1
|
Kura B, Slezak J. The Protective Role of Molecular Hydrogen in Ischemia/Reperfusion Injury. Int J Mol Sci 2024; 25:7884. [PMID: 39063126 PMCID: PMC11276695 DOI: 10.3390/ijms25147884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemia/reperfusion injury (IRI) represents a significant contributor to morbidity and mortality associated with various clinical conditions, including acute coronary syndrome, stroke, and organ transplantation. During ischemia, a profound hypoxic insult develops, resulting in cellular dysfunction and tissue damage. Paradoxically, reperfusion can exacerbate this injury through the generation of reactive oxygen species and the induction of inflammatory cascades. The extensive clinical sequelae of IRI necessitate the development of therapeutic strategies to mitigate its deleterious effects. This has become a cornerstone of ongoing research efforts in both basic and translational science. This review examines the use of molecular hydrogen for IRI in different organs and explores the underlying mechanisms of its action. Molecular hydrogen is a selective antioxidant with anti-inflammatory, cytoprotective, and signal-modulatory properties. It has been shown to be effective at mitigating IRI in different models, including heart failure, cerebral stroke, transplantation, and surgical interventions. Hydrogen reduces IRI via different mechanisms, like the suppression of oxidative stress and inflammation, the enhancement of ATP production, decreasing calcium overload, regulating cell death, etc. Further research is still needed to integrate the use of molecular hydrogen into clinical practice.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | | |
Collapse
|
2
|
Nakayama M, Kabayama S, Miyazaki M. Application of Electrolyzed Hydrogen Water for Management of Chronic Kidney Disease and Dialysis Treatment-Perspective View. Antioxidants (Basel) 2024; 13:90. [PMID: 38247514 PMCID: PMC10812465 DOI: 10.3390/antiox13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Chronic kidney disease (CKD), which is globally on the rise, has become an urgent challenge from the perspective of public health, given its risk factors such as end-stage renal failure, cardiovascular diseases, and infections. The pathophysiology of CKD, including dialysis patients, is deeply associated with enhanced oxidative stress in both the kidneys and the entire body. Therefore, the introduction of a safe and widely applicable antioxidant therapy is expected as a measure against CKD. Electrolyzed hydrogen water (EHW) generated through the electrolysis of water has been confirmed to possess chemical antioxidant capabilities. In Japan, devices producing this water have become popular for household drinking water. In CKD model experiments conducted to date, drinking EHW has been shown to suppress the progression of kidney damage related to hypertension. Furthermore, clinical studies have reported that systemic oxidative stress in patients undergoing dialysis treatment using EHW is suppressed, leading to a reduction in the incidence of cardiovascular complications. In the future, considering EHW as one of the comprehensive measures against CKD holds significant importance. The medical utility of EHW is believed to be substantial, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Kidney Center, St. Luke’s International Hospital, Tokyo 104-8560, Japan
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
| | - Shigeru Kabayama
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Graduate School of Science, Technology & Innovation, Kobe University, Kobe 657-8501, Japan
- Nihon Trim Co., Ltd., Osaka 530-0001, Japan
| | - Mariko Miyazaki
- Division of Blood Purification, Tohoku University Hospital, Sendai 980-8574, Japan; (S.K.); (M.M.)
- Division of Nephrology, Rheumatology and Endocrinology, Graduate School of Medicine, Tohoku University, Sendai 980-8574, Japan
| |
Collapse
|
3
|
Obara T, Naito H, Nojima T, Hirayama T, Hongo T, Ageta K, Aokage T, Hisamura M, Yumoto T, Nakao A. Hydrogen in Transplantation: Potential Applications and Therapeutic Implications. Biomedicines 2024; 12:118. [PMID: 38255223 PMCID: PMC10813693 DOI: 10.3390/biomedicines12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Hydrogen gas, renowned for its antioxidant properties, has emerged as a novel therapeutic agent with applications across various medical domains, positioning it as a potential adjunct therapy in transplantation. Beyond its antioxidative properties, hydrogen also exerts anti-inflammatory effects by modulating pro-inflammatory cytokines and signaling pathways. Furthermore, hydrogen's capacity to activate cytoprotective pathways bolsters cellular resilience against stressors. In recent decades, significant advancements have been made in the critical medical procedure of transplantation. However, persistent challenges such as ischemia-reperfusion injury (IRI) and graft rejection continue to hinder transplant success rates. This comprehensive review explores the potential applications and therapeutic implications of hydrogen in transplantation, shedding light on its role in mitigating IRI, improving graft survival, and modulating immune responses. Through a meticulous analysis encompassing both preclinical and clinical studies, we aim to provide valuable insights into the promising utility of hydrogen as a complementary therapy in transplantation.
Collapse
Affiliation(s)
| | - Hiromichi Naito
- Department of Emergency, Critical Care, and Disaster Medicine, Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (T.N.); (T.H.); (T.H.); (K.A.); (T.A.); (M.H.); (T.Y.); (A.N.)
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Hirano SI, Ichikawa Y, Sato B, Takefuji Y, Satoh F. Clinical Use and Treatment Mechanism of Molecular Hydrogen in the Treatment of Various Kidney Diseases including Diabetic Kidney Disease. Biomedicines 2023; 11:2817. [PMID: 37893190 PMCID: PMC10603947 DOI: 10.3390/biomedicines11102817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
As diabetes rates surge globally, there is a corresponding rise in the number of patients suffering from diabetic kidney disease (DKD), a common complication of diabetes. DKD is a significant contributor to chronic kidney disease, often leading to end-stage renal failure. However, the effectiveness of current medical treatments for DKD leaves much to be desired. Molecular hydrogen (H2) is an antioxidant that selectively reduces hydroxyl radicals, a reactive oxygen species with a very potent oxidative capacity. Recent studies have demonstrated that H2 not only possesses antioxidant properties but also exhibits anti-inflammatory effects, regulates cell lethality, and modulates signal transduction. Consequently, it is now being utilized in clinical applications. Many factors contribute to the onset and progression of DKD, with mitochondrial dysfunction, oxidative stress, and inflammation being strongly implicated. Recent preclinical and clinical trials reported that substances with antioxidant properties may slow the progression of DKD. Hence, we undertook a comprehensive review of the literature focusing on animal models and human clinical trials where H2 demonstrated effectiveness against a variety of renal diseases. The collective evidence from this literature review, along with our previous findings, suggests that H2 may have therapeutic benefits for patients with DKD by enhancing mitochondrial function. To substantiate these findings, future large-scale clinical studies are needed.
Collapse
Affiliation(s)
- Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yusuke Ichikawa
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Keio University, 2-15-45 Mita, Minato-ku, Tokyo 108-8345, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-ku, Tokyo 135-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura 247-0056, Japan; (Y.I.); (B.S.); (F.S.)
| |
Collapse
|
5
|
Hydrogen: Potential Applications in Solid Organ Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6659310. [PMID: 34868455 PMCID: PMC8635874 DOI: 10.1155/2021/6659310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
Ischemia reperfusion injury (IRI) in organ transplantation has always been an important hotspot in organ protection. Hydrogen, as an antioxidant, has been shown to have anti-inflammatory, antioxidant, and antiapoptotic effects. In this paper, the protective effect of hydrogen against IRI in organ transplantation has been reviewed to provide clues for future clinical studies.
Collapse
|
6
|
Ning K, Guan ZB, Lu HT, Zhang N, Sun XJ, Liu WW. Lung macrophages are involved in lung injury secondary to repetitive diving. J Zhejiang Univ Sci B 2021; 21:646-656. [PMID: 32748580 DOI: 10.1631/jzus.b1900687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to establish an animal model of decompression-induced lung injury (DILI) secondary to repetitive diving in mice and explore the role of macrophages in DILI and the protective effects of high-concentration hydrogen (HCH) on DILI. Mice were divided into three groups: control group, DILI group, and HCH group. Mice were exposed to hyperbaric air at 600 kPa for 60 min once daily for consecutive 3 d and then experienced decompression. In HCH group, mice were administered with HCH (66.7% hydrogen and 33.3% oxygen) for 60 min after each hyperbaric exposure. Pulmonary function tests were done 6 h after decompression; the blood was harvested for cell counting; the lung tissues were harvested for the detection of inflammatory cytokines, hematoxylin and eosin (HE) staining, and immunohistochemistry; western blotting and polymerase chain reaction (PCR) were done for the detection of markers for M1 and M2 macrophages. Our results showed that bubbles formed after decompression and repeated hyperbaric exposures significantly reduced the total lung volume and functional residual volume. Moreover, repetitive diving dramatically increased proinflammatory factors and increased the markers of both M1 and M2 macrophages. HCH inhalation improved lung function to a certain extent, and significantly reduced the pro-inflammatory factors. These effects were related to the reduction of M1 macrophages as well as the increase in M2 macrophages. This study indicates that repetitive diving damages lung function and activates lung macrophages, resulting in lung inflammation. HCH inhalation after each diving may be a promising strategy for the prevention of DILI.
Collapse
Affiliation(s)
- Ke Ning
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Zhen-Biao Guan
- Department of Respiratory Diseases, Hongkou Branch of Changhai Hospital, the Naval Military Medical University, Shanghai 200081, China
| | - Hong-Tao Lu
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Ning Zhang
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Xue-Jun Sun
- Department of Navy Aviation Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| | - Wen-Wu Liu
- Department of Diving Medicine, Faculty of Naval Medicine, the Naval Military Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Sano M, Tamura T. Hydrogen Gas Therapy: From Preclinical Studies to Clinical Trials. Curr Pharm Des 2021; 27:650-658. [PMID: 33349213 DOI: 10.2174/1381612826666201221150857] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mounting evidence indicates that hydrogen gas (H2) is a versatile therapeutic agent, even at very low, non-combustible concentrations. The Chinese National Health and Medical Commission recently recommended the use of inhaled H2 in addition to O2 therapy in the treatment of COVID-19-associated pneumonia, and its effects extend to anti-tumor, anti-inflammatory and antioxidant actions. SUMMARY In this review, we have highlighted key findings from preclinical research and recent clinical studies demonstrating that H2 reduces the organ damage caused by ischemia-reperfusion. We have also outlined the critical role this effect plays in a variety of medical emergencies, including myocardial infarction, hemorrhagic shock, and out-of-hospital cardiac arrest, as well as in organ transplantation. H2 is compared with established treatments such as targeted temperature management, and we have also discussed its possible mechanisms of action, including the recently identified suppression of TNF-α-mediated endothelial glycocalyx degradation by inhaled H2. In addition, our new method that enables H2 gas to be easily transported to emergency settings and quickly injected into an organ preservation solution at the site of donor organ procurement have been described. CONCLUSION H2 is an easily administered, inexpensive and well-tolerated agent that is highly effective for a wide range of conditions in emergency medicine, as well as for preserving donated organs.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Nishi K, Iwai S, Tajima K, Okano S, Sano M, Kobayashi E. Prevention of Chronic Rejection of Marginal Kidney Graft by Using a Hydrogen Gas-Containing Preservation Solution and Adequate Immunosuppression in a Miniature Pig Model. Front Immunol 2021; 11:626295. [PMID: 33679720 PMCID: PMC7925892 DOI: 10.3389/fimmu.2020.626295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical kidney transplantation, the marginal kidney donors are known to develop chronic allograft rejection more frequently than living kidney donors. In our previous study, we have reported that the hydrogen gas-containing organ preservation solution prevented the development of acute injuries in the kidney of the donor after cardiac death by using preclinical miniature pig model. In the present study, we verified the impact of hydrogen gas treatment in transplantation with the optimal immunosuppressive protocol based on human clinical setting by using the miniature pig model. Marginal kidney processed by hydrogen gas-containing preservation solution has been engrafted for long-term (longer than 100 days). A few cases showed chronic rejection reaction; however, most were found to be free of chronic rejection such as graft tissue fibrosis or renal vasculitis. We concluded that marginal kidney graft from donor after cardiac death is an acceptable model for chronic rejection and that if the transplantation is carried out using a strict immunosuppressive protocol, chronic rejection may be alleviated even with the marginal kidney.
Collapse
Affiliation(s)
- Kotaro Nishi
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Satomi Iwai
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kazuki Tajima
- Laboratory of Small Animal Internal Medicine 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shozo Okano
- Laboratory of Small Animal Surgery 2, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Eiji Kobayashi
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Abstract
Hydrogen (H2) is promising as an energy source for the next generation. Medical applications using H2 gas can be also considered as a clean and economical technology. Since the H2 gas based on electrolysis of water production has potential to expand the medical applications, the technology has been developed in order to safely dilute it and to supply it to the living body by inhalation, respectively. H2 is an inert molecule which can scavenge the highly active oxidants including hydroxyl radical (·OH) and peroxynitrite (ONOO−), and which can convert them into water. H2 is clean and causes no adverse effects in the body. The mechanism of H2 is different from that of traditional drugs because it works on the root of many diseases. Since H2 has extensive and various effects, it may be called a “wide spectrum molecule” on diseases. In this paper, we reviewed the current medical applications of H2 including its initiation and development, and we also proposed its prospective medical applications. Due to its marked efficacy and no adverse effects, H2 will be a next generation therapy candidate for medical applications.
Collapse
|
10
|
Wang ST, Bao C, He Y, Tian X, Yang Y, Zhang T, Xu KF. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients. QJM 2020; 113:870-875. [PMID: 32407476 PMCID: PMC7785302 DOI: 10.1093/qjmed/hcaa164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hydrogen was proven to have anti-oxidative and anti-inflammation effects to various diseases. AIM We wish to investigate the acute effects of inhaled hydrogen on airway inflammation in patients with asthma and chronic obstructive pulmonary disease (COPD). DESIGN Prospective study. METHODS In total, 2.4% hydrogen containing steam mixed gas (XEN) was inhaled once for 45 min in 10 patients with asthma and 10 patients with COPD. The levels of granulocyte-macrophage colony stimulating factor, interferon-γ, interleukin-1β (IL-1β), IL-2, IL-4, IL-6 and so on in peripheral blood and exhaled breath condensate (EBC) before and after 'XEN' inhalation were measured. RESULTS 45 minutes 'XEN' inhalation once decreased monocyte chemotactic protein 1 level in both COPD (564.70-451.51 pg/mL, P = 0.019) and asthma (386.39-332.76 pg/mL, P = 0.033) group, while decreased IL-8 level only in asthma group (5.25-4.49 pg/mL, P = 0.023). The level of EBC soluble cluster of differentiation-40 ligand in COPD group increased after inhalation (1.07-1.16 pg/mL, P = 0.031), while IL-4 and IL-6 levels in EBC were significantly lower after inhalation in the COPD (0.80-0.64 pg/mL, P = 0.025) and asthma (0.06-0.05 pg/mL, P = 0.007) group, respectively. CONCLUSIONS A single inhalation of hydrogen for 45 min attenuated inflammatory status in airways in patients with asthma and COPD.
Collapse
Affiliation(s)
- S -T Wang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - C Bao
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Y He
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - X Tian
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Y Yang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - T Zhang
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - K -F Xu
- From the Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Yamamoto H, Aokage T, Igawa T, Hirayama T, Seya M, Ishikawa-Aoyama M, Nojima T, Nakao A, Naito H. Luminal preloading with hydrogen-rich saline ameliorates ischemia-reperfusion injury following intestinal transplantation in rats. Pediatr Transplant 2020; 24:e13848. [PMID: 32997862 DOI: 10.1111/petr.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
Prolonged intestinal cold storage causes considerable mucosal breakdown, which could bolster bacterial translocation and cause life-threatening infection for the transplant recipient. The intestine has an intraluminal compartment, which could be a target for intervention, but has not yet been fully investigated. Hydrogen gas exerts organ protection and has used been recently in several clinical and basic research studies on topics including intestinal transplantation. In this study, we aimed to investigate the cytoprotective efficacy of intraluminally administered hydrogen-rich saline on cold IR injury in intestinal transplantation. Isogeneic intestinal transplantation with 6 hours of cold ischemia was performed on Lewis rats. Hydrogen-rich saline (H2 concentration at 5 ppm) or normal saline was intraluminally introduced immediately before preservation. Graft intestine was excised 3 hours after reperfusion and analyzed. Histopathological analysis of control grafts revealed blunting of the villi and erosion. These mucosal changes were notably attenuated by intraluminal hydrogen. Intestinal mucosa damage caused by IR injury led to considerable deterioration of gut barrier function 3 h post-reperfusion. However, this decline in permeability was critically prevented by hydrogen treatment. IR-induced upregulation of proinflammatory cytokine mRNAs such as IL-6 was mitigated by hydrogen treatment. Western blot revealed that hydrogen treatment regulated loss of the transmembrane protein ZO-1. Hydrogen-rich saline intraluminally administered in the graft intestine modulated IR injury to transplanted intestine in rats. Successful abrogation of intestinal IR injury with a novel strategy using intraluminal hydrogen may be easily clinically applicable and will compellingly improve patient care after transplantation.
Collapse
Affiliation(s)
- Hirotsugu Yamamoto
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Toshiyuki Aokage
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takuro Igawa
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Takahiro Hirayama
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Mizuki Seya
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Michiko Ishikawa-Aoyama
- Department of Emergency, Disaster and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tsuyoshi Nojima
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Atsunori Nakao
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| | - Hiromichi Naito
- Department of Emergency, Critical Care and Disaster Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Japan
| |
Collapse
|
12
|
Kayawake H, Chen-Yoshikawa TF, Saito M, Yamagishi H, Yoshizawa A, Hirano SI, Kurokawa R, Date H. Protective Effects of a Hydrogen-Rich Preservation Solution in a Canine Lung Transplantation Model. Ann Thorac Surg 2020; 111:246-252. [PMID: 32649946 DOI: 10.1016/j.athoracsur.2020.05.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular hydrogen (H2) has protective effects against ischemia-reperfusion injury in various organs. Because they are easier to transport and safer to use than inhaled H2, H2-rich solutions are suitable for organ preservation. In this study, we examined the protective effects of an H2-rich solution for lung preservation in a canine left lung transplantation (LTx) model. METHODS Ten beagles underwent orthotopic left LTx after 23 hours of cold ischemia followed by reperfusion for 4 hours. Forty-five minutes after reperfusion, the right main pulmonary artery was clamped to evaluate the function of the implanted graft. The beagles were divided into two groups: control group (n = 5), and H2 group (n = 5). In the control group, the donor lungs were flushed and immersed during cold preservation at 4°C using ET-Kyoto solution, and in the H2 group, these were flushed and immersed using H2-rich ET-Kyoto solution. Physiologic assessments were performed during reperfusion. After reperfusion, the wet-to-dry ratios were determined, and histology examinations were performed. RESULTS Significantly higher partial pressure of arterial oxygen and significantly lower partial pressure of carbon dioxide were observed in the H2 group than in the control group (P = .045 and P < .001, respectively). The wet-to-dry ratio was significantly lower in the H2 group than in the control group (P = .032). Moreover, in histology examination, less lung injury and fewer apoptotic cells were observed in the H2 group (P < .001 and P < .001, respectively). CONCLUSIONS Our results demonstrated that the H2-rich preservation solution attenuated ischemia-reperfusion injury in a canine left LTx model.
Collapse
Affiliation(s)
- Hidenao Kayawake
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Masao Saito
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Thoracic Surgery, Shimada Municipal Hospital, Shimada, Japan
| | - Hiroya Yamagishi
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiko Yoshizawa
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
13
|
Kawamura M, Imamura R, Kobayashi Y, Taniguchi A, Nakazawa S, Kato T, Namba-Hamano T, Abe T, Uemura M, Kobayashi H, Nonomura N. Oral Administration of Si-Based Agent Attenuates Oxidative Stress and Ischemia-Reperfusion Injury in a Rat Model: A Novel Hydrogen Administration Method. Front Med (Lausanne) 2020; 7:95. [PMID: 32266279 PMCID: PMC7099649 DOI: 10.3389/fmed.2020.00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
Organ ischemia-reperfusion injury (IRI), which is unavoidable in kidney transplantation, induces the formation of reactive oxygen species and causes organ damage. Although the efficacy of molecular hydrogen (H2) in IRI has been reported, oral intake of H2-rich water and inhalation of H2 gas are still not widely used in clinical settings because of the lack of efficiency and difficulty in handling. We successfully generated large quantities of H2 molecules by crushing silicon (Si) to nano-sized Si particles (nano-Si) which were allowed to react with water. The nano-Si or relatively large-sized Si particles (large-Si) were orally administered to rats with renal IRI. Animals were divided into four groups: sham, IRI, IRI + nano-Si, and IRI + large-Si. The levels of serum creatinine and urine protein were significantly decreased 72 h following IRI in rats that were administered nano-Si. The levels of oxidative stress marker, urinary 8-hydroxydeoxyguanosine were also significantly decreased with the nano-Si treatment. Transcriptome and gene ontology enrichment analyses showed that the oral nano-Si intake downregulated the biological processes related to oxidative stress, such as immune response, cytokine production, and extrinsic apoptotic signaling pathway. Alterations in the regulation of a subset of genes in the altered pathways were validated by quantitative polymerase chain reaction. Furthermore, immunohistochemical analysis demonstrated that the nano-Si treatment alleviated interstitial macrophage infiltration and tubular apoptosis, implicating the anti-inflammatory and anti-apoptotic effects of nano-Si. In conclusion, renal IRI was attenuated by the oral administration of nano-Si, which should be considered as a novel H2 administration method.
Collapse
Affiliation(s)
- Masataka Kawamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryoichi Imamura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Ayumu Taniguchi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shigeaki Nakazawa
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toyofumi Abe
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hikaru Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
14
|
Cheng S, Peng L, Xu B, Chen W, Chen Y, Gu Y. Protective Effects of Hydrogen-Rich Water Against Cartilage Damage in a Rat Model of Osteoarthritis by Inhibiting Oxidative Stress, Matrix Catabolism, and Apoptosis. Med Sci Monit 2020; 26:e920211. [PMID: 31927559 PMCID: PMC6977642 DOI: 10.12659/msm.920211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The aim of this study was to investigate the mechanisms underlying the potential effects of hydrogen-rich water (HW) on articular cartilage in a rat osteoarthritis (OA) model. Material/Methods A rat model of OA was established using the modified Hulth method, and rats were forced to exercise for 30 min every day 1 week after surgery for 7 weeks. Mankin’s method was used to score the severity of OA. The animals were assigned into the OA group, OA+HW group, and sham operation group. After 8 weeks, the animals in the OA group had a Mankin score >8 points, and HW was administered into the knee joint. After 2 weeks of treatment, articular cartilage was obtained for pathological examination, consisting of hematoxylin and eosin, toluidine blue, and Hoechst staining, as well as quantitative real-time PCR and Western blot analyses. This combination of pharmacological and molecular biological analyses was performed to examine the mechanism underlying the protective effect of HW on articular cartilage. Results The antioxidant effects of HW suppressed oxidative damage, which may have aided the inhibition of ECM-degrading enzymes (MMP3, MMP13, ADAMT4, and ADAMT5), the upregulation of Col II and aggrecan expression, and the downregulation of COX-2, iNOS, and NO expression. The results of HE staining indicated intra-articular treatment of HW attenuated cartilage degradation. However, Hoechst staining in the OA group indicated the nuclei of the fragmented chondrocytes were condensed compared to the sham operation group, and this effect was inhibited by HW. Conclusions HW showed a protective effect against the progression of OA in an animal model, which may have been mediated by its anti-oxidant and anti-apoptotic activities.
Collapse
Affiliation(s)
- ShaoWen Cheng
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - Lei Peng
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - BaiChao Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland).,Hainan Medical College, Haikou, Hainan, China (mainland)
| | - WenSheng Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - YangPing Chen
- Trauma Center, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| | - YunTao Gu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (mainland)
| |
Collapse
|
15
|
Saito M, Chen-Yoshikawa TF, Takahashi M, Kayawake H, Yokoyama Y, Kurokawa R, Hirano SI, Date H. Protective effects of a hydrogen-rich solution during cold ischemia in rat lung transplantation. J Thorac Cardiovasc Surg 2019; 159:2110-2118. [PMID: 31780065 DOI: 10.1016/j.jtcvs.2019.09.175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Molecular hydrogen can reduce the oxidative stress of ischemia-reperfusion injury in various organs for transplantation and potentially improve survival rates in recipients. This study aimed to evaluate the protective effects of a hydrogen-rich preservation solution against ischemia-reperfusion injury after cold ischemia in rat lung transplantation. METHODS Lewis rats were divided into a nontransplant group (n = 3), minimum-ischemia group (n = 3), cold ischemia group (n = 6), and cold ischemia with hydrogen-rich (more than 1.0 ppm) preservation solution group (n = 6). The rats in the nontransplant group underwent simple thoracotomy, and the rats in the remaining 3 groups underwent orthotopic left lung transplantation. The ischemic time was <30 minutes in the minimum-ischemia group and 6 hours in the cold ischemia groups. After 2-hour reperfusion, we evaluated arterial blood gas levels, pulmonary function, lung wet-to-dry weight ratio, and histologic features of the lung tissue. The expression of proinflammatory cytokines was measured using quantitative polymerase chain reaction assays, and 8-hydroxydeoxyguanosine levels were evaluated using enzyme-linked immunosorbent assays. RESULTS When compared with the nontransplant and minimum-ischemia groups, the cold ischemia group had lower dynamic compliance, lower oxygenation levels, and higher wet-to-dry weight ratios. However, these variables were significantly improved in the cold ischemia with hydrogen-rich preservation solution group. This group also had fewer signs of perivascular edema, lower interleukin-1β messenger RNA expression, and lower 8-hydroxydeoxyguanosine levels than the cold ischemia group. CONCLUSIONS The use of a hydrogen-rich preservation solution attenuates ischemia-reperfusion injury in rat lungs during cold ischemia through antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Masao Saito
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Mamoru Takahashi
- Department of Thoracic Surgery, Kyoto Katsura Hospital, Kyoto, Japan
| | - Hidenao Kayawake
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuhei Yokoyama
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Hao Y, Dong X, Liu H, Wang Y. Preconditioning with one-time hydrogen gas does not attenuate skin flap ischemia-reperfusion injury in rat models. J Plast Reconstr Aesthet Surg 2019; 72:1661-1668. [DOI: 10.1016/j.bjps.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/04/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
|
17
|
Kobayashi E, Sano M. Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs. PLoS One 2019; 14:e0222863. [PMID: 31574107 PMCID: PMC6772054 DOI: 10.1371/journal.pone.0222863] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Various methods have been devised to dissolve hydrogen gas in organ preservation solutions, including use of a hydrogen gas cylinder, electrolysis, or a hydrogen-generating agent. However, these methods require considerable time and effort for preparation. We investigated a practical technique for rapidly dissolving hydrogen gas in organ preservation solutions by using a canister containing hydrogen-absorbing alloy. The efficacy of hydrogen-containing organ preservation solution created by this method was tested in a miniature pig model of kidney transplantation from donors with circulatory arrest. The time required for dissolution of hydrogen gas was only 2–3 minutes. When hydrogen gas was infused into a bag containing cold ETK organ preservation solution at a pressure of 0.06 MPa and the bag was subsequently opened to the air, the dissolved hydrogen concentration remained at 1.0 mg/L or more for 4 hours. After warm ischemic injury was induced by circulatory arrest for 30 minutes, donor kidneys were harvested and perfused for 5 minutes with hydrogen-containing cold ETK solution or hydrogen-free cold ETK solution. The perfusion rate was faster from the initial stage with hydrogen-containing cold ETK solution than with hydrogen-free ETK solution. After storage of the kidney in hydrogen-free preservation solution for 1 hour before transplantation, no urine production was observed and blood flow was not detected in the transplanted kidney at sacrifice on postoperative day 6. In contrast, after storage in hydrogen-containing preservation solution for either 1 or 4 hours, urine was detected in the bladder and blood flow was confirmed in the transplanted kidney. This method of dissolving hydrogen gas in organ preservation solution is a practical technique for potentially converting damaged organs to transplantable organs that can be used safely in any clinical setting where organs are removed from donors.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Organ Fabrication, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
| | - Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Center for Molecular Hydrogen Medicine, Keio University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Chen Y, Shi J, Xia TC, Xu R, He X, Xia Y. Preservation Solutions for Kidney Transplantation: History, Advances and Mechanisms. Cell Transplant 2019; 28:1472-1489. [PMID: 31450971 PMCID: PMC6923544 DOI: 10.1177/0963689719872699] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation was one of the greatest medical advances during the past few
decades. Organ preservation solutions have been applied to diminish ischemic/hypoxic
injury during cold storage and improve graft survival. In this article, we provide a
general review of the history and advances of preservation solutions for kidney
transplantation. Key components of commonly used solutions are listed, and effective
supplementations for current available preservation solutions are discussed. At cellular
and molecular levels, further insights were provided into the pathophysiological
mechanisms of effective ingredients against ischemic/hypoxic renal injury during cold
storage. We pay special attention to the cellular and molecular events during
transplantation, including ATP depletion, acidosis, mitochondrial dysfunction, oxidative
stress, inflammation, and other intracellular mechanisms.
Collapse
Affiliation(s)
- Yimeng Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jian Shi
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Terry C Xia
- The University of Connecticut, Storrs, CT, USA
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Meng X, Xu H, Dang Y, Fan Y, Lv M, Sang H, Xu L. Hyperoxygenated Hydrogen-Rich Solution Suppresses Lung Injury Induced by Hemorrhagic Shock in Rats. J Surg Res 2019; 239:103-114. [PMID: 30825755 DOI: 10.1016/j.jss.2019.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hemorrhagic shock could induce acute lung injury (ALI), which is associated with cell hypoxia, lung tissue inflammation, free radical damage, and excessive cell apoptosis. Our previous studies demonstrated that hyperoxygenated solution could alleviate cell hypoxia. Furthermore, hydrogen-rich solution (HS) could relieve lung tissue inflammation, free radical damage and excessive cell apoptosis. Therefore we hypothesize that Hyperoxygenated Hydrogen-rich solution (HOHS) can protect the lung against ALI. MATERIALS AND METHODS SD rats were randomly divided into five groups (n = 6 at each time point in each group) and were exposed to Hemorrhagic shock induced ALI, and then treated with lactated Ringer's solution (LRS), hyperoxygenated solution, HS, and HOHS, respectively. The protective effects of these solutions were assessed using methods as follows: arterial blood samples were collected for blood gas analysis; Bronchoalveolar lavage fluid was collected for cell count and protein quantification; lung tissue samples were collected to measure wet/dry ratio, as well as levels of T-SOD, MDA, TNF-α, and IL-6; Caspase-3 and TUNEL-positive cells, and pathological changes were observed under light microscope; ALI was scored using the Smith scoring method; ultrastructural changes of lung tissues were further observed with transmission electron microscopy. RESULTS The results indicated that PaO2, PaCO2, and T-SOD increased in the three treatment groups (P < 0.05), most significantly in the HOHS group (P < 0.01) compared with the LRS group; and conversely that the levels of lactate, MDA, TNF-α and IL-6, cell count, protein content, caspase-3 and TUNEL-positive cells as well as ALI score decreased in the three treatment groups (P < 0.05), most significantly in the HOHS group (P < 0.01) compared with the LRS group. Morphological observation with optical microscope and electron microscopy showed that compared with the LRS group, cell damage in the three treatment groups improved to a varying extent, especially evident in the HOHS group. CONCLUSIONS These findings demonstrate that HOHS can protect the lung against ALI induced by hemorrhagic shock.
Collapse
Affiliation(s)
- Xiangzhong Meng
- Department of Anesthesiology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Yangjie Dang
- The Department of Anesthesiology, Children Hospital of Xi'an, Xi'an, Shaanxi, China
| | - Yingying Fan
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biochemical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Miaomiao Lv
- Department of Anesthesiology, No. 323 Hospital of PLA, Xi'an, China
| | - Hanfei Sang
- Department of Anesthesiology, Xiang'an Hospital of Xiamen Uiversity, Xiamen, Fujian Province, P.R., China
| | - Lixian Xu
- Department of Anesthesiology, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, School of Stomatology, Air Force Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Uto K, Sakamoto S, Que W, Shimata K, Hashimoto S, Sakisaka M, Narita Y, Yoshii D, Zhong L, Komohara Y, Li XK, Inomata Y, Hibi T. Hydrogen-rich solution attenuates cold ischemia-reperfusion injury in rat liver transplantation. BMC Gastroenterol 2019; 19:25. [PMID: 30736744 PMCID: PMC6368804 DOI: 10.1186/s12876-019-0939-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 01/25/2019] [Indexed: 01/15/2023] Open
Abstract
Background Liver transplantation (LT) is considered the standard treatment for end-stage liver disease, but ideal donors remain in limited supply, resulting in an unavoidable increase in the need to use grafts from marginal donors. The attenuation of ischemia-reperfusion injury (IRI) in such marginal donors is therefore crucial for reducing the possibility of the primary non-function of grafts and graft loss. Some reports have found that molecular-hydrogen showed antioxidant and anti-inflammatory effects in preventing IRI in some non-hepatic transplant models. Therefore, we investigated whether or not molecular-hydrogen could attenuate IRI in LT model rats. Methods We used a hydrogen-rich water bath to dissolve hydrogen into solution and graft tissues and performed isogenic and orthotopic LT in Lewis rats with University of Wisconsin (UW) solution. Blood and tissue samples were collected 6 h after the reperfusion. Hepatic enzymes in serum were measured. Pathological findings including the expressions of cytokines and heme oxygenase (HO)-1 in liver tissues were evaluated. Results The concentration of hydrogen inside the graft tissues increased depending on the storage time, plateauing after 1 h. Serum liver enzyme levels were significantly lower and the histology score of liver damage markedly attenuated in the group given grafts preserved in hydrogen-rich UW solution than in the control group. The hydrogen-rich UW solution group also showed less oxidative damage and hepatocyte apoptosis than the control group, and the expression of proinflammatory cytokines tended to be lower while the protein levels of HO-1 were significantly increased (n = 3–12 per group, P < 0.05). Conclusions Storage of liver grafts in hydrogen-rich UW solution resulted in superior functional and morphologic protection against IRI via the up-regulation of HO-1 expression. Electronic supplementary material The online version of this article (10.1186/s12876-019-0939-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiichi Uto
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Seisuke Sakamoto
- Organ Transplant Center, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan RD. Minhang District, Shanghai, 201100, China
| | - Keita Shimata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shintaro Hashimoto
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masataka Sakisaka
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yasuko Narita
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Daiki Yoshii
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Lin Zhong
- Department of Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 800 Dongchuan RD. Minhang District, Shanghai, 201100, China
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| |
Collapse
|
21
|
Tamaki I, Hata K, Okamura Y, Nigmet Y, Hirao H, Kubota T, Inamoto O, Kusakabe J, Goto T, Tajima T, Yoshikawa J, Tanaka H, Tsuruyama T, Tolba RH, Uemoto S. Hydrogen Flush After Cold Storage as a New End-Ischemic Ex Vivo Treatment for Liver Grafts Against Ischemia/Reperfusion Injury. Liver Transpl 2018; 24:1589-1602. [PMID: 30120877 PMCID: PMC6686173 DOI: 10.1002/lt.25326] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/16/2018] [Accepted: 08/01/2018] [Indexed: 01/13/2023]
Abstract
Cold storage (CS) remains the gold standard for organ preservation worldwide, although it is inevitably associated with ischemia/reperfusion injury (IRI). Molecular hydrogen (H2 ) is well known to have antioxidative properties. However, its unfavorable features, ie, inflammability, low solubility, and high tissue/substance permeability, have hampered its clinical application. To overcome such obstacles, we developed a novel reconditioning method for donor organs named hydrogen flush after cold storage (HyFACS), which is just an end-ischemic H2 flush directly to donor organs ex vivo, and, herein, we report its therapeutic impact against hepatic IRI. Whole liver grafts were retrieved from Wistar rats. After 24-hour CS in UW solution, livers were cold-flushed with H2 solution (1.0 ppm) via the portal vein (PV), the hepatic artery (HA), or both (PV + HA). Functional integrity and morphological damages were then evaluated by 2-hour oxygenated reperfusion at 37°C. HyFACS significantly lowered portal venous pressure, transaminase, and high mobility group box protein 1 release compared with vehicle-treated controls (P < 0.01). Hyaluronic acid clearance was significantly higher in the HyFACS-PV and -PV + HA groups when compared with the others (P < 0.01), demonstrating the efficacy of the PV route to maintain the sinusoidal endothelia. In contrast, bile production and lactate dehydrogenase leakage therein were both significantly improved in HyFACS-HA and -PV + HA (P < 0.01), representing the superiority of the arterial route to attenuate biliary damage. Electron microscopy consistently revealed that sinusoidal ultrastructures were well maintained by portal HyFACS, while microvilli in bile canaliculi were well preserved by arterial flush. As an underlying mechanism, HyFACS significantly lowered oxidative damages, thus improving the glutathione/glutathione disulfide ratio in liver tissue. In conclusion, HyFACS significantly protected liver grafts from IRI by ameliorating oxidative damage upon reperfusion in the characteristic manner with its route of administration. Given its safety, simplicity, and cost-effectiveness, end-ischemic HyFACS may be a novel pretransplant conditioning for cold-stored donor organs.
Collapse
Affiliation(s)
- Ichiro Tamaki
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Koichiro Hata
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Yusuke Okamura
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Yermek Nigmet
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Hirofumi Hirao
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Toyonari Kubota
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Osamu Inamoto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Jiro Kusakabe
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Toru Goto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Tetsuya Tajima
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Junichi Yoshikawa
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Hirokazu Tanaka
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| | - Tatsuaki Tsuruyama
- Center for Anatomical, Pathological and Forensic Medical ResearchKyoto University Graduate School of MedicineKyotoJapan
| | - Rene H. Tolba
- Institute for Laboratory Animal Science and Experimental SurgeryRheinisch‐Westfälische Technische Hochschule Aachen UniversityAachenGermany
| | - Shinji Uemoto
- Department of SurgeryDivision of Hepato‐Biliary‐Pancreatic Surgery and Transplantation
| |
Collapse
|
22
|
Ishikawa T, Shimada S, Fukai M, Kimura T, Umemoto K, Shibata K, Fujiyoshi M, Fujiyoshi S, Hayasaka T, Kawamura N, Kobayashi N, Shimamura T, Taketomi A. Post-reperfusion hydrogen gas treatment ameliorates ischemia reperfusion injury in rat livers from donors after cardiac death: a preliminary study. Surg Today 2018; 48:1081-1088. [PMID: 29980846 DOI: 10.1007/s00595-018-1693-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE We reported previously that hydrogen gas (H2) reduced hepatic ischemia and reperfusion injury (IRI) after prolonged cold storage (CS) of livers retrieved from heart-beating donors. The present study was designed to assess whether H2 reduced hepatic IRI during donation of a cardiac death (DCD) graft with subsequent CS. METHODS Rat livers were harvested after 30-min cardiac arrest and stored for 4 h in University of Wisconsin solution. The graft was reperfused with oxygenated buffer, with or without H2 (H2 or NT groups, respectively), at 37° for 90 min on isolated perfused rat liver apparatus. RESULTS In the NT group, liver enzyme leakage, apoptosis, necrosis, energy depletion, redox status, impaired microcirculation, and bile production were indicative of severe IRI, whereas in the H2 group these impairments were significantly suppressed. The phosphorylation of cytoplasmic MKK4 and JNK were enhanced in the NT group and suppressed in the H2 group. NFkB-p65 and c-Fos in the nucleus were unexpectedly unchanged by IRI regardless of H2 treatment, indicating the absence of inflammation in this model. CONCLUSION H2 was observed to ameliorate IRI in the DCD liver by maintaining microcirculation, mitochondrial functions, and redox status, as well as suppressing the cytoplasmic MKK4-JNK-mediated cellular death pathway.
Collapse
Affiliation(s)
- Takahisa Ishikawa
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Shingo Shimada
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan.
| | - Taichi Kimura
- Laboratory of Cancer Research, Department of Pathology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kouhei Umemoto
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Kengo Shibata
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Masato Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Sunao Fujiyoshi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Takahiro Hayasaka
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Norio Kawamura
- Department of Transplant Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| | - Tsuyoshi Shimamura
- Division of Organ Transplantation, Central Clinical Facilities, Hokkaido University Hospital, Sapporo, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, N-15, W-7, Kita-Ku, Sapporo, 060-8638, Japan
| |
Collapse
|
23
|
Hosgood SA, Moore T, Qurashi M, Adams T, Nicholson ML. Hydrogen Gas Does Not Ameliorate Renal Ischemia Reperfusion Injury in a Preclinical Model. Artif Organs 2018; 42:723-727. [PMID: 29611214 DOI: 10.1111/aor.13118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/04/2017] [Accepted: 12/28/2017] [Indexed: 01/03/2023]
Abstract
In renal transplantation, ischemia reperfusion injury impairs early graft function and can reduce long term graft survival. Hydrogen has antioxidant and anti-inflammatory properties that can reduce the effects of ischemic injury. The aim of this study was to examine the effects of hydrogen gas administered during reperfusion in a preclinical model of kidney ischemia reperfusion injury. Porcine kidneys underwent 15 min of warm ischemia followed by 22 h of cold ischemia. They were then reperfused for 6 h with whole autologous blood on an ex vivo reperfusion circuit. Paired kidneys were randomized to control (n = 6) (25% oxygen, 5% carbon dioxide, 70% nitrogen) or hydrogen (n = 6) (2% hydrogen, 25% oxygen, 5% carbon dioxide, 68% nitrogen) groups. Tissue, urine, and blood samples were collected at baseline and hourly throughout the reperfusion period. Baseline measurements were similar across groups. Following perfusion, there was no significant difference between control and hydrogen groups in urine output (693 mL vs. 608 mL, P = 0.86), renal blood flow (105.9 vs. 108 mL/min/100g, P = 0.89), acid-base homeostasis, or creatinine clearance. There was a significant increase in cytokine levels from baseline to 6 h in both groups (IL-1β P = 0.002; IL-6 P = 0.004; IL-8 P = 0.002). However, there were no significant differences in levels of inflammatory cytokines (IL1β, IL-6, and IL-8) between the groups. The administration of hydrogen gas did not improve renal function, reduce oxidative damage, or inflammation during the reperfusion of ischemically damaged kidneys.
Collapse
Affiliation(s)
- Sarah A Hosgood
- Department of Surgery, University of Cambridge, Addenbrookes's Hospital, Cambridge, UK
| | - Tom Moore
- Department of Surgery, University of Cambridge, Addenbrookes's Hospital, Cambridge, UK
| | - Maria Qurashi
- Department of Surgery, University of Cambridge, Addenbrookes's Hospital, Cambridge, UK
| | - Tom Adams
- Department of Surgery, University of Cambridge, Addenbrookes's Hospital, Cambridge, UK
| | - Michael L Nicholson
- Department of Surgery, University of Cambridge, Addenbrookes's Hospital, Cambridge, UK
| |
Collapse
|
24
|
Xing Z, Pan W, Zhang J, Xu X, Zhang X, He X, Fan M. Hydrogen Rich Water Attenuates Renal Injury and Fibrosis by Regulation Transforming Growth Factor-β Induced Sirt1. Biol Pharm Bull 2018; 40:610-615. [PMID: 28458345 DOI: 10.1248/bpb.b16-00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current research was designed to study the role of hydrogen in renal fibrosis and the renal epithelial to mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Hydrogen rich water (HW) was used to treat animal and cell models. Unilateral ureteral obstruction (UUO) was performed on Balb/c mice to create a model of renal fibrosis. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TGF-β1 for 36 h to induce EMT. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured to test renal function, in addition, kidney histology and immunohistochemical staining of alpha-smooth muscle actin (α-SMA) positive cells was performed to examine the morphological changes. The treatment with UUO induced a robust fibrosis of renal interstitium, shrink of glomerulus and partial fracture of basement membrane. Renal function was also impaired in the experimental group with UUO, with an increase of Scr and BUN in serum. After that, Western-blot was performed to examine the expression of α-SMA, fibronectin, E-cadherin, Smad2 and Sirtuin-1 (Sirt1). The treatment with HW attenuated the development of fibrosis and deterioration of renal function in UUO model. In HK-2 cells, the pretreatment of HW abolished EMT induced by TGF-β1. The down-regulation the expression of Sirt1 induced by TGF-β1 which was dampened by the treatment with HW. Sirtinol, a Sirt1 inhibitor, reversed the effect of HW on EMT induced by TGF-β1. HW can inhibit the development of fibrosis in kidney and prevents HK-2 cells from undergoing EMT which is mediated through Sirt1, a downstream molecule of TGF-β1.
Collapse
Affiliation(s)
- Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Wanma Pan
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xianlin Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University
| |
Collapse
|
25
|
Ge L, Yang M, Yang NN, Yin XX, Song WG. Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 2017; 8:102653-102673. [PMID: 29254278 PMCID: PMC5731988 DOI: 10.18632/oncotarget.21130] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Since the 2007 discovery that molecular hydrogen (H2) has selective antioxidant properties, multiple studies have shown that H2 has beneficial effects in diverse animal models and human disease. This review discusses H2 biological effects and potential mechanisms of action in various diseases, including metabolic syndrome, organ injury, and cancer; describes effective H2 delivery approaches; and summarizes recent progress toward H2 applications in human medicine. We also discuss remaining questions in H2 therapy, and conclude with an appeal for a greater role for H2 in the prevention and treatment of human ailments that are currently major global health burdens. This review makes a case for supporting hydrogen medicine in human disease prevention and therapy.
Collapse
Affiliation(s)
- Li Ge
- Department of Histology and Embryology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Ming Yang
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Na-Na Yang
- Key Laboratory of Atherosclerosis in Universities of Shandong, Taishan Medical University, Institute of Atherosclerosis, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Xin-Xin Yin
- Department of Clinical Medicine, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| | - Wen-Gang Song
- Department of medical immunology, School of Basic Medical Sciences, Taishan Medical University, Tai-an City 271000, Shandong Province, PR China
| |
Collapse
|
26
|
Takahashi M, Chen-Yoshikawa TF, Saito M, Tanaka S, Miyamoto E, Ohata K, Kondo T, Motoyama H, Hijiya K, Aoyama A, Date H. Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury. Eur J Cardiothorac Surg 2017; 51:442-448. [PMID: 28364439 DOI: 10.1093/ejcts/ezw342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022] Open
Abstract
Objectives Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Methods Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Results Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Conclusions Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI.
Collapse
Affiliation(s)
- Mamoru Takahashi
- Central Animal Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | - Masao Saito
- Department of Aerospace Psychology, Nagoya University, Japan
| | - Satona Tanaka
- Research Institute of Disaster management and EMS, Kokushikan University, Tokyo, Japan
| | - Ei Miyamoto
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiji Ohata
- Department of Gastroenterology, NTT Medical Center Tokyo,Higashi-gotanda, Shinagawa-ku, Japan
| | - Takeshi Kondo
- Department of Internal Medicine, Division of Gastroenterology, Hyogo College of Medicine, Hyogo, Japan
| | - Hideki Motoyama
- Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kyoko Hijiya
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Aoyama
- Department of Public Health and Health Systems, Nagoya University School of Medicine, Nagoya, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Cai S, Ichimaru N, Zhao M, Fujino M, Ito H, Ota U, Nakajima M, Tanaka T, Nonomura N, Li XK, Takahara S. Prolonged Mouse Cardiac Graft Cold Storage via Attenuating Ischemia-Reperfusion Injury Using a New Antioxidant-Based Preservation Solution. Transplantation 2017; 100:1032-40. [PMID: 26845308 DOI: 10.1097/tp.0000000000001079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND One of the major events in ischemia-reperfusion (I/R)-induced heart injury in cardiac transplantation is the generation of reactive oxygen species. We hypothesized that a novel preservation solution called SBI-SEIIKU II (SS-II) contains 3 antioxidant reagents: L-cysteine, glycine, ascorbic acid/ascorbic acid-2-phosphate magnesium, which can block the generation of reactive oxygen species to result in a prolongation of the cold storage time via attenuating I/R injury. METHODS C57BL/6CrSlc(B6) mice underwent syngeneic mice heterotopic heart transplantation, and the animals were derived into 3 groups: recipients with nonpreserved grafts (control group), recipients with grafts preserved in histidine-tryptophan-ketoglutarate (HTK) for 24 and 48 hours (HTK group), and recipients with grafts preserved in SS-II for 24 and 48 hours (SS-II group). RESULTS After 48 hours of preservation, there were no grafts that survived in the HTK group; however, the SS-II group had a high survival rate. After 24 hours of preservation, SS-II decreased the oxidative damage, myocardial apoptosis, and the infiltration of macrophages and neutrophils in the cardiac grafts in the early phase and suppressed the development of myocardial fibrosis in long-term grafts compared with HTK. CONCLUSIONS The SS-II prolongs the acceptable cold storage time and protects the myocardium from I/R injury via inhibiting oxidative stress-associated damage. We believe that this novel preservation solution may be simple and safe for use in the clinical transplantation field.
Collapse
Affiliation(s)
- Songjie Cai
- 1 Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. 2 Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Osaka, Japan. 3 AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan. 4 SBI Pharmaceuticals Co., Ltd., Tokyo, Japan. 5 Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Inhalation of high concentrations of hydrogen ameliorates liver ischemia/reperfusion injury through A 2A receptor mediated PI3K-Akt pathway. Biochem Pharmacol 2017; 130:83-92. [DOI: 10.1016/j.bcp.2017.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022]
|
29
|
Shen NY, Bi JB, Zhang JY, Zhang SM, Gu JX, Qu K, Liu C. Hydrogen-rich water protects against inflammatory bowel disease in mice by inhibiting endoplasmic reticulum stress and promoting heme oxygenase-1 expression. World J Gastroenterol 2017; 23:1375-1386. [PMID: 28293084 PMCID: PMC5330822 DOI: 10.3748/wjg.v23.i8.1375] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic effect of hydrogen-rich water (HRW) on inflammatory bowel disease (IBD) and to explore the potential mechanisms involved.
METHODS Male mice were randomly divided into the following four groups: control group, in which the mice received equivalent volumes of normal saline (NS) intraperitoneally (ip); dextran sulfate sodium (DSS) group, in which the mice received NS ip (5 mL/kg body weight, twice per day at 8 am and 5 pm) for 7 consecutive days after IBD modeling; DSS + HRW group, in which the mice received HRW (in the same volume as the NS treatment) for 7 consecutive days after IBD modeling; and DSS + HRW + ZnPP group, in which the mice received HRW (in the same volume as the NS treatment) and ZnPP [a heme oxygenase-1 (HO-1) inhibitor, 25 mg/kg] for 7 consecutive days after IBD modeling. IBD was induced by feeding DSS to the mice, and blood and colon tissues were collected on the 7th d after IBD modeling to determine clinical symptoms, colonic inflammation and the potential mechanisms involved.
RESULTS The DSS + HRW group exhibited significantly attenuated weight loss and a lower extent of disease activity index compared with the DSS group on the 7th d (P < 0.05). HRW exerted protective effects against colon shortening and colonic wall thickening in contrast to the DSS group (P < 0.05). The histological study demonstrated milder inflammation in the DSS + HRW group, which was similar to normal inflammatory levels, and the macroscopic and microcosmic damage scores were lower in this group than in the DSS group (P < 0.05). The oxidative stress parameters, including MDA and MPO in the colon, were significantly decreased in the DSS + HRW group compared with the DSS group (P < 0.05). Simultaneously, the protective indicators, superoxide dismutase and glutathione, were markedly increased with the use of HRW. Inflammatory factors were assessed, and the results showed that the DSS + HRW group exhibited significantly reduced levels of TNF-α, IL-6 and IL-1β compared with the DSS group (P < 0.05). In addition, the pivotal proteins involved in endoplasmic reticulum (ER) stress, including p-eIF2α, ATF4, XBP1s and CHOP, were dramatically reduced after HRW treatment in contrast to the control group (P < 0.05). Furthermore, HRW treatment markedly up-regulated HO-1 expression, and the use of ZnPP obviously reversed the protective role of HRW. In the DSS + HRW + ZnPP group, colon shortening and colonic wall thickening were significantly aggravated, and the macroscopic damage scores were similar to those of the DSS + HRW group (P < 0.05). The histological study also showed more serious colonic damage that was similar to the DSS group.
CONCLUSION HRW has a significant therapeutic potential in IBD by inhibiting inflammatory factors, oxidative stress and ER stress and by up-regulating HO-1 expression.
Collapse
|
30
|
Yuan L, Shen J. Hydrogen, a potential safeguard for graft-versus-host disease and graft ischemia-reperfusion injury? Clinics (Sao Paulo) 2016; 71:544-9. [PMID: 27652837 PMCID: PMC5004581 DOI: 10.6061/clinics/2016(09)10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 12/26/2022] Open
Abstract
Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ transplantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels. In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease, mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the foundation for hydrogen use as a drug in the clinic.
Collapse
Affiliation(s)
- Lijuan Yuan
- Anhui Medical University, Postgraduate School, Hefei, China
| | - Jianliang Shen
- Navy General Hospital, Department of Hematology, Beijing, China
| |
Collapse
|
31
|
Current Antioxidant Treatments in Organ Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8678510. [PMID: 27403232 PMCID: PMC4926011 DOI: 10.1155/2016/8678510] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress is one of the key mechanisms affecting the outcome throughout the course of organ transplantation. It is widely believed that the redox balance is dysregulated during ischemia and reperfusion (I/R) and causes subsequent oxidative injury, resulting from the formation of reactive oxygen species (ROS). Moreover, in order to alleviate organ shortage, increasing number of grafts is retrieved from fatty, older, and even non-heart-beating donors that are particularly vulnerable to the accumulation of ROS. To improve the viability of grafts and reduce the risk of posttransplant dysfunction, a large number of studies have been done focusing on the antioxidant treatments for the purpose of maintaining the redox balance and thereby protecting the grafts. This review provides an overview of these emerging antioxidant treatments, targeting donor, graft preservation, and recipient as well.
Collapse
|
32
|
Shimada S, Wakayama K, Fukai M, Shimamura T, Ishikawa T, Fukumori D, Shibata M, Yamashita K, Kimura T, Todo S, Ohsawa I, Taketomi A. Hydrogen Gas Ameliorates Hepatic Reperfusion Injury After Prolonged Cold Preservation in Isolated Perfused Rat Liver. Artif Organs 2016; 40:1128-1136. [PMID: 27140066 DOI: 10.1111/aor.12710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 12/12/2022]
Abstract
Hydrogen gas reduces ischemia and reperfusion injury (IRI) in the liver and other organs. However, the precise mechanism remains elusive. We investigated whether hydrogen gas ameliorated hepatic I/R injury after cold preservation. Rat liver was subjected to 48-h cold storage in University of Wisconsin solution. The graft was reperfused with oxygenated buffer with or without hydrogen at 37° for 90 min on an isolated perfusion apparatus, comprising the H2 (+) and H2 (-) groups, respectively. In the control group (CT), grafts were reperfused immediately without preservation. Graft function, injury, and circulatory status were assessed throughout the perfusion. Tissue samples at the end of perfusion were collected to determine histopathology, oxidative stress, and apoptosis. In the H2 (-) group, IRI was indicated by a higher aspartate aminotransferase (AST), alanine aminotransferase (ALT) leakage, portal resistance, 8-hydroxy-2-deoxyguanosine-positive cell rate, apoptotic index, and endothelial endothelin-1 expression, together with reduced bile production, oxygen consumption, and GSH/GSSG ratio (vs. CT). In the H2 (+) group, these harmful changes were significantly suppressed [vs. H2 (-)]. Hydrogen gas reduced hepatic reperfusion injury after prolonged cold preservation via the maintenance of portal flow, by protecting mitochondrial function during the early phase of reperfusion, and via the suppression of oxidative stress and inflammatory cascades thereafter.
Collapse
Affiliation(s)
| | | | - Moto Fukai
- Transplant Surgery, Hokkaido University Graduate School of Medicine
| | - Tsuyoshi Shimamura
- Central Clinical Facilities, Division of Organ Transplantation, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | | | - Daisuke Fukumori
- Department of Surgical Gastroenterology and Transplantation, University of Copenhagen, Copenhagen, Denmark
| | - Maki Shibata
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo
| | | | - Taichi Kimura
- Laboratory of Cancer Research, Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido
| | - Satoru Todo
- St. Maria Hospital Laboratory, Kurume, Fukuoka, Japan
| | - Ikuroh Ohsawa
- Department of Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo
| | | |
Collapse
|
33
|
Faure A, Bruzzese L, Steinberg JG, Jammes Y, Torrents J, Berdah SV, Garnier E, Legris T, Loundou A, Chalopin M, Magalon G, Guieu R, Fenouillet E, Lechevallier E. Effectiveness of pure argon for renal transplant preservation in a preclinical pig model of heterotopic autotransplantation. J Transl Med 2016; 14:40. [PMID: 26847569 PMCID: PMC4743167 DOI: 10.1186/s12967-016-0795-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In kidney transplantation, the conditions of organ preservation following removal influence function recovery. Current static preservation procedures are generally based on immersion in a cold-storage solution used under atmospheric air (approximately 78 kPa N2, 21 kPa O2, 1 kPa Ar). Research on static cold-preservation solutions has stalled, and modifying the gas composition of the storage medium for improving preservation was considered. Organoprotective strategies successfully used noble gases and we addressed here the effects of argon and xenon on graft preservation in an established preclinical pig model of autotransplantation. METHODS The preservation solution Celsior saturated with pure argon (Argon-Celsior) or xenon (Xenon-Celsior) at atmospheric pressure was tested versus Celsior saturated with atmospheric air (Air-Celsior). The left kidney was removed, and Air-Celsior (n = 8 pigs), Argon-Celsior (n = 8) or Xenon-Celsior (n = 6) was used at 4 °C to flush and store the transplant for 30 h, a duration that induced ischemic injury in our model when Air-Celsior was used. Heterotopic autotransplantation and contralateral nephrectomy were performed. Animals were followed for 21 days. RESULTS The use of Argon-Celsior vs. Air-Celsior: (1) improved function recovery as monitored via creatinine clearance, the fraction of excreted sodium and tubulopathy duration; (2) enabled diuresis recovery 2-3 days earlier; (3) improved survival (7/8 vs. 3/8 pigs survived at postoperative day-21); (4) decreased tubular necrosis, interstitial fibrosis, apoptosis and inflammation, and preserved tissue structures as observed after the natural death/euthanasia; (5) stimulated plasma antioxidant defences during the days following transplantation as shown by monitoring the "reduced ascorbic acid/thiobarbituric acid reactive substances" ratio and Hsp27 expression; (6) limited the inflammatory response as shown by expression of TNF-alpha, IL1-beta and IL6 as observed after the natural death/euthanasia. Conversely, Xenon-Celsior was detrimental, no animal surviving by day-8 in a context where functional recovery, renal tissue properties and the antioxidant and inflammation responses were significantly altered. Thus, the positive effects of argon were not attributable to the noble gases as a group. CONCLUSIONS The saturation of Celsior with argon improved early functional recovery, graft quality and survival. Manipulating the gas composition of a preservation medium constitutes therefore a promising approach to improve preservation.
Collapse
Affiliation(s)
- Alice Faure
- Department of Urology and Kidney Transplantation, Aix-Marseille University, APHM, Marseille, France.
| | - Laurie Bruzzese
- UMR MD2 & IRBA, Aix-Marseille University, Marseille, France.
| | | | - Yves Jammes
- UMR MD2 & IRBA, Aix-Marseille University, Marseille, France.
| | - Julia Torrents
- Department of Pathology, Aix-Marseille University, APHM, Marseille, France.
| | - Stephane V Berdah
- C.E.R.C, Aix-Marseille University, Faculty of Medicine, Marseille, France.
| | - Emmanuelle Garnier
- C.E.R.C, Aix-Marseille University, Faculty of Medicine, Marseille, France.
| | - Tristan Legris
- Department of Nephrology and Kidney Transplantation, Aix-Marseille University, APHM, Marseille, France.
| | - Anderson Loundou
- Public Health Laboratory, Aix-Marseille University, Marseille, France.
| | - Matthieu Chalopin
- Air Liquide Medical Gases Group, Air Liquide sante International-Claude Delorme Research Center, Jouy-en-Josas, France.
| | - Guy Magalon
- Department of Plastic Surgery, Aix-Marseille University, APHM, Marseille, France.
| | - Regis Guieu
- UMR MD2 & IRBA, Aix-Marseille University, Marseille, France.
| | - Emmanuel Fenouillet
- UMR MD2 & IRBA, Aix-Marseille University, Marseille, France. .,Institut des Sciences Biologiques, CNRS, Paris, France.
| | - Eric Lechevallier
- Department of Urology and Kidney Transplantation, Aix-Marseille University, APHM, Marseille, France.
| |
Collapse
|
34
|
Ichihara M, Sobue S, Ito M, Ito M, Hirayama M, Ohno K. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res 2015; 5:12. [PMID: 26483953 PMCID: PMC4610055 DOI: 10.1186/s13618-015-0035-1] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/09/2015] [Indexed: 02/08/2023] Open
Abstract
Therapeutic effects of molecular hydrogen for a wide range of disease models and human diseases have been investigated since 2007. A total of 321 original articles have been published from 2007 to June 2015. Most studies have been conducted in Japan, China, and the USA. About three-quarters of the articles show the effects in mice and rats. The number of clinical trials is increasing every year. In most diseases, the effect of hydrogen has been reported with hydrogen water or hydrogen gas, which was followed by confirmation of the effect with hydrogen-rich saline. Hydrogen water is mostly given ad libitum. Hydrogen gas of less than 4 % is given by inhalation. The effects have been reported in essentially all organs covering 31 disease categories that can be subdivided into 166 disease models, human diseases, treatment-associated pathologies, and pathophysiological conditions of plants with a predominance of oxidative stress-mediated diseases and inflammatory diseases. Specific extinctions of hydroxyl radical and peroxynitrite were initially presented, but the radical-scavenging effect of hydrogen cannot be held solely accountable for its drastic effects. We and others have shown that the effects can be mediated by modulating activities and expressions of various molecules such as Lyn, ERK, p38, JNK, ASK1, Akt, GTP-Rac1, iNOS, Nox1, NF-κB p65, IκBα, STAT3, NFATc1, c-Fos, and ghrelin. Master regulator(s) that drive these modifications, however, remain to be elucidated and are currently being extensively investigated.
Collapse
Affiliation(s)
- Masatoshi Ichihara
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Sayaka Sobue
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, 487-8501 Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| | - Masafumi Ito
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo, 173-0015 Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya, 461-8673 Japan
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku Nagoya, 466-8550 Japan
| |
Collapse
|
35
|
Luminal injection of hydrogen-rich solution attenuates intestinal ischemia-reperfusion injury in rats. Transplantation 2015; 99:500-7. [PMID: 25539463 DOI: 10.1097/tp.0000000000000510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Luminal preservation of the intestine is an attractive method to locally mitigate preservation injury and ischemic-reperfusion injury in small bowel transplantation (SBT) because this method has a potential to maintain the intestinal graft integrity. Hydrogen is noted as an antioxidant material by reducing hydroxyl radicals. We hypothesized that hydrogen-containing solution can be an optimum material for luminal preservation method in SBT. METHODS Ischemic reperfusion was induced in Lewis rats by occlusion of the supramesenteric artery and vein for 90 min. Experimental protocols were divided into four groups: sham operation group, no luminal injection (control) group, luminal injection of 5% glucose saline (GS) solution group, and luminal injection of hydrogen-rich GS (HRGS) group. Two milliliters of experimental solution was locally injected into the lumen of the intestine before declamping of vessels. Oxidative stress markers, proinflammatory cytokines, apoptosis in the crypt cells, and morphologic changes of the intestine were assessed. RESULTS The production of malondialdehyde and 8-hydroxydeoxyguanosine, as oxidative stress markers, were markedly suppressed in HRGS group. The level of proinflammatory cytokines, such as inducible nitric oxide synthase and interleukin-6, was significantly inhibited in HRGS group. Crypt apoptosis was also significantly suppressed in HRGS group. Histopathologically, integrity of villus in intestine was maintained in HRGS group in comparison to the other groups. CONCLUSION Luminal injection of hydrogen-rich solution can reduce oxidative stress and consequently ameliorate ischemic-reperfusion injury. Hydrogen-containing solution can be a novel and promising luminal preservation material in SBT.
Collapse
|
36
|
Hou J, Fujino M, Cai S, Ding Q, Li XK. Noninvasive monitoring of mouse renal allograft rejection using micro-CT. Ann Surg Treat Res 2015; 88:276-80. [PMID: 25960991 PMCID: PMC4422881 DOI: 10.4174/astr.2015.88.5.276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022] Open
Abstract
Purpose Acute renal graft rejection can only be definitively diagnosed by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Micro-CT is widely used in preclinical studies of small animals. Here, we propose micro-CT could noninvasively monitor and evaluate renal location and function in a mouse kidney transplant model. Methods Orthotopic kidney transplantation was performed in a BALB/c -to- C57BL/6j or C57BL/6j-to- C57BL/6j mouse model. After optimizing imaging techniques, five mice were imaged with micro-CT and the findings were verified histologically. Results Micro-CT can monitor and evaluate renal location and function after orthotopic kidney transplantation. There were no mice deaths while renal transplants were failure. Conclusion We propose that graft micro-CT imaging is a new option that is noninvasive and specific, and can aid in early detection and follow-up of acute renal rejection. This method is potentially useful to improve posttransplant rejection monitoring.
Collapse
Affiliation(s)
- Jiangang Hou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China. ; Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan. ; AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Songjie Cai
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Qiang Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
37
|
Abstract
As the impact of ischemia reperfusion injury on graft outcome is now well defined, efforts are made towards decreasing these lesions, typically through the improvement of preservation techniques. The use of pharmacological supplements which could be compatible with any preservation solution used by the transplant center and target specific pathways of IR is an interesting strategy to improve graft quality. However, the extensive number of studies showing the benefits a molecule in an animal model of IR without thorough mechanistic determination of the effects of this agent make it difficult to opt for specific pharmaceutical intervention. Herein we expose studies which demonstrate the benefits of several molecules relying on a thorough mechanical analysis of the events occurring during preservation, both at the cellular and the systemic levels. We believe this approach is the most appropriate to truly understand the potential benefits of a molecule and particularly to design a comprehensive pharmaceutical regiment, with several agents acting synergistically against IR, to improve organ preservation and graft outcome.
Collapse
Affiliation(s)
- T Saint Yves
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France; Service d'Urologie, CHU La Miletrie, 86000 Poitiers, France
| | - P-O Delpech
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France; Service d'Urologie, CHU La Miletrie, 86000 Poitiers, France
| | - S Giraud
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France
| | - R Thuillier
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France.
| | - T Hauet
- Inserm U1082, université de Poitiers, CHU La Miletrie, 86000 Poitiers, France
| |
Collapse
|
38
|
Beneficial effects of hydrogen gas on porcine liver reperfusion injury with use of total vascular exclusion and active venous bypass. Transplant Proc 2015; 46:1104-6. [PMID: 24815139 DOI: 10.1016/j.transproceed.2013.11.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/27/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver ischemia/reperfusion (I/R) injury is a high risk factor in liver transplantation and it influences graft survival. One of the major events during I/R injury is the generation of cytotoxic oxygen radicals. Recently, hydrogen gas has been reported to have antioxidant properties and protective effects against organ dysfunction induced by I/R injury. The aim of this study is to investigate effects of hydrogen on porcine liver reperfusion injury. MATERIALS AND METHODS Six outbred pigs weighing 20 kg were used for the experiment. Under general anesthesia, the venous bypass between the left femoral vein and the splenic vein to the left jugular vein was made using a centrifugal pump. Then, we used a total vascular exclusion clamp (all in- and out-flow to the liver was clamped) for 60 minutes. Hydrogen (5 ppm) saturated with lactate Ringer's solution was prepared. This solution was infused through the portal vein just before reperfusion (hydrogen group). RESULTS Aspartate aminotransferase levels in the control versus hydrogen group in 30, 60, and 120 minutes after reperfusion were 1560.3, 1925.3, and 2342.5 versus 175.3, 200.7, and 661.00 IU/L, respectively. Lactate dehydrogenase (LDH) levels in the control versus hydrogen groups in 30, 60, and 120 minutes after reperfusion were 23,235.0, 3496.7, and 4793.5 versus 663.3, 802.0, and 983.7 IU/L, respectively. The hydrogen gas level in liver tissue increased to 954.6 ppm immediately after reperfusion; however, it disappeared within 30 minutes. CONCLUSION The solution containing hydrogen gas was safe and had remarkably protective effects on the porcine during liver I/R and may be applied in the clinical setting.
Collapse
|
39
|
Hydrogen supplementation of preservation solution improves viability of osteochondral grafts. ScientificWorldJournal 2014; 2014:109876. [PMID: 25506061 PMCID: PMC4253708 DOI: 10.1155/2014/109876] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/12/2023] Open
Abstract
Allogenic osteochondral tissue (OCT) is used for the treatment of large cartilage defects. Typically, OCTs collected during the disease-screening period are preserved at 4°C; however, the gradual reduction in cell viability during cold preservation adversely affects transplantation outcomes. Therefore, improved storage methods that maintain the cell viability of OCTs are needed to increase the availability of high-quality OCTs and improve treatment outcomes. Here, we evaluated whether long-term hydrogen delivery to preservation solution improved the viability of rat OCTs during cold preservation. Hydrogen-supplemented Dulbecco's Modified Eagles Medium (DMEM) and University of Wisconsin (UW) solution both significantly improved the cell viability of OCTs during preservation at 4°C for 21 days compared to nonsupplemented media. However, the long-term cold preservation of OCTs in DMEM containing hydrogen was associated with the most optimal maintenance of chondrocytes with respect to viability and morphology. Our findings demonstrate that OCTs preserved in DMEM supplemented with hydrogen are a promising material for the repair of large cartilage defects in the clinical setting.
Collapse
|
40
|
Xin HG, Zhang BB, Wu ZQ, Hang XF, Xu WS, Ni W, Zhang RQ, Miao XH. Consumption of hydrogen-rich water alleviates renal injury in spontaneous hypertensive rats. Mol Cell Biochem 2014; 392:117-24. [PMID: 24652103 DOI: 10.1007/s11010-014-2024-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/05/2014] [Indexed: 01/19/2023]
Abstract
In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of renal disease. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. Herein, we investigated the protective effect of hydrogen-rich water (HW) against renal injury in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats were randomized into HW-treated (1.3 ± 0.2 mg/l for 3 months, drinking) and vehicle-treated group. Although treatment with HW had no significant effect on blood pressure, it significantly ameliorated renal injury in SHR. Treatment with HW lowered reactive oxygen species formation, upregulated the activities of superoxide dismutase, glutathione peroxidase, glutathione-S-epoxide transferase, and catalase, and suppressed NADPH oxidase activity. Treatment with HW in SHR depressed pro-inflammatory cytokines expression including TNF-α, IL-6, IL-1β, and macrophage chemoattractant protein 1, which might be mediated by suppressing nuclear factor-κB activation. In addition, treatment with HW had protective effect on mitochondrial function including adenosine triphosphate formation and membrane integrity in SHR. In conclusion, consumption of HW is a promising strategy to alleviate renal injury as a supplement for anti-hypertensive therapy.
Collapse
Affiliation(s)
- Hai-Guang Xin
- Department of Infectious Disease, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Terawaki H, Hayashi Y, Zhu WJ, Matsuyama Y, Terada T, Kabayama S, Watanabe T, Era S, Sato B, Nakayama M. Transperitoneal administration of dissolved hydrogen for peritoneal dialysis patients: a novel approach to suppress oxidative stress in the peritoneal cavity. Med Gas Res 2013; 3:14. [PMID: 23816239 PMCID: PMC3734057 DOI: 10.1186/2045-9912-3-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/12/2013] [Indexed: 12/25/2022] Open
Abstract
Background Oxidative stress (OS) related to glucose degradation products such as methylglyoxal is reportedly associated with peritoneal deterioration in patients treated with peritoneal dialysis (PD). However, the use of general antioxidant agents is limited due to their harmful effects. This study aimed to clarify the influence of the novel antioxidant molecular hydrogen (H2) on peritoneal OS using albumin redox state as a marker. Methods Effluent and blood samples of 6 regular PD patients were obtained during the peritoneal equilibrium test using standard dialysate and hydrogen-enriched dialysate. The redox state of albumin in effluent and blood was determined using high-performance liquid chromatography. Results Mean proportion of reduced albumin (ƒ(HMA)) in effluent was significantly higher in H2-enriched dialysate (62.31 ± 11.10%) than in standard dialysate (54.70 ± 13.08%). Likewise, serum ƒ(HMA) after administration of hydrogen-enriched dialysate (65.75 ± 7.52%) was significantly higher than that after standard dialysate (62.44 ± 7.66%). Conclusions Trans-peritoneal administration of H2 reduces peritoneal and systemic OS.
Collapse
|
42
|
He J, Xiong S, Zhang J, Wang J, Sun A, Mei X, Sun X, Zhang C, Wang Q. Protective effects of hydrogen-rich saline on ulcerative colitis rat model. J Surg Res 2013; 185:174-81. [PMID: 23773716 DOI: 10.1016/j.jss.2013.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/08/2013] [Accepted: 05/10/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ulcerative colitis (UC) is associated with enhanced production of reactive oxygen species and altered angiogenesis. Molecular hydrogen has been documented as a novel antioxidant to treat various reactive oxygen species-related diseases. The present study aimed to investigate the effects of hydrogen on UC using a rat model. MATERIALS AND METHODS UC in rats was induced with intracolonically administrated acetic acid. Hydrogen was supplied through intraperitoneal injection of 10 or 20 mL/kg hydrogen-rich saline. The hydrogen treatment was performed once every 2 d and lasted 2 wk. The stool consistency and weight loss were used to evaluate UC development. Colonic mucosal damage at the end of the experiment was scored using the macroscopic and microscopic observations. Vascular endothelial growth factor expression in the colonic mucosa was determined using immunohistochemistry. RESULTS The administration of acetic acid induced acute rat UC, as indicated by diarrhea, weight loss, and colonic mucosal damage. Treatment with hydrogen-rich saline reduced the weight loss and diarrhea and alleviated the colonic mucosal damage in the UC rats. In addition, the expression of vascular endothelial growth factor in the UC rats increased and could be inhibited by hydrogen treatment. CONCLUSIONS Antioxidative hydrogen-rich saline effectively protected the rats from UC, which might be, at least in part, because of inhibition of vascular endothelial growth factor.
Collapse
Affiliation(s)
- Jinghu He
- Department of Anatomy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|