11:1917. [PMID: 33123119 PMCID: PMC7574595 DOI: 10.3389/fimmu.2020.01917] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Our goal was to study whether influenza vaccination induced antibody mediated rejection in a large cohort of solid organ transplant recipients (SOTR). Methods Serum anti-Human Leukocyte Antigen (HLA) antibodies were determined using class I and class II antibody-coated latex beads (FlowPRATM Screening Test) by flow cytometry. Anti-HLA antibody specificity was determined using the single-antigen bead flow cytometry (SAFC) assay and assignation of donor specific antibodies (DSA) was performed by virtual-crossmatch. Results We studied a cohort of 490 SOTR that received an influenza vaccination from 2009 to 2013: 110 (22.4%) received the pandemic adjuvanted vaccine, 59 (12%) within the first 6 months post-transplantation, 185 (37.7%) more than 6 months after transplantation and 136 (27.7%) received two vaccination doses. Overall, no differences of anti-HLA antibodies were found after immunization in patients that received the adjuvanted vaccine, within the first 6 months post-transplantation, or based on the type of organ transplanted. However, the second immunization dose increased the percentage of patients positive for anti-HLA class I significantly compared with patients with one dose (14.6% vs. 3.8%; P = 0.003). Patients with pre-existing antibodies before vaccination (15.7% for anti-HLA class I and 15.9% for class II) did not increase reactivity after immunization. A group of 75 (14.4%) patients developed de novo anti-HLA antibodies, however, only 5 (1.02%) of them were DSA, and none experienced allograft rejection. Only two (0.4%) patients were diagnosed with graft rejection with favorable outcomes and neither of them developed DSA. Conclusion Our results suggest that influenza vaccination is not associated with graft rejection in this cohort of SOTR.
Collapse
Affiliation(s)
- Elisa Cordero
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain.,Department of Medicine, University of Seville, Seville, Spain
| | - Angel Bulnes-Ramos
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Manuela Aguilar-Guisado
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Francisca González Escribano
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Israel Olivas
- Servicio de Inmunología, Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Julián Torre-Cisneros
- Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), University of Córdoba (UCO), Córdoba, Spain
| | - Joan Gavaldá
- Vall d'Hebron University Hospital, VHIR, Barcelona, Spain
| | - Teresa Aydillo
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | | | | | | | - Jordi Carratalá
- Belltvitge University Hospital, IDIBELL, University of Barcelona, Barcelona, Spain
| | - Patricia Muñoz
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.,Instituto de Investigaciónn Biomédica Gregorio Marañón, Madrid, Spain.,Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain.,CIBERES (CB06/06/0058), Madrid, Spain
| | | | - Jesús Fortún
- University Hospital Ramón y Cajal, Madrid, Spain
| | | | - Francisco López-Medrano
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Biomédica imas12, Madrid, Spain.,Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Roca
- Instituto de Biomedicina de Sevilla (IBIS), University Hospital Virgen del Rocío, CSIC, University of Seville, Seville, Spain
| | - Rosario Lara
- Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), University of Córdoba (UCO), Córdoba, Spain
| | - Pilar Pérez-Romero
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Rowntree LC, van den Heuvel H, Sun J, D'Orsogna LJ, Nguyen THO, Claas FHJ, Rossjohn J, Kotsimbos TC, Purcell AW, Mifsud NA. Preferential HLA-B27 Allorecognition Displayed by Multiple Cross-Reactive Antiviral CD8 + T Cell Receptors. Front Immunol 2020; 11:248. [PMID: 32140156 PMCID: PMC7042382 DOI: 10.3389/fimmu.2020.00248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 11/13/2022] Open
Abstract
T cells provide essential immunosurveillance to combat and eliminate infection from pathogens, yet these cells can also induce unwanted immune responses via T cell receptor (TCR) cross-reactivity, also known as heterologous immunity. Indeed, pathogen-induced TCR cross-reactivity has shown to be a common, robust, and functionally potent mechanism that can trigger a spectrum of human immunopathologies associated with either transplant rejection, drug allergy, and autoimmunity. Here, we report that several virus-specific CD8+ T cells directed against peptides derived from chronic viruses (EBV, CMV, and HIV-1) presented by high frequency HLA-A and -B allomorphs differentially cross-react toward HLA-B27 allotypes in a highly focused and hierarchical manner. Given the commonality of cross-reactive T cells and their potential contribution to adverse outcomes in allogeneic transplants, our study demonstrates that multiple antiviral T cells recognizing the same HLA allomorph could pose an extra layer of complexity for organ matching.
Collapse
Affiliation(s)
- Louise C Rowntree
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Heleen van den Heuvel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jessica Sun
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, WA, Australia.,School of Medicine, University of Western Australia, Perth, WA, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, VIC, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Tom C Kotsimbos
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Nicole A Mifsud
- Respiratory Medicine Laboratory, Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Allergy, Immunology, and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC, Australia.,Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Rimando J, Slade M, DiPersio JF, Westervelt P, Gao F, Liu C, Romee R. The Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) Score for HLA Class I Graft-versus-Host Disparity Is Associated with Increased Acute Graft-versus-Host Disease in Haploidentical Transplantation with Post-Transplantation Cyclophosphamide. Biol Blood Marrow Transplant 2020; 26:123-131. [PMID: 31563575 PMCID: PMC7286229 DOI: 10.1016/j.bbmt.2019.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 11/17/2022]
Abstract
The Predicted Indirectly Recognizable HLA Epitopes (PIRCHE) score quantifies the number of PIRCHEs in patient-donor pairs and represents an in silico measure of indirect alloreactivity. This biologic process is defined as T cell recognition of epitopes derived from mismatched, allogeneic HLA peptides that are subsequently presented by shared HLA molecules. Its association with clinical outcome has not been examined in haploidentical hematopoietic cell transplantation (haplo-HCT) with post-transplantation cyclophosphamide (PTCy). We hypothesized that the PIRCHE score (PS) would correlate with indirect alloreactivity and predict graft-versus-host disease (GVHD) risk and the incidence of relapse after haplo-HCT with PTCy. We retrospectively analyzed 148 patients who underwent peripheral blood stem cell T cell-replete haplo-HCT with PTCy at a single center between 2009 and 2016. For each patient-donor pair, the PS was calculated using the PIRCHE online matching tool. PSs were categorized by class and vector. The median class I graft-versus-host (GVH) PS was 11 (range, 0 to 56), and the median class I host-versus-graft (HVG) PS was 10 (range, 0 to 51). Class I GVH PS was associated with increased risk of grade II-IV acute GVHD (adjusted hazard ratio, 1.03 per PS unit increase; 95% confidence interval, 1.01 to 1.05; P= .008) but not of chronic GVHD or relapse. Our data show that use of the PS is a novel strategy for predicting clinical outcome in haplo-HCT; further studies using registry data and prospective cohorts are warranted to validate these findings.
Collapse
Affiliation(s)
- Joseph Rimando
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Michael Slade
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - John F DiPersio
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Peter Westervelt
- BMT and Leukemia Program, Washington University School of Medicine, Saint Louis, Missouri
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri.
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
D'Orsogna LJ, Almeida CAM, van Miert P, Zoet YM, Anholts JDH, Chopra A, Watson M, Witt C, John M, Claas FHJ. Drug-induced alloreactivity: A new paradigm for allorecognition. Am J Transplant 2019; 19:2606-2613. [PMID: 31125485 DOI: 10.1111/ajt.15470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023]
Abstract
Abacavir administration is associated with drug-induced hypersensitivity reactions in HIV+ individuals expressing the HLA-B*57:01 allele. However, the immunological effects of abacavir administration in an HLA-B57 mismatched transplantation setting have not been studied. We hypothesized that abacavir exposure could induce de novo HLA-B57-specific allorecognition. HIV-specific CD8 T cell clones were generated from HIV+ individuals, using single cell sorting based on HIV peptide/HLA tetramer staining. The T cell clones were assayed for alloreactivity against a panel of single HLA-expressing cell lines, in the presence or absence of abacavir. Cytokine assay, CD137 upregulation, and cytotoxicity were used as readout. Abacavir exposure can induce de novo HLA-B57 allorecognition by HIV-specific T cells. A HIV Gag RK9/HLA-A3-specific T cell did exhibit interferon-γ production, CD137 upregulation, and cytolytic effector function against allogeneic HLA-B57, but only in the presence of abacavir. Allorecognition was specific to the virus specificity, HLA restriction, and T cell receptor TRBV use of the T cell. We provide proof-of-principle evidence that administration of a drug could induce specific allorecognition of mismatched HLA molecules in the transplant setting. We suggest that HIV-seropositive recipients of an HLA-B57 mismatched graft should not receive abacavir until further studies are completed.
Collapse
Affiliation(s)
- Lloyd J D'Orsogna
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Coral-Ann M Almeida
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Paula van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Yvonne M Zoet
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abha Chopra
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia
| | - Campbell Witt
- Department of Clinical Immunology and Pathwest, Fiona Stanley Hospital, Perth, Australia
| | - Mina John
- Department of Clinical Immunology and Pathwest, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
8
|
No Evidence for Cross-reactivity of Virus-specific Antibodies With HLA Alloantigens. Transplantation 2018; 102:1844-1849. [DOI: 10.1097/tp.0000000000002369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
van den Heuvel H, Heutinck KM, van der Meer-Prins EMW, Yong SL, van Miert PPMC, Anholts JDH, Franke-van Dijk MEI, Zhang XQ, Roelen DL, Ten Berge RJM, Claas FHJ. Allo-HLA Cross-Reactivities of Cytomegalovirus-, Influenza-, and Varicella Zoster Virus-Specific Memory T Cells Are Shared by Different Healthy Individuals. Am J Transplant 2017; 17:2033-2044. [PMID: 28332333 DOI: 10.1111/ajt.14279] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 01/25/2023]
Abstract
Virus-specific T cells can recognize allogeneic HLA (allo-HLA) through TCR cross-reactivity. The allospecificity often differs by individual (private cross-reactivity) but also can be shared by multiple individuals (public cross-reactivity); however, only a few examples of the latter have been described. Because these could facilitate alloreactivity prediction in transplantation, we aimed to identify novel public cross-reactivities of human virus-specific CD8+ T cells directed against allo-HLA by assessing their reactivity in mixed-lymphocyte reactions. Further characterization was done by studying TCR usage with primer-based DNA sequencing, cytokine production with ELISAs, and cytotoxicity with 51 chromium-release assays. We identified three novel public allo-HLA cross-reactivities of human virus-specific CD8+ T cells. CMV B35/IPS CD8+ T cells cross-reacted with HLA-B51 and/or HLA-B58/B57 (23% of tetramer-positive individuals), FLU A2/GIL (influenza IMP[58-66] HLA-A*02:01/GILGFVFTL) CD8+ T cells with HLA-B38 (90% of tetramer-positive individuals), and VZV A2/ALW (varicella zoster virus IE62[593-601] HLA-A*02:01/ALWALPHAA) CD8+ T cells with HLA-B55 (two unrelated individuals). Cross-reactivity was tested against different cell types including endothelial and epithelial cells. All cross-reactive T cells expressed a memory phenotype, emphasizing the importance for transplantation. We conclude that public allo-HLA cross-reactivity of virus-specific memory T cells is not uncommon and may create novel opportunities for alloreactivity prediction and risk estimation in transplantation.
Collapse
Affiliation(s)
- H van den Heuvel
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - K M Heutinck
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - E M W van der Meer-Prins
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - S L Yong
- Department of Experimental Immunology, Academic Medical Centre, Amsterdam, The Netherlands.,Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - P P M C van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - J D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - M E I Franke-van Dijk
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - X Q Zhang
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - R J M Ten Berge
- Renal Transplant Unit, Department of Internal Medicine, Division of Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
10
|
Infectious pathogens may trigger specific allo-HLA reactivity via multiple mechanisms. Immunogenetics 2017; 69:631-641. [PMID: 28718002 PMCID: PMC5537314 DOI: 10.1007/s00251-017-0989-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022]
Abstract
Transplant recipients can be sensitized against allo-HLA antigens by previous transplantation, blood transfusion, or pregnancy. While there is growing awareness that multiple components of the immune system can act as effectors of the alloresponse, the role of infectious pathogen exposure in triggering sensitization and allograft rejection has remained a matter of much debate. Here, we describe that exposure to pathogens may enhance the immune response to allogeneic HLA antigens via different pathways. The potential role of allo-HLA cross-reactivity of virus-specific memory T cells, activation of innate immunity leading to a more efficient induction of the adaptive alloimmune response by antigen-presenting cells, and bystander activation of existing memory B cell activation will be discussed in this review.
Collapse
|
11
|
Nelsen MK, Beard KS, Plenter RJ, Kedl RM, Clambey ET, Gill RG. Disruption of Transplant Tolerance by an "Incognito" Form of CD8 T Cell-Dependent Memory. Am J Transplant 2017; 17:1742-1753. [PMID: 28066981 PMCID: PMC5489385 DOI: 10.1111/ajt.14194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Abstract
Several approaches successfully achieve allograft tolerance in preclinical models but are challenging to translate into clinical practice. Many clinically relevant factors can attenuate allograft tolerance induction, including intrinsic genetic resistance, peritransplant infection, inflammation, and preexisting antidonor immunity. The prevailing view for immune memory as a tolerance barrier is that the host harbors memory cells that spontaneously cross-react to donor MHC antigens. Such preexisting "heterologous" memory cells have direct reactivity to donor cells and resist most tolerance regimens. In this study, we developed a model system to determine if an alternative form of immune memory could also block tolerance. We posited that host memory T cells could potentially respond to donor-derived non-MHC antigens, such as latent viral antigens or autoantigens, to which the host is immune. Results show that immunity to a model nonself antigen, ovalbumin (OVA), can dramatically disrupt tolerance despite undetectable initial reactivity to donor MHC antigens. Importantly, this blockade of tolerance was CD8+ T cell-dependent and required linked antigen presentation of alloantigens with the test OVA antigen. As such, this pathway represents an unapparent, or "incognito," form of immunity that is sufficient to prevent tolerance and that can be an unforeseen additional immune barrier to clinical transplant tolerance.
Collapse
Affiliation(s)
- M. K. Nelsen
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - K. S. Beard
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. J. Plenter
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. M. Kedl
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - E. T. Clambey
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R. G. Gill
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
12
|
Almeida CA, van Miert P, O'Driscoll K, Zoet YM, Chopra A, Watson M, de Santis D, Witt C, John M, Claas FHJ, D'Orsogna LJ. Stimulation of HIV-specific T cell clonotypes using allogeneic HLA. Cell Immunol 2017; 316:32-40. [PMID: 28372798 DOI: 10.1016/j.cellimm.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/15/2017] [Accepted: 03/25/2017] [Indexed: 01/26/2023]
Abstract
We hypothesized that HIV-specific CD8 T cell clonotypes can be stimulated by allogeneic HLA molecules. Multiple HIV-specific CD8 T cell clones were derived from 12 individuals with chronic HIV infection, specific for 13 different HIV Gag antigens and restricted to 7 different HLA molecules. The generated T cell clones were assayed for alloreactivity against a panel of single HLA class I expressing cell lines (SALs). HIV-specific T cells recognising at least one allogeneic HLA molecule could be identified from 7 of 12 patients tested. Allorecognition was associated with IFNγ cytokine production, CD137 upregulation and cytotoxicity, suggesting high avidity allo-stimulation. Allo-HLA recognition by HIV-specific T cells was specific to the HIV target peptide/HLA restriction and TCR TRBV usage of the T cells. HIV-specific T cells do crossreact against allogeneic HLA molecules in an epitope and TRBV specific manner. Therefore allo-HLA stimulation could be exploited to induce or augment HIV-specific T cell responses.
Collapse
Affiliation(s)
- Coral-Ann Almeida
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia; Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Paula van Miert
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Kane O'Driscoll
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Yvonne M Zoet
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Mark Watson
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia
| | - Dianne de Santis
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia
| | - Campbell Witt
- Pathwest Laboratory Medicine, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Mina John
- Pathwest Laboratory Medicine, Perth, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia; Department of Clinical Immunology, Royal Perth Hospital, Perth, Australia
| | - Frans H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lloyd J D'Orsogna
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, Australia; Pathwest Laboratory Medicine, Perth, Australia; Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Australia.
| |
Collapse
|
13
|
The CD8 T-cell response during tolerance induction in liver transplantation. Clin Transl Immunology 2016; 5:e102. [PMID: 27867515 PMCID: PMC5099425 DOI: 10.1038/cti.2016.53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022] Open
Abstract
Both experimental and clinical studies have shown that the liver possesses unique tolerogenic properties. Liver allografts can be spontaneously accepted across complete major histocompatibility mismatch in some animal models. In addition, some liver transplant patients can be successfully withdrawn from immunosuppressive medications, developing ‘operational tolerance'. Multiple mechanisms have been shown to be involved in inducing and maintaining alloimmune tolerance associated with liver transplantation. Here, we focus on CD8 T-cell tolerance in this setting. We first discuss how alloreactive cytotoxic T-cell responses are generated against allografts, before reviewing how the liver parenchyma, donor passenger leucocytes and the host immune system function together to attenuate alloreactive CD8 T-cell responses to promote the long-term survival of liver transplants.
Collapse
|
14
|
Deciphering the clinical relevance of allo-human leukocyte antigen cross-reactivity in mediating alloimmunity following transplantation. Curr Opin Organ Transplant 2016; 21:29-39. [PMID: 26575852 DOI: 10.1097/mot.0000000000000264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Despite a growing awareness regarding the potential of cross-reactive virus-specific memory T cells to mediate alloimmunity, there has been limited clinical evaluation on allograft immunopathology. This review will explore published models of human T-cell cross-reactivity and discuss criteria required to drive this mechanism as a contributing cause of allograft dysfunction in transplantation. RECENT FINDINGS Published models of human allogeneic (allo)-human leukocyte antigen (HLA) cross-reactivity have enabled dissection of the cross-reactive T cell receptor/peptide/major histocompatibility complex (TCR/peptide/MHC) interaction. In many of the models, the cross-reactive T cells express a unique TCR, although the relevance of a public cross-reactive TCR repertoire has yet to be determined. Equally, allopeptide identity, a vital component driving cross-recognition, remains unknown in the majority of models thereby prompting further characterization utilizing novel technologies. Although clinical studies examining the presence and impact of specific cross-reactive virus-specific T cells have been minimally explored, the existing data suggest that there may be a marginal set of requirements that need to be satisfied before the potentially damaging effects of allo-HLA cross-reactivity can be realized. SUMMARY Our understanding of allo-HLA cross-reactivity continues to evolve as improved technology and novel strategies allow us to better question the contribution of allo-HLA cross-reactivity in clinically relevant allograft dysfunction.
Collapse
|
15
|
Burlingham WJ. Exosomes: The missing link between microchimerism and acquired tolerance? CHIMERISM 2015; 5:63-7. [PMID: 26679558 DOI: 10.1080/19381956.2015.1082026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has become increasingly clear that the immune system of viviparous mammals is much more in the business of acquiring tolerance to non-self antigens, than it is in rejecting cells that express them (for a recent review, highlighting the role of Treg cells, see ref. (1) ). It is also clear that both self-tolerance, and acquired tolerance to non-self is a dynamic process, with a natural ebb and flow. As has been often said of an effective team defense in sports, tolerance will "bend but does not break." How microchimerism, defined as the presence of extremely rare [1/10(4)-1/10(6)] cells of a genetically different individual, can induce either new immunogenetic pressures that push self-tolerance to the breaking point, or alternatively, provide relief from pre-existing immunogenetic risk, preventing development of autoimmune disease, remains a mystery. Indeed, the inability to directly correlate DNA-level microchimerism detected in blood samples by qPCR, with naturally occurring regulation to minor H and MHC alloantigens expressed by the rare cells themselves, has been frustrating to researchers in this field. (2) [Haynes, W.J. et al, this issue] However, recent developments in the areas of transplantation and reproductive immunology offer clues to how the effects of microchimerism can be amplified, and how a disproportionate immune impact might occur from a very limited cell source.
Collapse
Affiliation(s)
- William J Burlingham
- a Department of Surgery; Division of Transplantation ; University of Wisconsin ; Madison , WI , USA
| |
Collapse
|
16
|
Betjes MGH. Clinical consequences of circulating CD28-negative T cells for solid organ transplantation. Transpl Int 2015; 29:274-84. [DOI: 10.1111/tri.12658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/06/2015] [Accepted: 08/11/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Michiel G. H. Betjes
- Department of Nephrology and Transplantation; Erasmus Medical Center; Rotterdam the Netherlands
| |
Collapse
|
17
|
Crespo E, Bestard O. Biomarkers to assess donor-reactive T-cell responses in kidney transplant patients. Clin Biochem 2015; 49:329-37. [PMID: 26279496 DOI: 10.1016/j.clinbiochem.2015.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/09/2015] [Indexed: 02/07/2023]
Abstract
Different to antibody-mediated rejection (ABMR), T-cell mediated rejection (TCMR) still unpredictably occurs after kidney transplantation in a great part because of a poor immunologic evaluation of the cellular allogeneic immune response. However, in the last years, important efforts have focused on the development of novel and more sensitive assays to monitor T-cell alloimmune responses at different biological levels that may improve the understanding of the functional status of the cellular immune compartment in patients undergoing organ transplantation. In this direction, immune assays evaluating T-cell proliferation, intracellular ATP release, multiparameter flow cytometry, profiling T-cell receptor repertoires and measurements of frequencies of cytokine-producing T-cells using an IFN-γ enzyme-linked immunospot assay (IFN-γ ELISPOT) have been reported showing interesting associations between the cellular alloimmune response and kidney transplant outcomes. In summary, an important progress has been made in the assessment of alloreactive T-cell responses in the context of organ transplantation using novel immune assays at different biological levels. However, there is an urgent need for prospective, randomized clinical studies to validate these encouraging preliminary data to ultimately introduce them in current clinical practice for refining current immune-risk stratification in kidney transplantation.
Collapse
Affiliation(s)
- Elena Crespo
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, Barcelona, Spain.
| |
Collapse
|
18
|
Abstract
Each individual harbours a unique set of commensal microorganisms, collectively referred to as the microbiota. Notably, these microorganisms exceed the number of cells in the human body by 10-fold. This finding has accelerated a shift in our understanding of human physiology, with the realization that traits necessary for health are both encoded and influenced by the human genome and the microbiota. Our understanding of the aetiology of complex diseases has, therefore, evolved with increasing awareness that the human microbiota has an active and critical role in maintaining health and inducing disease. Indeed, findings from bioinformatic studies indicate that the microbiota and microbiome have multiple effects on the innate and adaptive immune systems, with effects on infection, autoimmune disease and cancer. In this Review, we first address the important statistical and informatics aspects that should be considered when characterizing the composition of microbiota. We next highlight the effects of the microbiota on the immune system and the implications of these effects on organ failure and transplantation. Finally, we reflect on the future perspectives for studies of the microbiota, including novel diagnostic tests and therapeutics.
Collapse
|
19
|
Defining the alloreactive T cell repertoire using high-throughput sequencing of mixed lymphocyte reaction culture. PLoS One 2014; 9:e111943. [PMID: 25365040 PMCID: PMC4218856 DOI: 10.1371/journal.pone.0111943] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/02/2014] [Indexed: 12/20/2022] Open
Abstract
The cellular immune response is the most important mediator of allograft rejection and is a major barrier to transplant tolerance. Delineation of the depth and breadth of the alloreactive T cell repertoire and subsequent application of the technology to the clinic may improve patient outcomes. As a first step toward this, we have used MLR and high-throughput sequencing to characterize the alloreactive T cell repertoire in healthy adults at baseline and 3 months later. Our results demonstrate that thousands of T cell clones proliferate in MLR, and that the alloreactive repertoire is dominated by relatively high-abundance T cell clones. This clonal make up is consistently reproducible across replicates and across a span of three months. These results indicate that our technology is sensitive and that the alloreactive TCR repertoire is broad and stable over time. We anticipate that application of this approach to track donor-reactive clones may positively impact clinical management of transplant patients.
Collapse
|
20
|
Predicting alloreactivity in transplantation. J Immunol Res 2014; 2014:159479. [PMID: 24868561 PMCID: PMC4020392 DOI: 10.1155/2014/159479] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/13/2014] [Indexed: 01/10/2023] Open
Abstract
Human leukocyte Antigen (HLA) mismatching leads to severe complications after solid-organ transplantation and hematopoietic stem-cell transplantation. The alloreactive responses underlying the posttransplantation complications include both direct recognition of allogeneic HLA by HLA-specific alloantibodies and T cells and indirect T-cell recognition. However, the immunogenicity of HLA mismatches is highly variable; some HLA mismatches lead to severe clinical B-cell- and T-cell-mediated alloreactivity, whereas others are well tolerated. Definition of the permissibility of HLA mismatches prior to transplantation allows selection of donor-recipient combinations that will have a reduced chance to develop deleterious host-versus-graft responses after solid-organ transplantation and graft-versus-host responses after hematopoietic stem-cell transplantation. Therefore, several methods have been developed to predict permissible HLA-mismatch combinations. In this review we aim to give a comprehensive overview about the current knowledge regarding HLA-directed alloreactivity and several developed in vitro and in silico tools that aim to predict direct and indirect alloreactivity.
Collapse
|
21
|
D'Orsogna LJ, Nguyen THO, Claas FHJ, Witt C, Mifsud NA. Endogenous-peptide-dependent alloreactivity: new scientific insights and clinical implications. ACTA ACUST UNITED AC 2014; 81:399-407. [PMID: 23646948 DOI: 10.1111/tan.12115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
T-cell alloreactivity is generated via immune responsiveness directed against allogeneic (allo) human leucocyte antigen (HLA) molecules. Whilst the alloresponse is of extraordinary potency and frequency, it has often been assumed to be less peptide-specific than conventional T-cell reactivity. Recently, several human studies have shown that both alloreactive CD8(+) and CD4(+) T cells exhibit exquisite allo-HLA and endogenous peptide specificity that has also underpinned tissue-specific allorecognition. In this review, we summarize former and recent scientific evidence in support of endogenous peptide (self-peptide)-dependence of T-cell alloreactivity. The clinical implications of these findings will be discussed in the context of both solid organ transplantation and haematopoietic stem cell transplantation (HSCT). Insights into the understanding of the molecular basis of T-cell allorecognition will probably translate into improved allograft survival outcomes, lower frequencies of graft vs host disease and could potentially be exploited for selective graft vs leukaemia effect to improve clinical outcomes following HSCT.
Collapse
Affiliation(s)
- L J D'Orsogna
- Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
22
|
Cross-reactive anti-viral T cells increase prior to an episode of viral reactivation post human lung transplantation. PLoS One 2013; 8:e56042. [PMID: 23405250 PMCID: PMC3566045 DOI: 10.1371/journal.pone.0056042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 01/09/2013] [Indexed: 01/11/2023] Open
Abstract
Human Cytomegalovirus (CMV) reactivation continues to influence lung transplant outcomes. Cross-reactivity of anti-viral memory T cells against donor human leukocyte antigens (HLA) may be a contributing factor. We identified cross-reactive HLA-A*02:01-restricted CMV-specific cytotoxic T lymphocytes (CTL) co-recognizing the NLVPMVATV (NLV) epitope and HLA-B27. NLV-specific CD8+ T cells were expanded for 13 days from 14 HLA-A*02:01/CMV seropositive healthy donors and 11 lung transplant recipients (LTR) then assessed for the production of IFN-γ and CD107a expression in response to 19 cell lines expressing either single HLA-A or -B class I molecules. In one healthy individual, we observed functional and proliferative cross-reactivity in response to B*27:05 alloantigen, representing approximately 5% of the NLV-specific CTL population. Similar patterns were also observed in one LTR receiving a B27 allograft, revealing that the cross-reactive NLV-specific CTL gradually increased (days 13-193 post-transplant) before a CMV reactivation event (day 270) and reduced to basal levels following viral clearance (day 909). Lung function remained stable with no acute rejection episodes being reported up to 3 years post-transplant. Individualized immunological monitoring of cross-reactive anti-viral T cells will provide further insights into their effects on the allograft and an opportunity to predict sub-clinical CMV reactivation events and immunopathological complications.
Collapse
|
23
|
Madan RP, Herold BC. Mounting evidence suggests safety and efficacy of immunizations posttransplantation. Am J Transplant 2012; 12:2871-2. [PMID: 23107269 DOI: 10.1111/j.1600-6143.2012.04276.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Charron D, Suberbielle-Boissel C, Tamouza R, Al-Daccak R. Anti-HLA antibodies in regenerative medicine stem cell therapy. Hum Immunol 2012; 73:1287-94. [PMID: 22789622 DOI: 10.1016/j.humimm.2012.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/14/2012] [Accepted: 06/29/2012] [Indexed: 01/14/2023]
Abstract
Research on stem cell therapies for regenerative medicine is progressing rapidly. Although the use of autologous stem cells is a tempting choice, there are several instances in which they are either defective or not available in due time. Allogenic stem cells derived from healthy donors presents a promising alternative. Whether autologous or allogenic, recent advances have proven that stem cells are not as immune privileged as they were thought. Therefore understanding the interactions of these cells with the recipient immune system is paramount to their clinical application. Transplantation of stem cells induces humoral as well as cellular immune response. This review focuses on the humoral response elicited by stem cells upon their administration and consequences on the survival and maintenance of the graft. Current transplantation identifies pre- and post-transplantation anti-HLA antibodies as immune rejection and cell signaling effectors. These two mechanisms are likely to operate similarly in the context of SC therapeutics. Ultimately this knowledge will help to propose novel strategies to mitigate the allogenic barriers. Immunogenetics selection of the donor cell and immunomonitoring are key factors to allow the implementation of regenerative stem cell in the clinics.
Collapse
Affiliation(s)
- Dominique Charron
- INSERM UMRS 940, Institut Universitaire d'Hématologie, Université Paris-Diderot and Laboratoire d'Immunologie et d'Histocompatibilité, Hôpital Saint Louis, CIB-HOG, AP-HP 1, Avenue Claude Vellefaux, 75010 Paris, France.
| | | | | | | |
Collapse
|
25
|
Krummey SM, Ford ML. Heterogeneity within T Cell Memory: Implications for Transplant Tolerance. Front Immunol 2012; 3:36. [PMID: 22566919 PMCID: PMC3342058 DOI: 10.3389/fimmu.2012.00036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 02/15/2012] [Indexed: 12/16/2022] Open
Abstract
Adaptive immunity in both mouse and man results in the generation of immunological memory. Memory T cells are both friend and foe to transplant recipients, as they are intimately involved and in many cases absolutely required for the maintenance of protective immunity in the face immunosuppression, yet from the evidence presented herein they clearly constitute a formidable barrier for the successful implementation of tolerance induction strategies in transplantation. This review describes the experimental evidence demonstrating the increased resistance of memory T cells to many distinct tolerance induction strategies, and outlines recent advances in our knowledge of the ways in which alloreactive memory T cells arise in previously untransplanted individuals. Understanding the impact of alloreactive memory T cell specificity, frequency, and quality might allow for better donor selection in order to minimize the donor-reactive memory T cell barrier in an individual transplant recipient, thus allowing stratification of relative risk of alloreactive memory T cell mediated rejection, and conversely increase the likelihood of successful establishment of tolerance. However, further research into the molecular and cellular pathways involved in alloreactive memory T cell-mediated rejection is required in order to design new strategies to overcome the memory T cell barrier, without critically impairing protective immunity.
Collapse
Affiliation(s)
- Scott M Krummey
- Department of Surgery, Emory Transplant Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
26
|
D'Orsogna LJ, Roelen DL, Doxiadis IIN, Claas FHJ. TCR cross-reactivity and allorecognition: new insights into the immunogenetics of allorecognition. Immunogenetics 2011; 64:77-85. [PMID: 22146829 PMCID: PMC3253994 DOI: 10.1007/s00251-011-0590-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/11/2011] [Indexed: 12/25/2022]
Abstract
Alloreactive T cells are core mediators of graft rejection and are a potent barrier to transplantation tolerance. It was previously unclear how T cells educated in the recipient thymus could recognize allogeneic HLA molecules. Recently it was shown that both naïve and memory CD4+ and CD8+ T cells are frequently cross-reactive against allogeneic HLA molecules and that this allorecognition exhibits exquisite peptide and HLA specificity and is dependent on both public and private specificities of the T cell receptor. In this review we highlight new insights gained into the immunogenetics of allorecognition, with particular emphasis on how viral infection and vaccination may specifically activate allo-HLA reactive T cells. We also briefly discuss the potential for virus-specific T cell infusions to produce GvHD. The progress made in understanding the molecular basis of allograft rejection will hopefully be translated into improved allograft function and/or survival, and eventually tolerance induction.
Collapse
Affiliation(s)
- L J D'Orsogna
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, PO Box 9600, 2300RC Leiden, the Netherlands.
| | | | | | | |
Collapse
|