1
|
Liu M, Chen J, Sun M, Zhang L, Yu Y, Mi W, Ma Y, Wang G. Protection of Ndrg2 deficiency on renal ischemia-reperfusion injury via activating PINK1/Parkin-mediated mitophagy. Chin Med J (Engl) 2024; 137:2603-2614. [PMID: 38407220 DOI: 10.1097/cm9.0000000000002957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Renal ischemia-reperfusion (R-I/R) injury is the most prevalent cause of acute kidney injury, with high mortality and poor prognosis. However, the underlying pathological mechanisms are not yet fully understood. Therefore, this study aimed to investigate the role of N-myc downstream-regulated gene 2 ( Ndrg2 ) in R-I/R injury. METHODS We examined the expression of Ndrg2 in the kidney under normal physiological conditions and after R-I/R injury by immunofluorescence staining, real-time polymerase chain reaction, and western blotting. We then detected R-I/R injury in Ndrg2-deficient ( Ndrg2-/- ) mice and wild type ( Ndrg2+/+ ) littermates in vivo , and detected oxygen and glucose deprivation and reperfusion (OGD-R) injury in HK-2 cells. We further conducted transcriptomic sequencing to investigate the role of Ndrg2 in R-I/R injury and detected levels of oxidative stress and mitochondrial damage by dihydroethidium staining, biochemical assays, and western blot. Finally, we measured the levels of mitophagy in Ndrg2+/+ and Ndrg2-/- mice after R-I/R injury or HK-2 cells in OGD-R injury. RESULTS Ndrg2 was primarily expressed in renal proximal tubules and its expression was significantly decreased 24 h after R-I/R injury. Ndrg2-/- mice exhibited significantly attenuated R-I/R injury compared to Ndrg2+/+ mice. Transcriptomics profiling showed that Ndrg2 deficiency induced perturbations of multiple signaling pathways, downregulated inflammatory responses and oxidative stress, and increased autophagy following R-I/R injury. Further studies revealed that Ndrg2 deficiency reduced oxidative stress and mitochondrial damage. Notably, Ndrg2 deficiency significantly activated phosphatase and tensin homologue on chromosome ten-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy. The downregulation of NDRG2 expression significantly increased cell viability after OGD-R injury, increased the expression of heme oxygenase-1, decreased the expression of nicotinamide adenine dinucleotide phosphate oxidase 4, and increased the expression of the PINK1/Parkin pathway. CONCLUSION Ndrg2 deficiency might become a therapy target for R-I/R injury by decreasing oxidative stress, maintaining mitochondrial homeostasis, and activating PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jianwen Chen
- Department of Nephrology, The First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Miao Sun
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Lixia Zhang
- Department of Burn and Plastic Surgery, The Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yao Yu
- Department of Anesthesiology, Peking University Third Hospital, Beijing 100191, China
| | - Weidong Mi
- Department of Anesthesiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
2
|
Huang D, Shen H, Xie F, Hu D, Jin Q, Hu Y, Zhong T. Role of mesenchymal stem cell-derived exosomes in the regeneration of different tissues. J Biol Eng 2024; 18:36. [PMID: 38845032 PMCID: PMC11155050 DOI: 10.1186/s13036-024-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/10/2024] [Indexed: 06/10/2024] Open
Abstract
Exosomes are nanovesicles with multiple components used in several applications. Mesenchymal stem cells (MSCs) are well known for their great potential in clinical applications. MSC-derived exosomes (MSC-Exos) have been shown to mediate tissue regeneration in various diseases, including neurological, autoimmune, and inflammatory diseases, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells in the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. This review summarizes the MSC-Exos-mediated tissue regeneration in various diseases, including neurological, cardiovascular, liver, kidney, articular cartilage, and oral tissue applications. In addition, we discuss the challenges and prospects of MSC-Exos in tissue regeneration.
Collapse
Affiliation(s)
- Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Haibin Shen
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Qing Jin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yuexin Hu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
3
|
Koksal E, Ustun YB, Bilgin S, Aksoy A, Das YK, Yarim M, Ozkan F, Kaya C, Dost B. The effects of dexketoprofen on renal ischemia-reperfusion injury: an experimental study. Braz J Anesthesiol 2021; 72:365-371. [PMID: 34411625 PMCID: PMC9373263 DOI: 10.1016/j.bjane.2021.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 12/01/2022] Open
Abstract
Objective Ischemia/reperfusion (I/R) may cause irreversible damage to tissues and organs. We evaluated the effects of dexketoprofen on a renal I/R model in rats. Methods The study included 30 male rats. Control group received 1 mL of saline. Dexketoprofen group received 1 mL (25 mg) of dexketoprofen intraperitoneally. After 60 minutes renal ischemia, 23 hours reperfusion was applied. In Sham group, laparotomy was performed with a medial line incision without any additional procedure. Changes in the plasma malondialdehyde (MDA), renal tissue MDA, plasma glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), BUN, creatinine and albumin levels, and histopathological changes were evaluated. Results CAT values were significantly lower in Control as compared with the Sham group. Plasma levels of MDA in the Control group were significantly higher than in the Dexketoprofen group. BUN and creatinine values were significantly higher in the Dexketoprofen group. The severity of tissue injury in the Dexketoprofen group was significantly higher than in Control and Sham groups Conclusion Although dexketoprofen reduces the I/R-induced systemic inflammation, it increases renal tissue damage.
Collapse
Affiliation(s)
- Ersin Koksal
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey.
| | - Yasemin Burcu Ustun
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey
| | - Sezgin Bilgin
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey
| | - Abdurrahman Aksoy
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Samsun, Turkey
| | - Yavuz Kursad Das
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Samsun, Turkey
| | - Murat Yarim
- Ondokuz Mayis University, Faculty of Veterinary Medicine, Department of Pathology, Samsun, Turkey
| | - Fatih Ozkan
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey
| | - Cengiz Kaya
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey
| | - Burhan Dost
- Ondokuz Mayis University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Samsun, Turkey
| |
Collapse
|
4
|
Andrianova NV, Zorov DB, Plotnikov EY. Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury. BIOCHEMISTRY (MOSCOW) 2021; 85:1591-1602. [PMID: 33705297 DOI: 10.1134/s0006297920120111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation and oxidative stress are the main pathological processes that accompany ischemic injury of kidneys and other organs. Based on this, these factors are often chosen as a target for treatment of acute kidney injury (AKI) in a variety of experimental and clinical studies. Note, that since these two components are closely interrelated during AKI development, substances that treat one of the processes often affect the other. The review considers several groups of promising nephroprotectors that have both anti-inflammatory and antioxidant effects. For example, many antioxidants, such as vitamins, polyphenolic compounds, and mitochondria-targeted antioxidants, not only reduce production of the reactive oxygen species in the cell but also modulate activity of the immune cells. On the other hand, immunosuppressors and non-steroidal anti-inflammatory drugs that primarily affect inflammation also reduce oxidative stress under some conditions. Another group of therapeutics is represented by hormones, such as estrogens and melatonin, which significantly reduce severity of the kidney damage through modulation of both these processes. We conclude that drugs with combined anti-inflammatory and antioxidant capacities are the most promising agents for the treatment of acute ischemic kidney injury.
Collapse
Affiliation(s)
- N V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
5
|
Wang ZS, Zhou HH, Han Q, Guo YL, Li ZY. Effects of grape seed proanthocyanidin B2 pretreatment on oxidative stress and renal tubular epithelial cell apoptosis after renal ischemia reperfusion in mice. Acta Cir Bras 2020; 35:e202000802. [PMID: 32901679 PMCID: PMC7478463 DOI: 10.1590/s0102-865020200080000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To investigate the effects of grape seed proanthocyanidin B2 (GSPB2) preconditioning on oxidative stress and apoptosis of renal tubular epithelial cells in mice after renal ischemia-reperfusion (RIR). METHODS Forty male ICR mice were randomly divided into 4 groups: Group A: mice were treated with right nephrectomy. Group B: right kidney was resected and the left renal vessel was clamped for 45 minutes. Group C: mice were intraperitoneally injected with GSPB2 before RIR established. Group D: mice were intraperitoneally injected with GSPB2 plus brusatol before RIR established. Creatinine and urea nitrogen of mice were determined. Pathological and morphological changes of kidney were checked. Expressions of Nrf-2, HO-1, cleaved-caspase3 were detected by Western-blot. RESULTS Compared to Group B, morphology and pathological damages of renal tissue were less serious in Group C. Western-blot showed that expressions of Nrf-2 and HO-1 in Group C were obviously higher than those in Group B. The expression of cleaved-caspase3 in Group C was significantly lower than that in Group B. CONCLUSION GSPB2 preconditioning could attenuate renal oxidative stress injury and renal tubular epithelial cell apoptosis by up-regulating expressions of Nrf-2 and HO-1 and down-regulating the expression of cleaved-caspase-3, but the protective effect could be reversed by brusatol.
Collapse
Affiliation(s)
- Zhi-shun Wang
- Huazhong University of Science and Technology, China
| | - Hai-hong Zhou
- Huazhong University of Science and Technology, China
| | - Qi Han
- The Fifth Hospital of Wuhan, China
| | - Yong-lian Guo
- Huazhong University of Science and Technology, China
| | - Zhong-yuan Li
- Huazhong University of Science and Technology, China
| |
Collapse
|
6
|
Prevention of acute kidney injury by low intensity pulsed ultrasound via anti-inflammation and anti-apoptosis. Sci Rep 2020; 10:14317. [PMID: 32868865 PMCID: PMC7459306 DOI: 10.1038/s41598-020-71330-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
The therapeutic effects of low intensity pulsed ultrasound (LIPUS) on renal ischemia/reperfusion injury (IRI) with acute kidney injury (AKI) are still unclear. A renal tubule cell model under H2O2 or hypoxia/reoxygenation (H/R) conditions with or without LIPUS pre-treatment (1 MHz, 30 and 100 mW/cm2, 15 min) was used to test the in vitro effects of LIPUS. An AKI mouse model of unilateral IRI with nephrectomy of the contralateral kidney for 48 h with or without LIPUS treatment (3 MHz, 100 mW/cm2, 20 min/day) 5 day before IRI were used to investigate the in vivo effects of LIPUS. LIPUS significantly protected the renal tubule cell viability and prevented inflammatory signals against H2O2 challenge. LIPUS could inhibit the apoptosis-related molecular signals and increase the protein levels of endogenous antioxidant enzymes, α-Klotho, and Sirt1 in renal tubule cells after H/R challenge. LIPUS alleviated the increases in the serum levels of blood urea nitrogen, creatinine, and cystatin C, renal pathological changes and apoptosis-related molecular signals, and impaired antioxidant enzymes in AKI mice. The IRI-induced inflammatory responses in the kidneys and spleens could be reversed by LIPUS. These findings suggest that LIPUS treatment displays the benefits for renal protection in IRI-induced AKI mice.
Collapse
|
7
|
Dufour L, Ferhat M, Robin A, Inal S, Favreau F, Goujon JM, Hauet T, Gombert JM, Herbelin A, Thierry A. [Ischemia-reperfusion injury after kidney transplantation]. Nephrol Ther 2020; 16:388-399. [PMID: 32571740 DOI: 10.1016/j.nephro.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ischemia-reperfusion injury is an inescapable phenomenon in kidney transplantation. It combines lesional processes of biochemical origin associated with oxydative stress and of immunological origin in connection with the recruitment and activation of innate immunity cells. Histological lesions associate acute tubular necrosis and interstitial œdema, which can progress to interstitial fibrosis. The extent of these lesions depends on donor characteristics (age, expanded criteria donor, etc.) and cold ischemia time. In the short term, ischemia-reperfusion results in delayed recovery of graft function. Cold ischemia time also impacts long-term graft survival. Preclinical models, such as murine and porcine models, have furthered understanding of the pathophysiological mechanisms of ischemia-reperfusion injury. Due to its renal anatomical proximity to humans, the porcine model is relevant to assessment of the molecules administered to a donor or recipient, and also of additives to preservation solutions. Different donor resuscitation and graft perfusion strategies can be studied. In humans, prevention of ischemia-reperfusion injury is a research subject as concerns donor conditioning, additive molecules in preservation solutions, graft reperfusion modalities and choice of the molecules administered to the recipient. Pending significant advances in research, the goal is to achieve the shortest possible cold ischemia time.
Collapse
Affiliation(s)
- Léa Dufour
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Maroua Ferhat
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Aurélie Robin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Sofiane Inal
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Frédéric Favreau
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Jean-Michel Goujon
- Service d'anatomopathologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Thierry Hauet
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Plateforme Infrastructures en biologie, santé et agronomie (Ibisa) Modélisation préclinique - innovation chirurgicale et technologique (Mopict), 86000 Poitiers cedex, France
| | - Jean-Marc Gombert
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service d'immunologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - André Herbelin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Antoine Thierry
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France.
| |
Collapse
|
8
|
Protective Effects of miR-126 Specifically Regulates Nrf2 Through Ischemic Postconditioning on Renal Ischemia/Reperfusion Injury in Mice. Transplant Proc 2019; 52:392-397. [PMID: 31862188 DOI: 10.1016/j.transproceed.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023]
Abstract
The protective effects of ischemic postconditioning on renal ischemia/reperfusion injury in mice and the role of miR-126 and Nrf2 signaling pathway in the process were the focus of this study. Mice were classified into 5 groups: sham-operation, I/R6h, I/R24h, postconditioning (POC), and miR-126 agomir. Serum creatinine, renal histopathology changes, and oxidative stress were examined. The expression of miR-126 and Nrf2 were detected. We also treated NRK52E cells with hypoxia reoxygenation. The I/R group showed significant renal injury and increased generation of oxidative stress. However, the severity of renal injury and oxidative stress were markedly attenuated in the POC group. MiR-126 was downregulated, and Nrf2 was upregulated in NRK52E cells subjected to hypoxia/reoxygenation (H/R) and in mouse kidneys subjected to POC. Oxidative stress was higher and Nrf2 was lower in the mouse miR-126 agomir group; apoptosis were higher in H/R-treated NRK52E cells transfected with Nrf2 siRNA and lower in anti-miR-126. These findings demonstrate that after renal ischemic postconditioning, miR-126 inhibits oxidative stress by inducing Nrf2 and suppresses injury.
Collapse
|
9
|
Li L, Wang R, Jia Y, Rong R, Xu M, Zhu T. Exosomes Derived From Mesenchymal Stem Cells Ameliorate Renal Ischemic-Reperfusion Injury Through Inhibiting Inflammation and Cell Apoptosis. Front Med (Lausanne) 2019; 6:269. [PMID: 31867333 PMCID: PMC6907421 DOI: 10.3389/fmed.2019.00269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
This study aimed to investigate the underlying mechanism of mesenchymal stem cells (MSCs) on protection of renal ischemia reperfusion injury (IRI). Exosomes originated from MSCs (MSC-ex) were extracted according to the instructions of Total Exosome Isolation Reagent. Rats were divided into five groups: sham-operated, IRI, MSC, MSC-ex, and MSC-ex + RNAase group. MSCs or MSC-ex were injected via carotid artery. The renal function test and pathological detection were applied to determine the renoprotection of MSC-ex on IRI. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were conducted to examine the levels of apoptosis-related proteins and inflammatory cytokines. Our results revealed that MSC-derived exosomes attenuated renal dysfunction, histologic damage, and decreased apoptosis. The expression levels of inflammatory cytokines, such as interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), and interferon gamma (IFN-γ), were decreased by the MSC-ex treatment. The expression levels of caspase-9, cleaved caspase-3, Bax, and Bcl-2 caused by IR were also inhibited by MSC-ex. MSC-ex + RNAase group shared the similar pattern of changes with IRI group, likely due to the ability of RNA hydrolase to eliminate the function of exosomes. Our results demonstrated that exosomes originating from MSCs have protective effects on IRI via inhibiting cell apoptosis and inflammatory responses. Out findings may provide a new insight into therapeutic mechanism of MSCs on renal IRI.
Collapse
Affiliation(s)
- Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Rulin Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yichen Jia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
10
|
Significant Reduction of Murine Renal Ischemia-Reperfusion Cell Death Using the Immediate-Acting PrC-210 Reactive Oxygen Species Scavenger. Transplant Direct 2019; 5:e469. [PMID: 31334343 PMCID: PMC6616140 DOI: 10.1097/txd.0000000000000909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background. Ischemia-reperfusion (IR) injury remains a significant problem for all solid organ transplants; thus, an important unmet need in transplantation is the prevention of IR injury. PrC-210 has demonstrated superior prevention of reactive oxygen species damage in several preclinical studies as a free radical scavenger. Here, we describe its profound efficacy in suppressing IR injury in a murine model of kidney IR injury. Methods. C57/B6 mice underwent laparotomy with the left renal pedicle occluded for 30 minutes to induce IR injury. Right nephrectomy was performed at the time of surgery. Mice received a single systemic dose of the PrC-210, PrC-211, or PrC-252 aminothiols 20 minutes before IR injury. Twenty-four hours following IR injury, blood and kidney tissue were collected for analysis. Kidney caspase-3 level (a marker of cell death), direct histological analysis of kidneys, and serum blood urea nitrogen (BUN) were measured in animals to assess reactive oxygen species scavenger protective efficacies. Results. A single systemic PrC-210 dose 20 minutes before IR injury resulted in significant reductions in (1) IR-induced kidney caspase level (P < 0.0001); caspase was reduced to levels not significantly different than control caspase levels seen in unperturbed kidneys, (2) IR-induced renal tubular injury scores (P < 0.0001); brush border loss and tubular dilation were markedly reduced, and (3) serum BUN compared with control IR injury kidneys (P < 0.0001). The ranked protective efficacies of PrC-210 > PrC-211 >> PrC-252 paralleled previous radioprotection studies of the molecules. Conclusions. A single PrC-210 dose, minutes before the IR insult, profoundly reduced caspase, renal tubular injury, and serum BUN in mice exposed to standard kidney IR injury. These findings support further development of the PrC-210 molecule to suppress or prevent IR injury in organ transplant and other IR injury settings.
Collapse
|
11
|
Arantes VM, Bueno RT, Módolo RP, Domingues MAC, de Carvalho LR, do Nascimento Junior P, Módolo NSP. Effects of Ischemic Preconditioning and Postconditioning in a Renal Ischemia-Reperfusion Injury Model: A Comparative Experimental Study in Rats. Transplant Proc 2018; 50:3811-3815. [PMID: 30501900 DOI: 10.1016/j.transproceed.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/27/2018] [Accepted: 07/09/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury is an unavoidable aspect of transplantation, as well as an important cause of acute kidney injury in clinical practice. Pre- and post-ischemic conditioning are strategies that may provide organs with resistance to major ischemic events. This study evaluates the effects of ischemic preconditioning and ischemic postconditioning, either separately or in combination, after an acute ischemia-reperfusion kidney injury. METHODS Forty Wistar rats received isoflurane anesthesia and were randomized into 5 groups: 1. the sham group underwent laparotomy; 2. the control group underwent laparotomy and 30 minutes of renal ischemia followed by reperfusion; 3. the preconditioning group underwent laparotomy, ischemic preconditioning, and 30 minutes of renal ischemia followed by reperfusion; 4. the preconditioning and postconditioning group underwent laparotomy, ischemic preconditioning, 30 minutes of renal ischemia, and ischemic postconditioning followed by reperfusion; and 5. the postconditioning group underwent laparotomy, 30 minutes of renal ischemia, and ischemic postconditioning followed by reperfusion. Serum analyses of creatinine and neutrophil gelatinase-associated lipocalin (NGAL) were performed, and renal histology was examined 24 hours later. RESULTS Severe tubular injury and increases in creatinine were observed in all groups except the sham group. The control group and all ischemic conditioning groups were no different in the degree of renal injury and values of NGAL and creatinine after the injury. CONCLUSIONS Ischemic preconditioning and ischemic postconditioning, together or separately, are unable to preserve kidney function or exert a protective effect against tubular cell injury after an acute ischemia-reperfusion kidney injury.
Collapse
Affiliation(s)
- V M Arantes
- Department of Anesthesiology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - R T Bueno
- Department of Anesthesiology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - R P Módolo
- ABC Medical School, Santo André, São Paulo, Brazil
| | - M A C Domingues
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - L R de Carvalho
- Biosciences Institute, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - P do Nascimento Junior
- Department of Anesthesiology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil.
| | - N S P Módolo
- Department of Anesthesiology, Botucatu Medical School, Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| |
Collapse
|
12
|
Wang H, Liu N, Li R, Tian J, Hu W, Zhang J. Nephropreventing effect of hypoxia-inducible factor 1α in a rat model of ischaemic/reperfusion acute kidney injury. Clin Exp Pharmacol Physiol 2018; 45:1076-1082. [PMID: 29667230 DOI: 10.1111/1440-1681.12947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 11/28/2022]
Abstract
Acute kidney injury (AKI) occurs in 5% of hospitalized patients and in 50% of sepsis patients with acute renal dysfunction. However, there have been no safe and effective therapeutic strategies. The hypoxia condition is closely related to renal injury and function under AKI. As hypoxia-inducible factor 1α (HIF-1α) is critical for the cellular response to hypoxia, we investigated the protective effect of HIF-1α in a rat AKI model. We found that HIF-1α injection improved the survival of rat with AKI, and the level of creatinine and blood urea nitrogen (BUN) was also increased. Our data showed that HIF-1α treatment significantly alleviated ischaemic/reperfusion injury to kidney tubules and nephrocytes. We also found the downstream factors, such as EPOR, VEGF, and PHD3, were also upregulated by HIF-1α. Finally, it was observed that HIF-1α treatment also increased the percentage of adult resident progenitor cells (ARPC) in vitro and in vivo. In conclusion, HIF-1α plays a protective role in the ischaemic AKI model through stimulating the proliferation of ARPC, and our study provided a potential therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Nanmei Liu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Rui Li
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jun Tian
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Weifeng Hu
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| | - Jinyuan Zhang
- Department of Nephrology, 455th Hospital, The Institute of Nephrology in Nanjing Military Command, Shanghai, China
| |
Collapse
|
13
|
Carlos CP, Silva AA, Gil CD, Oliani SM. Pharmacological treatment with galectin-1 protects against renal ischaemia-reperfusion injury. Sci Rep 2018; 8:9568. [PMID: 29934646 PMCID: PMC6015078 DOI: 10.1038/s41598-018-27907-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/07/2018] [Indexed: 11/21/2022] Open
Abstract
Galectin-1 protein (GAL-1) has important anti-inflammatory properties, but related pharmacologic approaches to effectively treat or prevent renal ischaemia and reperfusion injury are highly limited. Here, we investigated the effect of GAL-1 in a renal ischaemia-reperfusion injury rat model and an in vitro hypoxia-reoxygenation model with a proximal renal tubular epithelial cell line. In vivo, pretreatment with GAL-1 attenuated the renal parameters changed by ischaemia-reperfusion/hypoxia-reoxygenation, with recovery of renal function, protecting against influx of leukocytes, cell death and oxidative stress. Ischaemia-reperfusion/hypoxia-reoxygenation was also associated with increased renal endogenous expression of GAL-1 and intercellular adhesion molecule 1 (ICAM-1) plus augmented levels of proinflammatory cytokines IL-1β, TNF-α and MCP-1 and decreased anti-inflammatory IL-10 in urine, all of which were abrogated by GAL-1 treatment. In vitro studies demonstrated renal tubular epithelial cells as an important source of GAL-1 during hypoxia-reoxygenation and confirmed the protective effects of exogenous GAL-1 through downregulation of proinflammatory cytokine release by proximal renal tubular epithelial cells. Collectively, our findings confirm the important anti-inflammatory role of GAL-1 in kidney ischaemia and reperfusion injury and indicate its promising use as a therapeutic approach.
Collapse
Affiliation(s)
- Carla P Carlos
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil.,Department of Medicine, FACERES School of Medicine, São José do Rio Preto, SP, Brazil
| | - Analice A Silva
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil
| | - Sonia M Oliani
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas, Sao Paulo State University, UNESP, São José do Rio Preto, SP, Brazil. .,Department of Morphology and Genetics, Federal University of Sao Paulo, UNIFESP, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Hadj Abdallah N, Baulies A, Bouhlel A, Bejaoui M, Zaouali MA, Ben Mimouna S, Messaoudi I, Fernandez-Checa JC, García Ruiz C, Ben Abdennebi H. The effect of zinc acexamate on oxidative stress, inflammation and mitochondria induced apoptosis in rat model of renal warm ischemia. Biomed Pharmacother 2018; 105:573-581. [PMID: 29890465 DOI: 10.1016/j.biopha.2018.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022] Open
Abstract
AIM Zinc has proved its efficacy in many models of ischemia reperfusion (I/R) injury. In this study, we used zinc acexamate (ZAC) as an exogenous source of zinc against renal I/R injury and we investigated whether its protective effects are mediated by the decrease of oxidative stress, inflammation, and mitochondria induced-apoptosis. METHODS Rats were orally pretreated with vehicle or ZAC (10 or 100 mg/kg) 24 h and 30 min prior to 1 h of bilateral renal warm ischemia and 2 h of reperfusion. RESULTS Our data showed that 10 mg/kg of ZAC, but not 100 mg/kg, improved renal architecture and function. Also, the low dose of ZAC up-regulated antioxidant enzymes activities and glutathione level and decreased lipids and proteins oxidation. Interestingly, the use of ZAC resulted in a significant reduce of pro-inflammatory cytokines (IL-1ß, IL-6 and MCP-1), enhanced mitochondria integrity and decreased expression of the pro-apoptotic protein caspase-9. CONCLUSION We conclude that renal I/R induced oxidative stress, inflammation and apoptosis and that the use of ZAC at 10 mg/kg, but not 100 mg/kg, protects rat kidneys from I/R injury by down-regulating these processes.
Collapse
Affiliation(s)
- Najet Hadj Abdallah
- Department of physiology, Unité de Biologie et anthropologie moléculaires appliquées au développement et à la santé, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Anna Baulies
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas. Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, 08036, Barcelona, Spain.
| | - Ahlem Bouhlel
- Department of physiology, Unité de Biologie et anthropologie moléculaires appliquées au développement et à la santé, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Mohamed Bejaoui
- Department of physiology, Unité de Biologie et anthropologie moléculaires appliquées au développement et à la santé, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Mohamed Amine Zaouali
- Department of physiology, Unité de Biologie et anthropologie moléculaires appliquées au développement et à la santé, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Safa Ben Mimouna
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41). Institute of Biotechnology, University of Monastir, Monastir, Tunisia.
| | - Imed Messaoudi
- Laboratoire de Génétique, Biodiversité et Valorisation des Bioressources (LR11ES41). Institute of Biotechnology, University of Monastir, Monastir, Tunisia.
| | - José Carlos Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas. Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, 08036, Barcelona, Spain.
| | - Carmen García Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas. Liver Unit Hospital Clínici Provincial, IDIBAPS and CIBERehd, 08036, Barcelona, Spain.
| | - Hassen Ben Abdennebi
- Department of physiology, Unité de Biologie et anthropologie moléculaires appliquées au développement et à la santé, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| |
Collapse
|
15
|
Grenda R. Delayed graft function and its management in children. Pediatr Nephrol 2017; 32:1157-1167. [PMID: 27778091 DOI: 10.1007/s00467-016-3528-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 01/06/2023]
Abstract
Delayed graft function (DGF) is commonly defined as the requirement for dialysis within the first 7 days following renal transplantation. The major underlying mechanism is related to ischaemia/reperfusion injury, which includes microvascular inflammation and cell death and apoptosis, and to the regeneration processes. Several clinical factors related to donor, recipient and organ procurement/transplantation procedures may increase the risk of DGF, including donor cardiovascular instability, older donor age, donor creatinine concentration, long cold ischaemia time and marked body mass index of both the donor and recipient. Some of these parameters have been used in specific predictive formulas created to assess the risk of DGF. A variety of other pre-, intra- and post-transplant clinical factors may also increase the risk of DGF, such as potential drug nephrotoxicity, surgical problems and/or hyperimmunization of the recipient. DGF may decrease the long-term graft function, but data on this effect are inconsistent, partially due to the many different types of organ donation. Relevant management strategies may be classified into the classic clinical approach, which has the aim of minimizing the individual risk factors of DGF, and specific pharmacologic strategies, which are designed to prevent or treat ischaemia/reperfusion injury. Both strategies are currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Ryszard Grenda
- Department of Nephrology & Kidney Transplantation, The Children's Memorial Health Institute, Warsaw, Poland.
| |
Collapse
|
16
|
Laparoscopic Partial Nephrectomy With Potassium-titanyl-phosphate Laser Versus Conventional Laparoscopic Partial Nephrectomy: An Animal Randomized Controlled Trial. Urology 2017; 99:123-130. [DOI: 10.1016/j.urology.2016.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/21/2016] [Accepted: 03/06/2016] [Indexed: 11/20/2022]
|
17
|
Alternative Interventions to Prevent Oxidative Damage following Ischemia/Reperfusion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7190943. [PMID: 28116037 PMCID: PMC5225393 DOI: 10.1155/2016/7190943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/23/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Abstract
Ischemia/reperfusion (I/R) lesions are a phenomenon that occurs in multiple pathological states and results in a series of events that end in irreparable damage that severely affects the recovery and health of patients. The principal therapeutic approaches include preconditioning, postconditioning, and remote ischemic preconditioning, which when used separately do not have a great impact on patient mortality or prognosis. Oxidative stress is known to contribute to the damage caused by I/R; however, there are no pharmacological approaches to limit or prevent this. Here, we explain the relationship between I/R and the oxidative stress process and describe some pharmacological options that may target oxidative stress-states.
Collapse
|
18
|
Remote ischemic postconditioning protects against renal ischemia/reperfusion injury by activation of T-LAK-cell-originated protein kinase (TOPK)/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation. Int Immunopharmacol 2016; 38:395-401. [PMID: 27355132 DOI: 10.1016/j.intimp.2016.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND Recent clinical and animal studies suggested that remote limb ischemic postconditioning (RIPostC) can invoke potent cardioprotection or neuroprotection. However, the effect and mechanism of RIPostC against renal ischemia/reperfusion injury (IRI) are poorly understood. T-LAK-cell-originated protein kinase (TOPK) is crucial for the proliferation and migration of tumor cells. However, the function of TOPK and the molecular mechanism underlying renal protection remain unknown. Therefore, this study aimed to evaluate the role of TOPK in renoprotection induced by RIPostC. MATERIALS AND METHODS The renal IRI model was induced by left renal pedicle clamping for 45min followed by 24h reperfusion and right nephrectomy. All mice were intraperitoneally injected with vehicle, TOPK inhibitor HI-TOPK-032 or Akt inhibitor LY294002. After 24h reperfusion, renal histology, function, and inflammatory cytokines and oxidative stress were assessed. The proteins were measured by Western blotting. RESULTS The results showed that RIPostC significantly protected the kidneys against IRI. The protective effects were accompanied by the attenuation of renal dysfunction, tubular damage, inflammation and oxidative stress. In addition, RIPostC increased the phosphorylation of TOPK, PTEN, Akt, GSK3β and the nuclear translocation of Nrf2 and decreased the nuclear translocation of NF-κB. However, all of the above renoprotective effects of RIPostC were eliminated either by the inhibition of TOPK or Akt with HI-TOPK-032 or LY294002. CONCLUSIONS The current data reveal that RIPostC protects against renal IRI via activation of TOPK/PTEN/Akt signaling pathway mediated anti-oxidation and anti-inflammation.
Collapse
|
19
|
Jonker SJ, Menting TP, Warlé MC, Ritskes-Hoitinga M, Wever KE. Preclinical Evidence for the Efficacy of Ischemic Postconditioning against Renal Ischemia-Reperfusion Injury, a Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0150863. [PMID: 26963819 PMCID: PMC4786316 DOI: 10.1371/journal.pone.0150863] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/20/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Renal ischemia-reperfusion injury (IRI) is a major cause of kidney damage after e.g. renal surgery and transplantation. Ischemic postconditioning (IPoC) is a promising treatment strategy for renal IRI, but early clinical trials have not yet replicated the promising results found in animal studies. METHOD We present a systematic review, quality assessment and meta-analysis of the preclinical evidence for renal IPoC, and identify factors which modify its efficacy. RESULTS We identified 39 publications studying >250 control animals undergoing renal IRI only and >290 animals undergoing renal IRI and IPoC. Healthy, male rats undergoing warm ischemia were used in the vast majority of studies. Four studies applied remote IPoC, all others used local IPoC. Meta-analysis showed that both local and remote IPoC ameliorated renal damage after IRI for the outcome measures serum creatinine, blood urea nitrogen and renal histology. Subgroup analysis indicated that IPoC efficacy increased with the duration of index ischemia. Measures to reduce bias were insufficiently reported. CONCLUSION High efficacy of IPoC is observed in animal models, but factors pertaining to the internal and external validity of these studies may hamper the translation of IPoC to the clinical setting. The external validity of future animal studies should be increased by including females, comorbid animals, and transplantation models, in order to better inform clinical trial design. The severity of renal damage should be taken into account in the design and analysis of future clinical trials.
Collapse
Affiliation(s)
- Simone J. Jonker
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
| | - Theo P. Menting
- Department of surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Michiel C. Warlé
- Department of surgery, Radboud university medical center, Nijmegen, The Netherlands
| | - Merel Ritskes-Hoitinga
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
| | - Kimberley E. Wever
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Gradually Increased Oxygen Administration Improved Oxygenation and Mitigated Oxidative Stress after Resuscitation from Severe Hemorrhagic Shock. Anesthesiology 2016; 123:1122-32. [PMID: 26352377 DOI: 10.1097/aln.0000000000000859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND The optimal oxygen administration strategy during resuscitation from hemorrhagic shock (HS) is still controversial. Improving oxygenation and mitigating oxidative stress simultaneously seem to be contradictory goals. To maximize oxygen delivery while minimizing oxidative damage, the authors proposed the notion of gradually increased oxygen administration (GIOA), which entails making the arterial blood hypoxemic early in resuscitation and subsequently gradually increasing to hyperoxic, and compared its effects with normoxic resuscitation, hyperoxic resuscitation, and hypoxemic resuscitation in severe HS. METHODS Rats were subjected to HS, and on resuscitation, the rats were randomly assigned to four groups (n = 8): the normoxic, the hyperoxic, the hypoxemic, and the GIOA groups. Rats were observed for an additional 1 h. Hemodynamics, acid-base status, oxygenation, and oxidative injury were observed and evaluated. RESULTS Central venous oxygen saturation promptly recovered only in the hyperoxic and the GIOA groups, and the liver tissue partial pressure of oxygen was highest in the GIOA group after resuscitation. Oxidative stress in GIOA group was significantly reduced compared with the hyperoxic group as indicated by the reduced malondialdehyde content, increased catalase activity, and the lower histologic injury scores in the liver. In addition, the tumor necrosis factor-α and interleukin-6 expressions in the liver were markedly decreased in the GIOA group than in the hyperoxic and normoxic groups as shown by the immunohistochemical staining. CONCLUSIONS GIOA improved systemic/tissue oxygenation and mitigated oxidative stress simultaneously after resuscitation from severe HS. GIOA may be a promising strategy to improve resuscitation from HS and deserves further investigation.
Collapse
|
21
|
Improving the outcome of kidney transplantation by ameliorating renal ischemia reperfusion injury: lost in translation? J Transl Med 2016; 14:20. [PMID: 26791565 PMCID: PMC4721068 DOI: 10.1186/s12967-016-0767-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 12/20/2015] [Indexed: 01/03/2023] Open
Abstract
Kidney transplantation is the treatment of choice in patients with end stage renal disease. During kidney transplantation ischemia reperfusion injury (IRI) occurs, which is a risk factor for acute kidney injury, delayed graft function and acute and chronic rejection. Kidneys from living donors show a superior short- and long-term graft survival compared with deceased donors. However, the shortage of donor kidneys has resulted in expansion of the donor pool by using not only living- and brain death donors but also kidneys from donation after circulatory death and from extended criteria donors. These grafts are associated with an increased sensitivity to IRI and decreased graft outcome due to prolonged ischemia and donor comorbidity. Therefore, preventing or ameliorating IRI may improve graft survival. Animal experiments focus on understanding the mechanism behind IRI and try to find methods to minimize IRI either before, during or after ischemia. This review evaluates the different experimental strategies that have been investigated to prevent or ameliorate renal IRI. In addition, we review the current state of translation to the clinical setting. Experimental research has contributed to the development of strategies to prevent or ameliorate IRI, but promising results in animal studies have not yet been successfully translated to clinical use.
Collapse
|
22
|
Tasoulis MK, Douzinas EE. Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 2016; 23:7. [PMID: 26786360 PMCID: PMC4717563 DOI: 10.1186/s12929-016-0220-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
Ischemia and reperfusion (I/R) - induced injury has been described as one of the main factors that contribute to the observed morbidity and mortality in a variety of clinical entities, including myocardial infarction, ischemic stroke, cardiac arrest and trauma. An imbalance between oxygen demand and supply, within the organ beds during ischemia, results in profound tissue hypoxia. The subsequent abrupt oxygen re-entry upon reperfusion, may lead to a burst of oxidative aggression through production of reactive oxygen species by the primed cells. The predominant role of oxidative stress in the pathophysiology of I/R mediated injury, has been well established. A number of strategies that target the attenuation of the oxidative burst have been tested both in the experimental and the clinical setting. Despite these advances, I/R injury continues to be a major problem in everyday medical practice. The aim of this paper is to review the existing literature regarding an alternative approach, termed hypoxemic reperfusion, that has exhibited promising results in the attenuation of I/R injury, both in the experimental and the clinical setting. Further research to clarify its underlying mechanisms and to assess its efficacy in the clinical setting is warranted.
Collapse
Affiliation(s)
- Marios-Konstantinos Tasoulis
- 2nd Department of Surgery, National and Kapodistrian University of Athens, Medical School, Aretaieion University Hospital, 76 Vas. Sofias Ave, 11528, Athens, Greece.
| | - Emmanuel E Douzinas
- 3rd Department of Critical Care Medicine, National and Kapodistrian University of Athens, Medical School, Evgenideio Hospital, 20 Papadiamantopoulou St., 11528, Athens, Greece.
| |
Collapse
|
23
|
Merter AA, Mayir B, Erdogan O, Colak T. Protective effects of amifostine on ischemia-reperfusion injury of rat kidneys. Indian J Pharmacol 2016; 47:185-9. [PMID: 25878379 PMCID: PMC4386128 DOI: 10.4103/0253-7613.153427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/02/2015] [Accepted: 02/22/2015] [Indexed: 01/22/2023] Open
Abstract
Objectives: Amifostine is a drug which can eliminate free oxygen radicals that appear in the body after radiation or chemotherapeutic agent exposure. It is used to decrease the renal toxicity of cisplatin. The aim of this study was to determine the role of amifostine in warm ischemia kidney model for prevention of ischemia/reperfusion injury and also to find out the mechanism for prevention from ischemia/reperfusion injury if such an effect does exist. Materials and Methods: Adult female rats (n = 40) that used in our study were divided into three groups. Group 1: Control (n = 8), group 2: Ischemia-control (n = 16), group 3: Amifostine treated (n = 16). The effect of amifostine on ischemia/reperfusion injury investigated in rat kidneys. Results: At the 7th day, blood urea nitrogen level was statistically significantly higher in ischemia-control group than all groups (P = 0.001) and mean serum creatinine levels were found to be the highest in ischemia-control group (P = 0.091). Mean malondialdehyde levels in left kidneys removed on the 7th day were not significantly different (P = 0.105) at all three groups. Between ischemia-control group and amifostine group, there was a significant difference in reduced glutathione (GSH) levels (P = 0.001). In amifostine group, grade 4 necrosis was not detected neither on 7th day nor day 0. Conclusion: Amifostine could decrease the degree and severity of necrosis after reperfusion. Amifostine could not prevent membrane lipid peroxidation caused by superoxide anion radicals in kidney but they could protect tissues from the harmful effects of ischemia/reperfusion injury by increasing the level of reduced GSH which is a well-known oxygen radical eliminator.
Collapse
Affiliation(s)
- Ayse Arducoglu Merter
- Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey
| | - Burhan Mayir
- Department of General Surgery, Antalya Training and Research Hospital, Antalya, Turkey
| | - Okan Erdogan
- Department of General Surgery, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Taner Colak
- Department of General Surgery, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
24
|
Kierulf-Lassen C, Nieuwenhuijs-Moeke GJ, Krogstrup NV, Oltean M, Jespersen B, Dor FJMF. Molecular Mechanisms of Renal Ischemic Conditioning Strategies. Eur Surg Res 2015; 55:151-83. [PMID: 26330099 DOI: 10.1159/000437352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022]
Abstract
Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized.
Collapse
|
25
|
Ischemic Postconditioning and Subanesthetic S(+)-Ketamine Infusion: Effects on Renal Function and Histology in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:864902. [PMID: 26413552 PMCID: PMC4564631 DOI: 10.1155/2015/864902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/01/2015] [Indexed: 11/17/2022]
Abstract
Background. Ischemic postconditioning (IP) in renal Ischemia reperfusion injury (IRI) models improves renal function after IRI. Ketamine affords significant benefits against IRI-induced acute kidney injury (AKI). The present study investigated the effects of IP and IP associated with subanesthetic S(+)-ketamine in ischemia-reperfusion-induced AKI. Methods. Forty-one Wistar rats were randomized into four groups: CG (10), control; KG (10), S(+)-ketamine infusion; IPG (10), IP; and KIPG (11), S(+)-ketamine infusion + IP. All rats underwent right nephrectomy. IRI and IP were induced only in IPG and KIPG by left kidney arterial occlusion for 30 min followed by reperfusion for 24 h. Complete reperfusion was preceded by three cycles of 2 min of reocclusion followed by 2 min of reperfusion. Renal function was assessed by measuring serum neutrophil gelatinase-associated lipocalin (NGAL), creatinine, and blood urea nitrogen (BUN). Tubular damage was evaluated by renal histology. Results. Creatinine and BUN were significantly increased. Severe tubular injury was only observed in the groups with IRI (IPG and KIPG), whereas no injury was observed in CG or KG. No significant differences were detected between IPG and KIPG. Conclusions. No synergic effect of the use of subanesthetic S(+)-ketamine and IP on AKI was observed in this rat model.
Collapse
|
26
|
Nicholson ML, Pattenden CJ, Barlow AD, Hunter JP, Lee G, Hosgood SA. A Double Blind Randomized Clinical Trial of Remote Ischemic Conditioning in Live Donor Renal Transplantation. Medicine (Baltimore) 2015; 94:e1316. [PMID: 26252316 PMCID: PMC4616604 DOI: 10.1097/md.0000000000001316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ischemic conditioning involves the delivery of short cycles of reversible ischemic injury in order to induce protection against subsequent more prolonged ischemia. This randomized controlled trial was designed to determine the safety and efficacy of remote ischemic conditioning (RC) in live donor kidney transplantation.This prospective randomized clinical trial, 80 patients undergoing live donor kidney transplantation were randomly assigned in a 1:1 ratio to either RC or to a control group. RC consisted of cycles of lower limb ischemia induced by an arterial tourniquet cuff placed around the patient's thigh. In the RC treatment group, the cuff was inflated to 200 mm Hg or systolic pressure +25 mm Hg for 4 cycles of 5 min ischemia followed by 5 min reperfusion. In the control group, the blood pressure cuff was inflated to 25 mm Hg. Patients and medical staff were blinded to treatment allocation. The primary end-point was renal function measured by estimated glomerular filtration rate (eGFR) at 1 and 3 months posttransplant.Donor and recipient demographics were similar in both groups (P < 0.05). There were no significant differences in eGFR at 1 month (control 52 ± 14 vs RC 54 ± 17 mL/min; P = 0.686) or 3 months (control 50 ± 14 vs RC 49 ± 18 mL/min; P = 0.678) between the control and RC treatment groups. The RC technique did not cause any serious adverse effects.RC, using the protocol described here, did not improve renal function after live donor kidney transplantation.
Collapse
Affiliation(s)
- Michael L Nicholson
- From the Transplant Group, Department of Infection, Inflammation and Immunity, University of Leicester, Leicester, UK (MLN, CJP, ADB, JPH, GL, SAH) and Department of Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK (MLN, ADB, SAH)
| | | | | | | | | | | |
Collapse
|
27
|
Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition. Transplantation 2015; 99:717-23. [PMID: 25793558 DOI: 10.1097/tp.0000000000000530] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury leads to mitochondrial permeability transition pore opening, which contributes to cell death. The aim of this study is to determine whether ischemic or pharmacological postconditioning with cyclosporine A (CsA) might protect the kidney from lethal reperfusion injury. METHODS Male mice underwent a unilateral (right) nephrectomy followed by 30 minutes of contralateral (left) clamping of the renal artery. We studied 4 groups at 20 minutes and 24 hours of reperfusion: a sham group (n = 4), an ischemic group (n = 6), CsA-postconditioned group (postcond-CsA, injection of 3 mg/kg of CsA 5 minutes before the end of ischemia, (n = 6), and an ischemic postconditioning (IPC) group (n = 6), consisting of 3 cycles of 30 seconds of renal ischemia with 30 seconds intervening reperfusion. After 24 hours of reperfusion, we measured plasma creatinine, urea, and histological kidney injury. The kidney mitochondria were isolated to assess the mitochondria calcium retention capacity and oxidative phosphorylation. RESULTS At 24 hours after reperfusion, serum creatinine decreased in postcond-CsA and IPC compared to ischemic group. The histological score was also significantly improved with postcond-CsA and IPC. At 20 minutes and 24 hours of reperfusion, calcium retention capacity was decreased significantly in the ischemic group. The mitochondrial respiration stay decreased in the ischemic group at 24 hours of reperfusion, whereas the respiration was improved significantly in the postcond-CsA and IPC group. Bax and cleaved caspase 3 decreased in PostCsA and IPC group. CONCLUSIONS Our results suggest that IPC and CsA, administered immediately before reperfusion, protect the kidney from lethal injury.
Collapse
|
28
|
The effect of remote ischemic postconditioning on graft function in patients undergoing living donor kidney transplantation. Transplantation 2014; 98:529-36. [PMID: 24770616 DOI: 10.1097/tp.0000000000000098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We evaluated whether remote ischemic postconditioning (RiPoC) could improve initial graft function in living donor kidney transplantation (KT). METHODS Patients undergoing living donor KT were randomly assigned to either RiPoC (n=30) or control group (n=30). Immediately after reperfusion in the RiPoC group, three cycles of ischemia and reperfusion, lasting 5 min each, were performed on one upper limb. Renal function was assessed before surgery, 2 hr after surgery, and at 12-hr intervals for 96 hr postsurgery by measuring serum creatinine (sCr) and the estimated glomerular filtration rate (eGFR). Urine output and urine creatinine were assessed until postoperative day 7, and hospital stay and complication rates were compared. RESULTS The time for sCr to reach 50% of its preoperative level was significantly shorter in the RiPoC group than in the control group [12 (12-24) hr for RiPoC vs. 24 (21-36) hr for the control, P=0.005]. The number of patients whose sCr was reduced by 50% within 24 hr was significantly greater in the RiPoC group than in the control group [n=26 (87%) in RiPoC vs. n=18 (60%) in control, P=0.020]. However, there were no differences in sCr and eGFR thereafter, the incidence of graft dysfunction or complication rates between groups. CONCLUSION In this study, RiPoC appeared to hasten the recovery of graft function within 24 hr but did not affect the graft function thereafter. However, considering most recipients had immediate graft function, further studies with deceased donors or studies powered to detect a smaller difference are needed.
Collapse
|
29
|
Moradi H, Wang PH. Renoprotective mechanisms of ischemic postconditioning in ischemia-reperfusion injury: improved mitochondrial function and integrity. Nephrol Dial Transplant 2014; 28:2667-9. [PMID: 24169608 DOI: 10.1093/ndt/gft313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Hamid Moradi
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, USA
| | | |
Collapse
|
30
|
Kwekkeboom J, van der Laan LJW, Betjes MGH, Manintveld OC, Hoek RAS, Cransberg K, de Bruin RWF, Dor FJMF, de Jonge J, Boor PPC, van Gent R, van Besouw NM, Boer K, Litjens NHR, Hesselink DA, Hoogduijn MJ, Massey E, Rowshani AT, van de Wetering J, de Jong H, Hendriks RW, Metselaar HJ, van Gelder T, Weimar W, IJzermans JNM, Baan CC. Rotterdam: main port for organ transplantation research in the Netherlands. Transpl Immunol 2014; 31:200-6. [PMID: 25240732 DOI: 10.1016/j.trim.2014.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
This overview describes the full spectrum of current pre-clinical and clinical kidney-, liver-, heart- and lung transplantation research performed in Erasmus MC - University Medical Centre in Rotterdam, The Netherlands. An update is provided on the development of a large living donor kidney transplantation program and on optimization of kidney allocation, including the implementation of a domino kidney-donation program. Our current research efforts to optimize immunosuppressive regimens and find novel targets for immunosuppressive therapy, our recent studies on prevention of ischemia-reperfusion-induced graft injury, our newest findings on stimulation of tissue regeneration, our novel approaches to prevent rejection and viral infection, and our latest insights in the regulation of allograft rejection, are summarized.
Collapse
Affiliation(s)
- Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands.
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Michiel G H Betjes
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rogier A S Hoek
- Department of Pulmonary Diseases, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Karlien Cransberg
- Department of Pediatric Nephrology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Ron W F de Bruin
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Frank J M F Dor
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rogier van Gent
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Nicole M van Besouw
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Karin Boer
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Nicolle H R Litjens
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Dennis A Hesselink
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Martin J Hoogduijn
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Emma Massey
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Ajda T Rowshani
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | | | - Huib de Jong
- Department of Pediatric Nephrology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Diseases, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Herold J Metselaar
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Teun van Gelder
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands; Department of Clinical Pharmacology, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Willem Weimar
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| | - Carla C Baan
- Department of Internal Medicine, Erasmus MC-University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Zhang J, Li JH, Wang L, Han M, Xiao F, Lan XQ, Li YQ, Xu G, Yao Y. Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS. ACTA ACUST UNITED AC 2014; 34:516-520. [PMID: 25135720 DOI: 10.1007/s11596-014-1308-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Indexed: 12/20/2022]
Abstract
The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.
Collapse
Affiliation(s)
- Jiong Zhang
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Nephrology, Subsidiary of the Sichuan Academy of Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jun-Hua Li
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Wang
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Han
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang Xiao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Qin Lan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue-Qiang Li
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Xu
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ying Yao
- Department of Nephrology, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
32
|
Iyer A, Gao L, Doyle A, Rao P, Jayewardene D, Wan B, Kumarasinghe G, Jabbour A, Hicks M, Jansz PC, Feneley MP, Harvey RP, Graham RM, Dhital KK, Macdonald PS. Increasing the tolerance of DCD hearts to warm ischemia by pharmacological postconditioning. Am J Transplant 2014; 14:1744-52. [PMID: 25040306 DOI: 10.1111/ajt.12782] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/10/2014] [Accepted: 03/30/2014] [Indexed: 01/25/2023]
Abstract
Donation after circulatory death (DCD) offers a potential additional source of cardiac allografts. We used a porcine asphyxia model to evaluate viability of DCD hearts subjected to warm ischemic times (WIT) of 20–40 min prior to flushing with Celsior (C) solution. We then assessed potential benefits of supplementing C with erythropoietin, glyceryl trinitrate and zoniporide (Cs), a combination that we have shown previously to activate ischemic postconditioning pathways. Hearts flushed with C/Cs were assessed for functional, biochemical and metabolic recovery on an ex vivo working heart apparatus. Hearts exposed to 20-min WIT showed full recovery of functional and metabolic profiles compared with control hearts (no WIT). Hearts subjected to 30- or 40-min WIT prior to C solution showed partial and no recovery, respectively. Hearts exposed to 30-min WIT and Cs solution displayed complete recovery, while hearts exposed to 40-min WIT and Cs solution demonstrated partial recovery. We conclude that DCD hearts flushed with C solution demonstrate complete recovery up to 20-min WIT after which there is rapid loss of viability. Cs extends the limit of WIT tolerability to 30 min. DCD hearts with ≤30-min WIT may be suitable for transplantation and warrant assessment in a transplant model.
Collapse
|
33
|
Slegtenhorst BR, Dor FJ, Rodriguez H, Voskuil FJ, Tullius SG. Ischemia/reperfusion Injury and its Consequences on Immunity and Inflammation. CURRENT TRANSPLANTATION REPORTS 2014; 1:147-154. [PMID: 25419507 DOI: 10.1007/s40472-014-0017-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ischemia/reperfusion injury (IRI), an inherent component of transplantation, affects organ quality and transplant outcomes. Although the complexity of the pathophysiology is recognized, detailed mechanisms remain unclear, and strategies preventing the consequences of IRI have been challenging. Of critical significance appears the link between IRI, the initiation of innate immune responses, and the (potential) augmentation of adaptive immunity. An improved understanding of those complex mechanisms and interactions may pave the way for more effective treatment strategies.
Collapse
Affiliation(s)
- Bendix R Slegtenhorst
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School ; Division of Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center
| | - Frank Jmf Dor
- Division of Transplant Surgery, Department of Surgery, Erasmus MC-University Medical Center
| | - Hector Rodriguez
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School ; Department of Cardiovascular Surgery, University Hospital of Zurich
| | - Floris J Voskuil
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School ; Division of Nephrology, Renal Transplant Unit, Department of Medicine, University Medical Center Groningen
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
34
|
van den Akker EK, Hesselink DA, Manintveld OC, Lafranca JA, de Bruin RWF, Weimar W, IJzermans JNM, Dor FJMF. Ischemic postconditioning in human DCD kidney transplantation is feasible and appears safe. Transpl Int 2014; 27:226-234. [DOI: 10.1111/tri.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Eline K. van den Akker
- Department of Surgery; division of Transplant Surgery; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Dennis A. Hesselink
- Department of Internal Medicine; division of Nephrology and Renal Transplantation; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Olivier C. Manintveld
- Department of Cardiology; Heart Transplant Unit; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Jeffrey A. Lafranca
- Department of Surgery; division of Transplant Surgery; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Ron W. F. de Bruin
- Department of Surgery; division of Transplant Surgery; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Willem Weimar
- Department of Internal Medicine; division of Nephrology and Renal Transplantation; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery; division of Transplant Surgery; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| | - Frank J. M. F. Dor
- Department of Surgery; division of Transplant Surgery; Erasmus MC; University Medical Center Rotterdam; Rotterdam The Netherlands
| |
Collapse
|
35
|
Protection tissulaire: une nouvelle piste. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0817-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
|
37
|
Renal Postconditioning...Pause for Thought? Correspondence Regarding “Protection Against Renal Ischemia-Reperfusion Injury by Ischemic Postconditioning”. Transplantation 2013; 96:e51-3. [DOI: 10.1097/tp.0b013e3182a53f78] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|