1
|
Atanasoff KE, Parsons AJ, Ophir SI, Lurain N, Kraus T, Moran T, Duty JA, Tortorella D. A broadly neutralizing human monoclonal antibody generated from transgenic mice immunized with HCMV particles limits virus infection and proliferation. J Virol 2024; 98:e0021324. [PMID: 38832789 PMCID: PMC11264687 DOI: 10.1128/jvi.00213-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that poses severe disease risk for immunocompromised patients who experience primary infection or reactivation. Development and optimization of safe and effective anti-HCMV therapeutics is of urgent necessity for the prevention and treatment of HCMV-associated diseases in diverse populations. The use of neutralizing monoclonal antibodies (mAbs) to limit HCMV infection poses a promising therapeutic strategy, as anti-HCMV mAbs largely inhibit infection by targeting virion glycoprotein complexes. In contrast, the small-molecule compounds currently approved for patients (e.g., ganciclovir, letermovir, and maribavir) target later stages of the HCMV life cycle. Here, we present a broadly neutralizing human mAb, designated 1C10, elicited from a VelocImmune mouse immunized with infectious HCMV particles. Clone 1C10 neutralizes infection after virion binding to cells by targeting gH/gL envelope complexes and potently reduces infection of diverse HCMV strains in fibroblast, trophoblast, and epithelial cells. Antibody competition assays found that 1C10 recognizes a region of gH associated with broad neutralization and binds to soluble pentamer in the low nanomolar range. Importantly, 1C10 treatment significantly reduced virus proliferation in both fibroblast and epithelial cells. Further, the combination treatment of mAb 1C10 with ganciclovir reduced HCMV infection and proliferation in a synergistic manner. This work characterizes a neutralizing human mAb for potential use as a HCMV treatment, as well as a possible therapeutic strategy utilizing combination-based treatments targeting disparate steps of the viral life cycle. Collectively, the findings support an antibody-based therapy to effectively treat patients at risk for HCMV-associated diseases. IMPORTANCE Human cytomegalovirus is a herpesvirus that infects a large proportion of the population and can cause significant disease in diverse patient populations whose immune systems are suppressed or compromised. The development and optimization of safe anti-HCMV therapeutics, especially those that have viral targets and inhibition mechanisms different from current HCMV treatments, are of urgent necessity to better public health. Human monoclonal antibodies (mAbs) that prevent HCMV entry of cells were identified by immunizing transgenic mice and screened for broad and effective neutralization capability. Here, we describe one such mAb, which was found to target gH/gL envelope complexes and effectively limit HCMV infection and dissemination. Further, administration of the antibody in combination with the antiviral drug ganciclovir inhibited HCMV in a synergistic manner, highlighting this approach and the use of anti-HCMV mAbs more broadly, as a potential therapeutic strategy for the treatment of diverse patient populations.
Collapse
Affiliation(s)
- Kristina E. Atanasoff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nell Lurain
- Department of Immunology-Microbiology, Rush University, Chicago, Illinois, USA
| | - Thomas Kraus
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J. Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Therapeutic Antibody Development, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Zehner M, Alt M, Ashurov A, Goldsmith JA, Spies R, Weiler N, Lerma J, Gieselmann L, Stöhr D, Gruell H, Schultz EP, Kreer C, Schlachter L, Janicki H, Laib Sampaio K, Stegmann C, Nemetchek MD, Dähling S, Ullrich L, Dittmer U, Witzke O, Koch M, Ryckman BJ, Lotfi R, McLellan JS, Krawczyk A, Sinzger C, Klein F. Single-cell analysis of memory B cells from top neutralizers reveals multiple sites of vulnerability within HCMV Trimer and Pentamer. Immunity 2023; 56:2602-2620.e10. [PMID: 37967532 DOI: 10.1016/j.immuni.2023.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/02/2023] [Accepted: 10/18/2023] [Indexed: 11/17/2023]
Abstract
Human cytomegalovirus (HCMV) can cause severe diseases in fetuses, newborns, and immunocompromised individuals. Currently, no vaccines are approved, and treatment options are limited. Here, we analyzed the human B cell response of four HCMV top neutralizers from a cohort of 9,000 individuals. By single-cell analyses of memory B cells targeting the pentameric and trimeric HCMV surface complexes, we identified vulnerable sites on the shared gH/gL subunits as well as complex-specific subunits UL128/130/131A and gO. Using high-resolution cryogenic electron microscopy, we revealed the structural basis of the neutralization mechanisms of antibodies targeting various binding sites. Moreover, we identified highly potent antibodies that neutralized a broad spectrum of HCMV strains, including primary clinical isolates, that outperform known antibodies used in clinical trials. Our study provides a deep understanding of the mechanisms of HCMV neutralization and identifies promising antibody candidates to prevent and treat HCMV infection.
Collapse
Affiliation(s)
- Matthias Zehner
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany.
| | - Mira Alt
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Artem Ashurov
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rebecca Spies
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Nina Weiler
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Justin Lerma
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Linda Schlachter
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hanna Janicki
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | | | - Cora Stegmann
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Michelle D Nemetchek
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Sabrina Dähling
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Leon Ullrich
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Ramin Lotfi
- Institute for Transfusion Medicine, Ulm University Medical Center, 89081 Ulm, Germany
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Christian Sinzger
- Institute for Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
3
|
Alemany A, Millat-Martinez P, Corbacho-Monné M, Suñer C, Galvan-Casas C, Carrera C, Ouchi D, Prat N, Ara J, Nadal N, Riel R, Funollet B, Ojeda-Ciurana C, Balague LE, Salvador-González B, Arcarons AF, Vidal-Alaball J, Del Cura-González MI, Barrientos RR, Ramos-Blanes R, Bou AA, Mondou E, Torres M, Campins N, Sanz A, Tang Y, Rodriguez-Arias MÀ, Bassat Q, Clotet B, Mitjà O. Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trial. EClinicalMedicine 2023; 57:101898. [PMID: 36936402 PMCID: PMC10005687 DOI: 10.1016/j.eclinm.2023.101898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. METHODS We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. FINDINGS 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, -3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; -9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. INTERPRETATION Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. FUNDING Grifols.
Collapse
Affiliation(s)
- Andrea Alemany
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina-Universitat de Barcelona, Barcelona, Spain
- Corresponding author. Department of Infectious Diseases and Fight Infectious Diseases Foundation, Hospital Germans Trias Pujol, Badalona, Catalonia, Spain.
| | | | - Marc Corbacho-Monné
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina-Universitat de Barcelona, Barcelona, Spain
- Hospital Universitari Parc Taulí, I3PT, 08028, Sabadell, Spain
| | - Clara Suñer
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Cristina Galvan-Casas
- Fight Infectious Diseases Foundation, Badalona, Spain
- Department of Dermatology, Hospital Universitario de Móstoles, Madrid, Spain
| | - Caty Carrera
- Fight Infectious Diseases Foundation, Badalona, Spain
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Barcelona, Spain
| | - Dan Ouchi
- Fight Infectious Diseases Foundation, Badalona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Prat
- Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
| | - Jordi Ara
- Gerència Territorial Metropolitana Nord, Institut Català de la Salut, Barcelona, Spain
| | - Nuria Nadal
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Ricard Riel
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Blanca Funollet
- Gerència Territorial de Barcelona, Institut Català de la Salut, Barcelona, Spain
| | - Carmen Ojeda-Ciurana
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
| | - Lluis Esteve Balague
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
| | - Betlem Salvador-González
- Gerència Territorial Metropolitana Sud, Institut Català de la Salut, Barcelona, Spain
- Unitat de Suport a la Recerca Costa de Ponent, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), l’Hospitalet de Llobregat, Spain
| | - Anna Forcada Arcarons
- Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Barcelona, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Sant Fruitós de Bages, Spain
- Health Promotion in Rural Areas Research Group, Gerència Territorial de la Catalunya Central, Institut Català de la Salut, Sant Fruitós de Bages, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
| | - María Isabel Del Cura-González
- Unidad de Investigación, Gerencia Asistencial de Atención Primaria, Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Spain
| | - Ricardo Rodríguez Barrientos
- Unidad de Investigación, Gerencia Asistencial de Atención Primaria, Madrid, Spain
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud -RICAPPS- ISCIII, Spain
| | - Rafel Ramos-Blanes
- Unitat de Suport a la Recerca de Girona, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Girona, Spain
| | - Alberto Alum Bou
- Unitat de Suport a la Recerca de Girona, Fundació Institut Universitari per a la recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Girona, Spain
| | - Elsa Mondou
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Mireia Torres
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Neus Campins
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | - Ana Sanz
- Scientific Innovation Office, Grifols, Barcelona, Spain
| | | | - Miquel Àngel Rodriguez-Arias
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Quique Bassat
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
- ICREA, Pg Lluís Companys 23, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Bonaventura Clotet
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Can Ruti Campus, Badalona, Spain
| | | | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Badalona, Spain
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVIC-UCC), Vic, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| |
Collapse
|
4
|
Hu X, Wang HY, Otero CE, Jenks JA, Permar SR. Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development. Annu Rev Virol 2022; 9:491-520. [PMID: 35704747 PMCID: PMC10154983 DOI: 10.1146/annurev-virology-100220-010653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.
Collapse
Affiliation(s)
- Xintao Hu
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| | - Hsuan-Yuan Wang
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire E Otero
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Jennifer A Jenks
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA;
| |
Collapse
|
5
|
Langel SN, Blasi M, Permar SR. Maternal immune protection against infectious diseases. Cell Host Microbe 2022; 30:660-674. [PMID: 35550669 DOI: 10.1016/j.chom.2022.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The maternal immune system protects developing offspring against pathogens before birth via transplacental transfer and after birth through secreted milk. This transferred maternal immunity influences each generation's susceptibility to infections and responsiveness to immunization. Thus, boosting immunity in the maternal-neonatal dyad is a potentially valuable public health strategy. Additionally, at critical times during fetal and postnatal development, environmental factors and immune stimuli influence immune development. These "windows of opportunity" offer a chance to identify both risk and protective factors that promote long-term health and limit disease. Here, we review pre- and postpartum maternal immune factors that protect against infectious agents in offspring and how they may shape the infant's immune landscape over time. Additionally, we discuss the influence of maternal immunity on the responsiveness to immunization in early life. Lastly, when maternal factors are insufficient to prevent neonatal infectious diseases, we discuss pre- and postnatal therapeutic strategies for the maternal-neonatal dyad.
Collapse
Affiliation(s)
- Stephanie N Langel
- Department of Surgery, Duke Center for Human Systems Immunology, Durham, NC, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA; Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, Durham, NC, USA
| | - Sallie R Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Shibamura M, Yamada S, Yoshikawa T, Inagaki T, Nguyen PHA, Fujii H, Harada S, Fukushi S, Oka A, Mizuguchi M, Saijo M. Longitudinal trends of neutralizing antibody prevalence against human cytomegalovirus (HCMV) over the past 30 years in Japanese women. Jpn J Infect Dis 2022; 75:496-503. [DOI: 10.7883/yoken.jjid.2021.726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Takuya Inagaki
- Department of Life Science and Medical Bioscience, Waseda University, Japan
| | - Phu Hoang Anh Nguyen
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| | - Masayuki Saijo
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, Japan
| |
Collapse
|
7
|
Parsons AJ, Ophir SI, Duty JA, Kraus TA, Stein KR, Moran TM, Tortorella D. Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Commun Biol 2022; 5:387. [PMID: 35468974 PMCID: PMC9038728 DOI: 10.1038/s42003-022-03294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/17/2022] [Indexed: 11/08/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a β-herpesvirus that increases morbidity and mortality in immunocompromised individuals including transplant recipients and newborns. New anti-HCMV therapies are an urgent medical need for diverse patient populations. HCMV infection of a broad range of host tissues is dependent on the gH/gL/gO trimer and gH/gL/UL28/UL130/UL131A pentamer complexes on the viral envelope. We sought to develop safe and effective therapeutics against HCMV by generating broadly-neutralizing, human monoclonal antibodies (mAbs) from VelocImmune® mice immunized with gH/gL cDNA. Following high-throughput binding and neutralization screening assays, 11 neutralizing antibodies were identified with unique CDR3 regions and a high-affinity (KD 1.4-65 nM) to the pentamer complex. The antibodies bound to distinct regions within Domains 1 and 2 of gH and effectively neutralized diverse clinical strains in physiologically relevant cell types including epithelial cells, trophoblasts, and monocytes. Importantly, combined adminstration of mAbs with ganciclovir, an FDA approved antiviral, greatly limited virus dissemination. Our work identifies several anti-gH/gL mAbs and sheds light on gH neutralizing epitopes that can guide future vaccine strategies.
Collapse
Affiliation(s)
- Andrea J Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sabrina I Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - J Andrew Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Immune Prophylaxis and Therapy for Human Cytomegalovirus Infection. Int J Mol Sci 2021; 22:ijms22168728. [PMID: 34445434 PMCID: PMC8395925 DOI: 10.3390/ijms22168728] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
Human Cytomegalovirus (HCMV) infection is widespread and can result in severe sequelae in susceptible populations. Primary HCMV infection of naïve individuals results in life-long latency characterized by frequent and sporadic reactivations. HCMV infection elicits a robust antibody response, including neutralizing antibodies that can block the infection of susceptible cells in vitro and in vivo. Thus, antibody products and vaccines hold great promise for the prevention and treatment of HCMV, but to date, most attempts to demonstrate their safety and efficacy in clinical trials have been unsuccessful. In this review we summarize publicly available data on these products and highlight new developments and approaches that could assist in successful translation of HCMV immunotherapies.
Collapse
|
9
|
Jorgenson MR, Descourouez JL, Brady BL, Chandran MM, Do V, Kim M, Laub MR, Lichvar A, Park JM, Szczepanik A, Alloway RR. A call for transplant stewardship: The need for expanded evidence-based evaluation of induction and biologic-based cost-saving strategies in kidney transplantation and beyond. Clin Transplant 2021; 35:e14372. [PMID: 34033140 DOI: 10.1111/ctr.14372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Rising expenditures threaten healthcare sustainability. While transplant programs are typically considered profitable, transplant medications are expensive and frequently targeted for cost savings. This review aims to summarize available literature supporting cost-containment strategies used in solid organ transplant. Despite widespread use of these tactics, we found the available evidence to be fairly low quality. Strategies mainly focus on induction, particularly rabbit antithymocyte globulin (rATG), given its significant cost and the lack of consensus surrounding dosing. While there is higher-quality evidence for high single-dose rATG, and dose-rounding protocols to reduce waste are likely low risk, more aggressive strategies, such as dosing rATG by CD3+ target-attainment or on ideal-body-weight, have less robust support and did not always attain similar efficacy outcomes. Extrapolation of induction dosing strategies to rejection treatment is not supported by any currently available literature. Cost-saving strategies for supportive therapies, such as IVIG and rituximab also have minimal literature support. Deferral of high-cost agents to the outpatient arena is associated with minimal risk and increases reimbursement, although may increase complexity and cost-burden for patients and infusion centers. The available evidence highlights the need for evaluation of unique patient-specific clinical scenarios and optimization of therapies, rather than simple blanket application of cost-saving initiatives in the transplant population.
Collapse
Affiliation(s)
- Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| | - Bethany L Brady
- Department of Pharmacy, Indiana University Health University Hospital, Indianapolis, IN, USA
| | - Mary M Chandran
- Department of Pharmacy, Children's Hospital of Colorado, Aurora, CO, USA
| | - Vincent Do
- Department of Pharmacy, Yale New Haven Hospital, New Haven, CT, USA
| | - Miae Kim
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa R Laub
- Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| | - Alicia Lichvar
- Department of Pharmacy Practice and Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Jeong M Park
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Amanda Szczepanik
- Department of Pharmacy, University of Maryland Medical Center, Baltimore, MD, USA
| | - Rita R Alloway
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Serra A, Marzo N, Pons B, Maduell P, López M, Grancha S. Characterization of antibodies in human immunoglobulin products from different regions worldwide. Int J Infect Dis 2021; 104:610-616. [PMID: 33524620 PMCID: PMC7844383 DOI: 10.1016/j.ijid.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/31/2022] Open
Abstract
AIM The antibody levels against a broad spectrum of pathogens were assessed in commercial intravenous immunoglobulin (IVIG) manufactured from pooled plasma obtained from different global regions. METHODS Twenty-four IVIG commercial lots from eight manufacturers corresponding to 12 brands were analyzed. The plasma was collected in 10 countries/regions. Depending on each pathogen, antibody levels were measured using specific commercial IgG-specific enzyme immunoassay kits or by cell culture neutralization test and guinea pig skin neutralization test. A principal component analysis was performed. RESULTS For polio and diphtheria (reference markers of the US authorities), all IVIGs had relevant titers in accordance with reference levels. IVIGs from Canada, Australia, and the USA were positive for titers against globally distributed pathogens or those under vaccination programs in the developed world (parainfluenza, Epstein-Barr, varicella-zoster, influenza B, parvovirus B19, and measles viruses). IVIG from Taiwan and Hong Kong showed low antibody titers for these pathogens but high titers for Pseudomonas aeruginosa. IVIG from India had high titers for pathogens frequently found in developing countries (West Nile, dengue, chikungunya, and hepatitis E viruses and Streptococcus pneumoniae). IVIGs from Argentina, Spain, Israel, and Czechia showed intermediate antibody concentrations. CONCLUSION The antibody profile in IVIG was greatly influenced by regional characteristics including climate, vaccination programs, and the prevalence of pathogens in the different countries and regions.
Collapse
Affiliation(s)
| | - Núria Marzo
- Grifols, Research and Development, Barcelona, Spain.
| | - Berta Pons
- Grifols, Research and Development, Barcelona, Spain
| | - Pau Maduell
- Grifols, Research and Development, Barcelona, Spain
| | - Maite López
- Grifols, Research and Development, Barcelona, Spain
| | | |
Collapse
|
11
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
12
|
Nelson CS, Baraniak I, Lilleri D, Reeves MB, Griffiths PD, Permar SR. Immune Correlates of Protection Against Human Cytomegalovirus Acquisition, Replication, and Disease. J Infect Dis 2020; 221:S45-S59. [PMID: 32134477 PMCID: PMC7057792 DOI: 10.1093/infdis/jiz428] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common infectious cause of infant birth defects and an etiology of significant morbidity and mortality in solid organ and hematopoietic stem cell transplant recipients. There is tremendous interest in developing a vaccine or immunotherapeutic to reduce the burden of HCMV-associated disease, yet after nearly a half-century of research and development in this field we remain without such an intervention. Defining immune correlates of protection is a process that enables targeted vaccine/immunotherapeutic discovery and informed evaluation of clinical performance. Outcomes in the HCMV field have previously been measured against a variety of clinical end points, including virus acquisition, systemic replication, and progression to disease. Herein we review immune correlates of protection against each of these end points in turn, showing that control of HCMV likely depends on a combination of innate immune factors, antibodies, and T-cell responses. Furthermore, protective immune responses are heterogeneous, with no single immune parameter predicting protection against all clinical outcomes and stages of HCMV infection. A detailed understanding of protective immune responses for a given clinical end point will inform immunogen selection and guide preclinical and clinical evaluation of vaccines or immunotherapeutics to prevent HCMV-mediated congenital and transplant disease.
Collapse
Affiliation(s)
- Cody S Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina,Correspondence: Cody S. Nelson, Human Vaccine Institute, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710 ()
| | - Ilona Baraniak
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Daniele Lilleri
- Laboratory of Genetics, Transplantation, and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthew B Reeves
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Paul D Griffiths
- Institute for Immunity and Transplantation, University College London, London, United Kingdom
| | - Sallie R Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
13
|
Schampera MS, Arellano-Galindo J, Kagan KO, Adler SP, Jahn G, Hamprecht K. Role of pentamer complex-specific and IgG subclass 3 antibodies in HCMV hyperimmunoglobulin and standard intravenous IgG preparations. Med Microbiol Immunol 2018; 208:69-80. [PMID: 30203132 DOI: 10.1007/s00430-018-0558-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND HCMV hyperimmunoglobulin-preparations (HIG) contain high concentrations of HCMV-specific IgG. The reduced maternofetal-HCMV-transmission rate of IgG may be due to HCMV-specific neutralizing antibodies against the HCMV pentameric complex (PC). In contrast to HIG, standard intravenous immunoglobulin (IVIG) may have more neutralization (NT) capacity than HIG due to higher IgG subclass 3 levels (Planitzer et al., 2011). METHODS We investigated the HCMV-specific NT-capacity of HIG Cytotect®, using a recombinant pentameric complex (gHgLUL128-131A) for specific antibody-depletion. We used a modified UL130-peptide (TANQNPSPPWSKLTYSKPH) based on original-sequence of Saccoccio et al. (Vaccine 29(15):2705-2711, 2011) (SWSTLTANQNPSPPWSKLTY) as neutralization target. Both UL130-peptides and the PC were bound via sixfold HisTag and anti-HisTag mAbs to magnetic beads to deplete HCMV-specific IgGs from HIG (Cytotect®). Modifying this depletion strategy, we analyzed the role of IgG subclass 3 in both HIG and IVIG. RESULTS After CMV IgG-normalization of HIG and IVIG, we found a significant trend towards a decrease (16%) of neutralization-capacity for the UL130 TAN-peptide, but not for the original UL130 SWS-peptide. However, highly significant loss of NT-capacity could be only observed by PC depletion (42%). The IgG subclass 3 depletion revealed no significant reduction of NT-capacity in both HIG and IVIG. CONCLUSION Via specific antibody depletion, we could demonstrate that pentameric complex-specific antibodies are present in HIG and bind to the recombinant PC resulting in a highly significant reduction of NT-capacity compared to the UL130 TAN-and SWS-peptides. We could not confirm the functional role of IgG subclass 3 neutralizing antibodies in IgG-preparations.
Collapse
Affiliation(s)
- Matthias Stefan Schampera
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jose Arellano-Galindo
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.,Infectious Diseases Laboratory (Virology), Children's Hospital Federico Gómez, México City, Mexico
| | - Karl Oliver Kagan
- Department of Obstetrics and Gynaecology, University Hospital of Tuebingen, Tübingen, Germany
| | | | - Gerhard Jahn
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology, University Hospital of Tuebingen, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Falk JJ, Winkelmann M, Stöhr D, Alt M, Schrezenmeier H, Krawczyk A, Lotfi R, Sinzger C. Identification of Elite Neutralizers With Broad and Potent Neutralizing Activity Against Human Cytomegalovirus (HCMV) in a Population of HCMV-Seropositive Blood Donors. J Infect Dis 2018; 218:876-885. [DOI: 10.1093/infdis/jiy229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Martina Winkelmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
| | - Dagmar Stöhr
- Institute for Virology, Ulm University Medical Center, Ulm, Germany
| | - Mira Alt
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | - Adalbert Krawczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramin Lotfi
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood-Transfusion Service Baden-Württemberg–Hessen and University Hospital, Ulm, Germany
- Institute for Transfusion Medicine, Ulm University, Ulm, Germany
| | | |
Collapse
|
15
|
Vermillion MS, Klein SL. Pregnancy and infection: using disease pathogenesis to inform vaccine strategy. NPJ Vaccines 2018; 3:6. [PMID: 29423318 PMCID: PMC5794984 DOI: 10.1038/s41541-017-0042-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 02/03/2023] Open
Abstract
Vaccination is the mainstay of preventative medicine for many infectious diseases. Pregnant women, unborn fetuses, and neonates represent three at-risk populations that can be simultaneously protected by strategic vaccination protocols. Because the pathogenesis of different infectious microbes varies based on tissue tropism, timing of infection, and host susceptibility, the goals of immunization are not uniform across all vaccines. Mechanistic understanding of infectious disease pathogenesis and immune responses is therefore essential to inform vaccine design and the implementation of appropriate immunization protocols that optimize protection of pregnant women, fetuses, and neonates.
Collapse
Affiliation(s)
- Meghan S. Vermillion
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| |
Collapse
|
16
|
Binding and neutralizing anti-cytomegalovirus activities in immune globulin products. Biologicals 2017; 50:35-41. [PMID: 29029807 DOI: 10.1016/j.biologicals.2017.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/20/2017] [Accepted: 09/18/2017] [Indexed: 01/02/2023] Open
Abstract
Congenital infection as well as infection of immunocompromised individuals by cytomegalovirus (CMV) can be associated with significant morbidity, mortality, and long-term adverse health outcomes. Assessment of anti-viral activity using appropriate assays is essential for ensuring safe and efficacious use of therapeutic CMV immune globulin (IG) products. In this study, we used commercial ELISA kits to compare anti-CMV antibody binding activity and avidity for lots of CMV-specific and normal IG products available in the US market. Additionally, neutralizing activity of IG products was measured against CMV strains (AD169wt131 or TB40E-GFP) in MRC-5 human fibroblasts and ARPE-19 human epithelial cells. Our data revealed that, regardless of the method, anti-CMV activity was higher in CMV IG lots we tested compared with normal IG lots; CMV binding activity was at least 4-fold higher, and neutralizing activity at least 2- and 3-fold higher for epithelial and fibroblast cells, respectively, in CMV IG lots compared with normal IG lots. Furthermore, anti-CMV activity values from all three methods (ELISA, neutralization in MRC-5 cells, and neutralization in ARPE-19 cells) were highly correlated, whereas avidity, although higher in CMV IG lots, did not correlate well with either binding or neutralizing activities.
Collapse
|
17
|
Rolling KE, Jorgenson MR, Descourouez JL, Mandelbrot DA, Redfield RR, Smith JA. Ganciclovir-Resistant Cytomegalovirus Infection in Abdominal Solid Organ Transplant Recipients: Case Series and Review of the Literature. Pharmacotherapy 2017; 37:1258-1271. [PMID: 28699311 DOI: 10.1002/phar.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ganciclovir-resistant cytomegalovirus (GR-CMV) is emerging as a significant infection in the abdominal transplant population. GR-CMV is difficult to manage, and treatment options are limited. We report a descriptive case series of 15 patients who had documented GR-CMV at our center and review the literature on treatment of GR-CMV. The first case in this series was detected in 2012; the majority of cases occurred after January 1, 2014, with approximately 50% occurring in 2015. UL97 and UL54 viral genome mutations were present in 100% and 40% of CMV-infected patients, respectively. GR-CMV infection occurred ≤ 1 year posttransplantation in 11 patients (73%). All patients experienced dose reduction of valganciclovir (the oral prodrug of ganciclovir) before the development of GR-CMV. Initial treatment for GR-CMV included a variety of regimens, all including reduction in maintenance immunosuppression. Of the 6 patients with detectable GR-CMV by polymerase chain reaction (PCR) who were discharged without GR-CMV treatment and had a length of stay (LOS) less than 14 days, 83% were subsequently readmitted for treatment of GR-CMV within 2 months (60% in < 20 days); none received leflunomide. Of six patients with a LOS ≥ 14 days, 80% had CMV PCR below quantification on hospital discharge, and only one patient was readmitted in less than 20 days; 83% received leflunomide. Following GR-CMV, there was a 50% rejection incidence, 27% graft loss, and 20% mortality. For patients with more than three admissions for GR-CMV treatment, 100% had a major complication: 60% rejection, 20% graft loss, and 40% mortality. Common clinical characteristics of patients with GR-CMV included high-risk serostatus, lymphocyte depletion, and history of valganciclovir dose reduction. Overall, outcomes were poor. It appears that hospital readmission rate was reduced when CMV was treated to negativity with an initial treatment regimen of reduced immunosuppression, foscarnet, intravenous immunoglobulins, and leflunomide.
Collapse
Affiliation(s)
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Didier A Mandelbrot
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Robert R Redfield
- Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jeannina A Smith
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
18
|
Nelson CS, Cruz DV, Tran D, Bialas KM, Stamper L, Wu H, Gilbert M, Blair R, Alvarez X, Itell H, Chen M, Deshpande A, Chiuppesi F, Wussow F, Diamond DJ, Vandergrift N, Walter MR, Barry PA, Cohen-Wolkowiez M, Koelle K, Kaur A, Permar SR. Preexisting antibodies can protect against congenital cytomegalovirus infection in monkeys. JCI Insight 2017; 2:94002. [PMID: 28679960 PMCID: PMC5499366 DOI: 10.1172/jci.insight.94002] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/23/2017] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection and a known cause of microcephaly, sensorineural hearing loss, and cognitive impairment among newborns worldwide. Natural maternal HCMV immunity reduces the incidence of congenital infection, but does not prevent the disease altogether. We employed a nonhuman primate model of congenital CMV infection to investigate the ability of preexisting antibodies to protect against placental CMV transmission in the setting of primary maternal infection and subsequent viremia, which is required for placental virus exposure. Pregnant, CD4+ T cell-depleted, rhesus CMV-seronegative (RhCMV-seronegative) rhesus monkeys were treated with either standardly produced hyperimmune globulin (HIG) from RhCMV-seropositive macaques or dose-optimized, potently RhCMV-neutralizing HIG prior to intravenous challenge with an RhCMV mixture. HIG passive infusion provided complete protection against fetal loss in both groups. The dose-optimized, RhCMV-neutralizing HIG additionally inhibited placental transmission of RhCMV and reduced viral replication and diversity. Our findings suggest that the presence of durable and potently neutralizing antibodies at the time of primary infection can prevent transmission of systemically replicating maternal RhCMV to the developing fetus, and therefore should be a primary target of vaccines to eliminate this neonatal infection.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University School of Medicine, and
| | - Diana Vera Cruz
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Dollnovan Tran
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Kristy M. Bialas
- Human Vaccine Institute, Duke University School of Medicine, and
| | - Lisa Stamper
- Human Vaccine Institute, Duke University School of Medicine, and
| | - Huali Wu
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Margaret Gilbert
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Robert Blair
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Xavier Alvarez
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Hannah Itell
- Human Vaccine Institute, Duke University School of Medicine, and
| | - Meng Chen
- Human Vaccine Institute, Duke University School of Medicine, and
| | - Ashlesha Deshpande
- Department of Microbiology, University of Alabama, Birmingham, Alabama, USA
| | - Flavia Chiuppesi
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Felix Wussow
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | - Don J. Diamond
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | - Mark R. Walter
- Department of Microbiology, University of Alabama, Birmingham, Alabama, USA
| | - Peter A. Barry
- Center for Comparative Medicine, Department of Pathology and Laboratory Medicine, University of California, Davis, California, USA
| | - Michael Cohen-Wolkowiez
- Duke Clinical Research Unit, Duke University School of Medicine, Durham, North Carolina, USA
| | - Katia Koelle
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University School of Medicine, and
| |
Collapse
|
19
|
Stegmann C, Hochdorfer D, Lieber D, Subramanian N, Stöhr D, Laib Sampaio K, Sinzger C. A derivative of platelet-derived growth factor receptor alpha binds to the trimer of human cytomegalovirus and inhibits entry into fibroblasts and endothelial cells. PLoS Pathog 2017; 13:e1006273. [PMID: 28403220 PMCID: PMC5389858 DOI: 10.1371/journal.ppat.1006273] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/06/2017] [Indexed: 12/03/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a widely distributed herpesvirus that causes significant morbidity in immunocompromised hosts. Inhibitors of viral DNA replication are available, but adverse effects limit their use. Alternative antiviral strategies may include inhibition of entry. We show that soluble derivatives of the platelet-derived growth factor receptor alpha (PDGFR-alpha), a putative receptor of HCMV, can inhibit HCMV infection of various cell types. A PDGFR-alpha-Fc fusion protein binds to and neutralizes cell-free virus particles at an EC50 of 10–30 ng/ml. Treatment of particles reduced both attachment to and fusion with cells. In line with the latter, PDGFR-alpha-Fc was also effective when applied postattachment. A peptide scan of the extracellular domain of PDGFR-alpha identified a 40mer peptide that inhibits infection at an EC50 of 1–2 nmol/ml. Both, peptide and fusion protein, were effective against various HCMV strains and are hence promising candidates for the development of novel anti-HCMV therapies. Human cytomegalovirus (HCMV) depends on expression of platelet-derived growth factor receptor alpha (PDGFR-alpha) for infection of fibroblasts whereas this cell surface protein is not required for infection of endothelial cells. Surprisingly, pretreatment of HCMV with a soluble derivative of PDGFR-alpha prevents infection of both cell types, most probably via specific binding to the trimeric gH/gL/pUL74 complex. While adsorption is inhibited in both cell types, an additional penetration block occurs only in fibroblasts. The finding that an essential molecular interaction of HCMV with fibroblasts can be subverted for inhibition of the virus provides an antiviral strategy that may be hard to circumvent by the virus.
Collapse
Affiliation(s)
- Cora Stegmann
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Diana Lieber
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, University of Ulm, Ulm, Germany
| | | | | |
Collapse
|
20
|
Schampera MS, Schweinzer K, Abele H, Kagan KO, Klein R, Rettig I, Jahn G, Hamprecht K. Comparison of cytomegalovirus (CMV)-specific neutralization capacity of hyperimmunoglobulin (HIG) versus standard intravenous immunoglobulin (IVIG) preparations: Impact of CMV IgG normalization. J Clin Virol 2017; 90:40-45. [PMID: 28342316 DOI: 10.1016/j.jcv.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/30/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Based on a non-randomized study of Nigro et al. (2005) the intravenous administration of hyperimmunoglobulins (HIGs) is applied frequently to women with primary CMV-infection as "off-label use" in Germany. OBJECTIVES In order to describe their CMV-specific neutralization-capacity in vitro, we analyzed the HIG preparations Cytotect®, and Cytogam® as well as the standard intravenous immunoglobulins (IVIG) Octagam®, Gamunex®, Kiovig®. STUDY DESIGN We performed short-term cell-free CMV neutralization assays (CFNT) and long-term cell-adapted neutralization-plaque-reduction assays (PRANT). Human retinal epithelial cells (ARPE-19) were used as target cells. A clinical CMV primary-isolate from amnion fluid propagated in epithelial cells without any initial fibroblast adaption was used. For calibration we previously generated serum-pools (N=100) from two cohorts of mothers at birth: seronegative and latently CMV-infected mothers. Biochemical analysis included total protein, albumin, Ig-class, and IgG-subclasses. Additionally, CMV antibody-reactivity was checked using recombinant immunoblotting. RESULTS HIG and IVIG preparations showed differences in levels and patterns of protein, Ig-class and CMV-specific antibody concentrations. All IgG-preparations showed high in vitro NT-capacity and high IgG-avidity. The NT90-values for HIGs and IVIGs and our seropositive reference-pool showed similar NT-capacity at a dilution of (1:100) which corresponded well to 4.1 PEI-Units/ml. CONCLUSION All HIG- and IVIG-preparations showed similar NT-capacity following CMV IgG-normalization. Our in vitro results are in strong contrast to former findings suggesting higher functional CMV NT titers in IVIG-preparations compared to HIGs.
Collapse
Affiliation(s)
| | - Katrin Schweinzer
- Institute of Medical Virology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany
| | - Harald Abele
- Department of Obstetrics and Gynaecology, University Hospital of Tuebingen, Germany
| | - Karl Oliver Kagan
- Department of Obstetrics and Gynaecology, University Hospital of Tuebingen, Germany
| | - Reinhild Klein
- Department of Internal Medicine II, Immunopathological Laboratory; University Hospital of Tuebingen, Germany
| | - Ingo Rettig
- Department of Internal Medicine, Central Laboratory, University Hospital of Tuebingen, Germany
| | - Gerhard Jahn
- Institute of Medical Virology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany
| | - Klaus Hamprecht
- Institute of Medical Virology, University Hospital of Tuebingen, D-72076 Tuebingen, Germany.
| |
Collapse
|
21
|
Carbone J. The Immunology of Posttransplant CMV Infection: Potential Effect of CMV Immunoglobulins on Distinct Components of the Immune Response to CMV. Transplantation 2016; 100 Suppl 3:S11-8. [PMID: 26900990 PMCID: PMC4764014 DOI: 10.1097/tp.0000000000001095] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/14/2022]
Abstract
The immune response to cytomegalovirus (CMV) infection is highly complex, including humoral, cellular, innate, and adaptive immune responses. Detection of CMV by the innate immune system triggers production of type I IFNs and inflammatory cytokines which initiate cellular and humoral responses that are critical during the early viremic phase of CMV infection. Sustained control of CMV infection is largely accounted for by cellular immunity, involving various T-cell and B-cell subsets. In solid organ transplant patients, global suppression of innate and adaptive immunities by immunosuppressive agents limits immunological defense, including inhibition of natural killer cell activity with ongoing lowering of Ig levels and CMV-specific antibody titers. This is coupled with a short-term suppression of CMV-specific T cells, the extent and duration of which can predict risk of progression to CMV viremia. CMV immunoglobulin (CMVIG) preparations have the potential to exert immunomodulatory effects as well as providing passive immunization. Specific CMVIG antibodies and virus neutralization might be enhanced by modulation of dendritic cell activity and by a decrease in T-cell activation, effects which are of importance during the initial phase of infection. In summary, the role of CMVIG in reconstituting specific anti-CMV antibodies may be enhanced by some degree of modulation of the innate and adaptive immune responses, which could help to control some of the direct and indirect effects of CMV infection.
Collapse
Affiliation(s)
- Javier Carbone
- Clinical Immunology Department, General University Hospital Gregorio Marañon, Complutense University, Madrid, Spain
| |
Collapse
|
22
|
Abstract
Human cytomegalovirus (CMV) is the major cause of congenital neurological defects in the United States and also causes significant morbidity and mortality for hematopoietic and solid organ transplant patients. Primary infection in immunocompetent individuals rarely causes disease but resolves as a life-long latent infection, characterized by sustained antibody and cellular responses. Despite considerable efforts over the last 40 years to develop live attenuated and subunit vaccines, none is close to receiving regulatory approval. However, there is evidence that antibodies can prevent primary infection and cytotoxic T cells can suppress secondary infection. Prior maternal infection decreases the risk a fetus will contract CMV, while adoptive transfer of virus-specific CD8+ T cells is highly protective against CMV disease in hematopoietic stem cell transplant recipients. As a result, three polyclonal immunoglobulin preparations are approved for clinical use and one monoclonal antibody has reached phase III trials. Enhanced understanding of the viral life cycle from a biochemical perspective has revealed additional targets for neutralizing antibodies in the gH/gL/UL128-131 pentamer. Until an effective vaccine is licensed, passive immunotherapeutics may present an alternative to maintain viral loads and prevent CMV disease in susceptible populations. This review summarizes the progress and potential of immunotherapeutics to treat CMV infection.
Collapse
|
23
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
24
|
Miescher SM, Huber TM, Kühne M, Lieby P, Snydman DR, Vensak JL, Berger M. In vitro
evaluation of cytomegalovirus‐specific hyperimmune globulins vs. standard intravenous immunoglobulins. Vox Sang 2015; 109:71-8. [DOI: 10.1111/vox.12246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - D. R. Snydman
- Division of Geographic Medicine and Infectious Diseases Tufts Medical Center Tufts University School of Medicine Boston MA USA
| | | | | |
Collapse
|
25
|
Paquin-Proulx D, Sandberg JK. Persistent Immune Activation in CVID and the Role of IVIg in Its Suppression. Front Immunol 2014; 5:637. [PMID: 25566250 PMCID: PMC4267274 DOI: 10.3389/fimmu.2014.00637] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/28/2014] [Indexed: 01/31/2023] Open
Abstract
Common variable immunodeficiency (CVID) is one of the most common and clinically important primary immune deficiencies. CVID patients have poor humoral immunity, resulting in recurrent infections of the gastrointestinal and upper respiratory tracts, as well as increased incidence of some forms of cancers and autoimmune diseases. The treatment for CVID is IgG replacement, often given as intravenous immunoglobulins (IVIg). IVIg consists of monomeric IgG purified from pooled plasma from healthy donors and is used to treat an increasing number of conditions including autoimmune diseases. In the case of CVID, IVIg has mainly been seen as reconstitution therapy, providing patients with pathogen-specific antibodies. Recent evidence shows that IVIg has diverse effects on the immune system of CVID patients, and one important component is that IVIg alleviates the state of chronic immune activation. In this review, we will discuss causes and consequences of persistent immune activation in CVID, possible underlying mechanisms for how IVIg treatment reduces immune activation, and implications for our understanding of primary as well as acquired immune deficiencies.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Johan K Sandberg
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
26
|
Parruti G, Polilli E, Ursini T, Tontodonati M. Properties and mechanisms of immunoglobulins for congenital cytomegalovirus disease. Clin Infect Dis 2014; 57 Suppl 4:S185-8. [PMID: 24257424 DOI: 10.1093/cid/cit584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immunoglobulins are one major component of adaptive immunity to external and resident microorganisms, evolving very early in phylogenesis. They help eukaryotes in controlling infections, mainly through their neutralizing activity, which quenches both the cytopathic and inflammatory potential of invading microorganisms. Cytomegalovirus (CMV)-related disease is generally blunted in seropositive subjects with conserved specific humoral responses. CMV-seropositive pregnant women, in accordance with such evidence, suffer little or no fetal damage when reexposed to CMV. Several seminal experiences and early experimental models confirmed that repeated infusions of immunoglobulins, either with hyperimmune or standard preparations, may help to reduce maternal-fetal CMV transmission, as well as to quench fetal disease upon transmission. This review focused on experimental evidence supporting the potential role of immunoglobulins as a tool to control fetal CMV-related disease in pregnant women.
Collapse
|
27
|
Jacob CL, Lamorte L, Sepulveda E, Lorenz IC, Gauthier A, Franti M. Neutralizing antibodies are unable to inhibit direct viral cell-to-cell spread of human cytomegalovirus. Virology 2013; 444:140-7. [PMID: 23849792 DOI: 10.1016/j.virol.2013.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/03/2013] [Accepted: 06/05/2013] [Indexed: 12/17/2022]
Abstract
Infection with human cytomegalovirus (CMV) during pregnancy is the most common cause of congenital disorders, and can lead to severe life-long disabilities with associated high cost of care. Since there is no vaccine or effective treatment, current efforts are focused on identifying potent neutralizing antibodies. A panel of CMV monoclonal antibodies identified from patent applications, was synthesized and expressed in order to reproduce data from the literature showing that anti-glycoprotein B antibodies neutralized virus entry into all cell types and that anti-pentameric complex antibodies are highly potent in preventing virus entry into epithelial cells. It had not been established whether antibodies could prevent subsequent rounds of infection that are mediated primarily by direct cell-to-cell transmission. A thorough validation of a plaque reduction assay to monitor cell-to-cell spread led to the conclusion that neutralizing antibodies do not significantly inhibit plaque formation or reduce plaque size when they are added post-infection.
Collapse
Affiliation(s)
- Christian L Jacob
- Boehringer Ingelheim (Canada) Ltd., 2100 Rue Cunard, Laval, Québec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Preliminary evaluation of the safety and efficacy of standard intravenous immunoglobulins in pregnant women with primary cytomegalovirus infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1991-3. [PMID: 23100477 DOI: 10.1128/cvi.00509-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hyperimmune globulins were reported to prevent and treat fetal cytomegalovirus (CMV) infection during pregnancy. Here, we report that infusions of standard human intravenous immunoglobulin significantly increase CMV IgG titers and avidity indexes in pregnant women, paving the way to their use for passive transfer of maternal CMV humoral immunity to fetuses. Preliminary data on perinatal outcomes of the first 67 newborns are encouraging.
Collapse
|
29
|
|
30
|
Tick-borne encephalitis virus-neutralizing antibodies in different immunoglobulin preparations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:623-5. [PMID: 22379062 DOI: 10.1128/cvi.05705-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with primary immunodeficiency (PIDs) depend on the presence of a variety of antibody specificities in intravenous immunoglobulin (IVIG). Using the tick-borne encephalitis virus (TBEV), geographic variability in IVIG antibody content was shown. Care should therefore be exercised when treating PIDs in a given geography, as only locally sourced plasma contains the antibody specificities against the circulating pathogens in the given locality.
Collapse
|