1
|
Baert L, Mahmudul HM, Stegall M, Joo H, Oh S. B Cell-mediated Immune Regulation and the Quest for Transplantation Tolerance. Transplantation 2024; 108:2021-2033. [PMID: 38389135 DOI: 10.1097/tp.0000000000004948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Pathophysiologic function of B cells in graft rejection has been well recognized in transplantation. B cells promote alloantigen-specific T-cell response and secrete antibodies that can cause antibody-mediated graft failures and rejections. Therefore, strategies targeting B cells, for example, B-cell depletion, have been used for the prevention of both acute and chronic rejections. Interestingly, however, recent mounting evidence indicates that subsets of B cells yet to be further identified can display potent immune regulatory functions, and they contribute to transplantation tolerance and operational tolerance in both experimental and clinical settings, respectively. In this review, we integrate currently available information on B-cell subsets, including T-cell Ig domain and mucin domain 1-positive transitional and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive memory B cells, displaying immune regulatory functions, with a focus on transplantation tolerance, by analyzing their mechanisms of action. In addition, we will discuss potential T-cell Ig domain and mucin domain 1-positive and T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domain-positive B cell-based strategies for the enhancement of operational tolerance in transplantation patients.
Collapse
Affiliation(s)
- Laurie Baert
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | | | - Mark Stegall
- Department of Surgery, William J. von Liebig Transplant Center, Mayo Clinic, Rochester, MN
| | - HyeMee Joo
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| | - SangKon Oh
- Department of Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
2
|
Süsal C, Alvarez CM, Benning L, Daniel V, Zeier M, Schaier M, Morath C, Speer C. The balance between memory and regulatory cell populations in kidney transplant recipients with operational tolerance. Clin Exp Immunol 2024; 216:318-330. [PMID: 38393856 PMCID: PMC11097908 DOI: 10.1093/cei/uxae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024] Open
Abstract
Donor-reactive memory cells represent a barrier to long-term kidney graft survival. A better understanding of regulatory mechanisms that counterbalance alloreactive memory responses may help to identify patients with operational tolerance. This prospective study investigated the equilibrium between memory T-cell subsets and regulatory T or B cells (Tregs, Bregs) in peripheral blood of kidney transplant recipients with operational tolerance (N = 8), chronic rejection (N = 8), and different immunosuppressive treatment regimens (N = 81). Patients on hemodialysis and healthy individuals served as controls (N = 50). In addition, the expression of Treg- and Breg-associated molecule genes was analyzed. Patients with chronic rejection showed a disrupted memory T-cell composition with a significantly higher frequency of circulating CD8+ terminally differentiated effector memory (TEMRA) T cells than patients with operational tolerance, patients on hemodialysis, or healthy controls (P < 0.001). Low frequency of CD8+ TEMRA and high frequency of Tregs and transitional Bregs were found in operationally tolerant patients. Consequently, operationally tolerant patients showed, as compared to all other transplant recipients with different immunosuppressive regiments, the lowest ratios between CD8+ TEMRA T cells and Tregs or Bregs (for both P < 0.001). Moreover, a specific peripheral blood transcription pattern was found in operationally tolerant patients with an increased expression of Breg- and Treg-associated genes CD22 and FoxP3 and a decreased FcγRIIA/FcγRIIB transcript ratio (for all P < 0.001). In conclusion, monitoring the balance between circulating CD8+ TEMRA T cells and regulatory cell subsets and their transcripts may help to distinguish transplant recipients with operational tolerance from recipients at risk of graft loss.
Collapse
Affiliation(s)
- Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Cristiam M Alvarez
- Grupo de Inmunología Celular e Inmunogenética, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Elias C, Chen C, Cherukuri A. Regulatory B Cells in Solid Organ Transplantation: From Immune Monitoring to Immunotherapy. Transplantation 2024; 108:1080-1089. [PMID: 37779239 PMCID: PMC10985051 DOI: 10.1097/tp.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Regulatory B cells (Breg) modulate the immune response in diverse disease settings including transplantation. Despite the lack of a specific phenotypic marker or transcription factor, their significance in transplantation is underscored by their ability to prolong experimental allograft survival, the possibility for their clinical use as immune monitoring tools, and the exciting prospect for them to form the basis for cell therapy. Interleukin (IL)-10 expression remains the most widely used marker for Breg. Several Breg subsets with distinct phenotypes that express this "signature Breg cytokine" have been described in mice and humans. Although T-cell immunoglobulin and mucin family-1 is the most inclusive and functional marker that accounts for murine Breg with disparate mechanisms of action, the significance of T-cell immunoglobulin and mucin family-1 as a marker for Breg in humans still needs to be explored. Although the primary focus of this review is the role of Breg in clinical transplantation, the net modulatory effect of B cells on the immune response and clinical outcomes is the result of the balancing functions of both Breg and effector B cells. Supporting this notion, B-cell IL-10/tumor necrosis factor α ratio is shown to predict immunologic reactivity and clinical outcomes in kidney and liver transplantation. Assessment of Breg:B effector balance using their IL-10/tumor necrosis factor α ratio may identify patients that require more immunosuppression and provide mechanistic insights into potential therapies. In summary, current advances in our understanding of murine and human Breg will pave way for future definitive clinical studies aiming to test them for immune monitoring and as therapeutic targets.
Collapse
Affiliation(s)
- Charbel Elias
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chuxiao Chen
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Renal and Electrolyte Division, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Guzel HG, Yilmaz VT, Koksoy S, Kocak H, Kisaoglu A, Soylu M, Akkaya B, Demiryilmaz I, Aydinli B, Suleymanlar G. Regulatory B Cells Profile in Kidney Transplant Recipients With Chronic-Active Antibody-Mediated Rejection. Transplant Proc 2023:S0041-1345(23)00153-7. [PMID: 37061353 DOI: 10.1016/j.transproceed.2023.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 03/14/2023] [Indexed: 04/17/2023]
Abstract
This study aims to reveal the relationship between regulatory B cell (Breg) subsets and chronic-active antibody-mediated rejection (c-aABMR) in renal transplant recipients. Our study involved 3 groups of participants: renal transplant recipients with biopsy-proven c-aABMR as the chronic rejection group (c-aABMR, n = 23), recipients with stable graft functions as the patient control group (PC; n = 11), and healthy volunteers (HV; n = 11). Breg subsets, immature/transitional B cells, plasmablastic cells, B10 cells, and BR1 cells were isolated from venous blood samples by flow cytometry. The median values of Breg frequencies in the total lymphocyte population were analyzed. There were no significant differences between the study groups for immature and/or transitional B cell frequencies. Plasmablastic cell frequencies of the c-aABMR group (7.80 [2.10-27.40]) and the PC group (6.00 [1.80-55.50]) were similar, but both of these values were significantly higher than the HVs' (3.40 [1.20-8.50]), (respectively, P = .005 and P = .039). B10 cell frequencies were also similar, comparing the c-aABMR (4.20 [0.10-7.40]) and the PC groups (4.10 [0.10-5.90]), whereas the HVs (5.90 [2.90-8.50]) had the highest B10 cell frequency with an only statistical significance against the PC group (respectively, P = .09 and P = .028). The c-aABMR and the PC groups were similar regarding BR1 cell frequencies. However, the HV group significantly had the highest frequency of BR1 cells (5.50 [2.80-10.80]) than the other groups (P < .001 for both). We demonstrated that frequencies of B10 and BR1 cells were higher in HVs than in transplant recipients, regardless of rejection state. However, there was no significant relation between Breg frequencies and the c-aABMR state.
Collapse
Affiliation(s)
- Halil Goksel Guzel
- Department of Internal Medicine, Akdeniz University School of Medicine, Antalya, Turkey
| | - Vural Taner Yilmaz
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey.
| | - Sadi Koksoy
- Department of Microbiology, Division of Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Huseyin Kocak
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Abdullah Kisaoglu
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mehmet Soylu
- Department of Microbiology, Division of Immunology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Bahar Akkaya
- Department of Pathology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Ismail Demiryilmaz
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Bülent Aydinli
- Department of General Surgery, Akdeniz University School of Medicine, Antalya, Turkey
| | - Gultekin Suleymanlar
- Department of Internal Medicine, Division of Nephrology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
5
|
Danger R, Le Berre L, Cadoux M, Kerleau C, Papuchon E, Mai HL, Nguyen TVH, Guérif P, Morelon E, Thaunat O, Legendre C, Anglicheau D, Lefaucheur C, Couzi L, Del Bello A, Kamar N, Le Quintrec M, Goutaudier V, Renaudin K, Giral M, Brouard S. Subclinical rejection-free diagnostic after kidney transplantation using blood gene expression. Kidney Int 2023; 103:1167-1179. [PMID: 36990211 DOI: 10.1016/j.kint.2023.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/16/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023]
Abstract
We previously established a six-gene-based blood score associated with operational tolerance in kidney transplantation which was decreased in patients developing anti-HLA donor-specific antibodies (DSA). Herein, we aimed to confirm that this score is associated with immunological events and risk of rejection. We measured this using quantitative PCR (qPCR) and NanoString methods from an independent multicenter cohort of 588 kidney transplant recipients with paired blood samples and biopsies at one year after transplantation validating its association with pre-existing and de novo DSA. From 441 patients with protocol biopsy, there was a significant decrease of the score of tolerance in 45 patients with biopsy-proven subclinical rejection (SCR), a major threat associated with pejorative allograft outcomes that prompted an SCR score refinement. This refinement used only two genes, AKR1C3 and TCL1A, and four clinical parameters (previous experience of rejection, previous transplantation, sex of recipient and tacrolimus uptake). This refined SCR score was able to identify patients unlikely to develop SCR with a C-statistic of 0.864 and a negative predictive value of 98.3%. The SCR score was validated in an external laboratory, with two methods (qPCR and NanoString), and on 447 patients from an independent and multicenter cohort. Moreover, this score allowed reclassifying patients with discrepancies between the DSA presence and the histological diagnosis of antibody mediated rejection unlike kidney function. Thus, our refined SCR score could improve detection of SCR for closer and noninvasive monitoring, allowing early treatment of SCR lesions notably for patients DSA-positive and during lowering of immunosuppressive treatment.
Collapse
Affiliation(s)
- Richard Danger
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France.
| | - Ludmilla Le Berre
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Marion Cadoux
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Clarisse Kerleau
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuelle Papuchon
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France
| | - Hoa Le Mai
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Thi-Van-Ha Nguyen
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Pierrick Guérif
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France
| | - Emmanuel Morelon
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Edouard Herriot Hospital, Hospices Civils de Lyon, INSERM Unit 1111, Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Christophe Legendre
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France
| | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, INSERM UMR S970, Université Paris Cité, Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis, and Apheresis, CHU Bordeaux, Bordeaux, France
| | - Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organ Transplantation, Centre Hospitalier Universitaire de Toulouse, INSERM UMR1291 - Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Toulouse, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Renal Transplantation, University Hospital of Lapeyronie, Montpellier, France
| | - Valentin Goutaudier
- Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Necker-Enfants Malades Institute, INSERM, Paris University, Paris, France; Université Paris Cité, INSERM U970, Paris Institute for Transplantation and Organ Regeneration, Paris, France
| | - Karine Renaudin
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; CHU Nantes, Service d'Anatomie et Cytologie Pathologiques, Nantes, France
| | - Magali Giral
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology (CR2TI), UMR 1064, ITUN, Nantes, France; Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), CHU Nantes, Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology", Nantes Université, Nantes, France.
| |
Collapse
|
6
|
Morath C, Schaier M, Ibrahim E, Wang L, Kleist C, Opelz G, Süsal C, Ponath G, Aly M, Alvarez CM, Kälble F, Speer C, Benning L, Nusshag C, Pego da Silva L, Sommerer C, Hückelhoven-Krauss A, Czock D, Mehrabi A, Schwab C, Waldherr R, Schnitzler P, Merle U, Tran TH, Scherer S, Böhmig GA, Müller-Tidow C, Reiser J, Zeier M, Schmitt M, Terness P, Schmitt A, Daniel V. Induction of Long-Lasting Regulatory B Lymphocytes by Modified Immune Cells in Kidney Transplant Recipients. J Am Soc Nephrol 2023; 34:160-174. [PMID: 36137752 PMCID: PMC10101591 DOI: 10.1681/asn.2022020210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We recently demonstrated that donor-derived modified immune cells (MICs)-PBMCs that acquire immunosuppressive properties after a brief treatment-induced specific immunosuppression against the allogeneic donor when administered before kidney transplantation. We found up to a 68-fold increase in CD19 + CD24 hi CD38 hi transitional B lymphocytes compared with transplanted controls. METHODS Ten patients from a phase 1 clinical trial who had received MIC infusions before kidney transplantation were followed to post-transplant day 1080. RESULTS Patients treated with MICs had a favorable clinical course, showing no donor-specific human leukocyte antigen antibodies or acute rejections. The four patients who had received the highest dose of MICs 7 days before surgery and were on reduced immunosuppressive therapy showed an absence of in vitro lymphocyte reactivity against stimulatory donor blood cells, whereas reactivity against third party cells was preserved. In these patients, numbers of transitional B lymphocytes were 75-fold and seven-fold higher than in 12 long-term survivors on minimal immunosuppression and four operationally tolerant patients, respectively ( P <0.001 for both). In addition, we found significantly higher numbers of other regulatory B lymphocyte subsets and a gene expression signature suggestive of operational tolerance in three of four patients. In MIC-treated patients, in vitro lymphocyte reactivity against donor blood cells was restored after B lymphocyte depletion, suggesting a direct pathophysiologic role of regulatory B lymphocytes in donor-specific unresponsiveness. CONCLUSIONS These results indicate that donor-specific immunosuppression after MIC infusion is long-lasting and associated with a striking increase in regulatory B lymphocytes. Donor-derived MICs appear to be an immunoregulatory cell population that when administered to recipients before transplantation, may exert a beneficial effect on kidney transplants. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER MIC Cell Therapy for Individualized Immunosuppression in Living Donor Kidney Transplant Recipients (TOL-1), NCT02560220.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Eman Ibrahim
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Kleist
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerhard Opelz
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Transplant Immunology Research Center of Excellence, Koç University, Istanbul, Turkey
| | - Gerald Ponath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- TolerogenixX GmbH, Heidelberg, Germany
| | - Mostafa Aly
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Nephrology Unit, Internal Medicine Department, Assiut University, Assiut, Egypt
| | - Cristiam M. Alvarez
- Cellular Immunology and Immunogenetics Group, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angela Hückelhoven-Krauss
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral, and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rüdiger Waldherr
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Paul Schnitzler
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uta Merle
- Department of Gastroenterology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thuong Hien Tran
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Scherer
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schmitt
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Terness
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany
- Department of Hematology, Oncology, and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Volker Daniel
- Institute of Immunology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
8
|
Slepicka PF, Yazdanifar M, Bertaina A. Harnessing Mechanisms of Immune Tolerance to Improve Outcomes in Solid Organ Transplantation: A Review. Front Immunol 2021; 12:688460. [PMID: 34177941 PMCID: PMC8222735 DOI: 10.3389/fimmu.2021.688460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Survival after solid organ transplantation (SOT) is limited by chronic rejection as well as the need for lifelong immunosuppression and its associated toxicities. Several preclinical and clinical studies have tested methods designed to induce transplantation tolerance without lifelong immune suppression. The limited success of these strategies has led to the development of clinical protocols that combine SOT with other approaches, such as allogeneic hematopoietic stem cell transplantation (HSCT). HSCT prior to SOT facilitates engraftment of donor cells that can drive immune tolerance. Recent innovations in graft manipulation strategies and post-HSCT immune therapy provide further advances in promoting tolerance and improving clinical outcomes. In this review, we discuss conventional and unconventional immunological mechanisms underlying the development of immune tolerance in SOT recipients and how they can inform clinical advances. Specifically, we review the most recent mechanistic studies elucidating which immune regulatory cells dampen cytotoxic immune reactivity while fostering a tolerogenic environment. We further discuss how this understanding of regulatory cells can shape graft engineering and other therapeutic strategies to improve long-term outcomes for patients receiving HSCT and SOT.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Mahboubeh Yazdanifar
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alice Bertaina
- Division of Hematology, Oncology and Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
9
|
Morath C, Schmitt A, Kleist C, Daniel V, Opelz G, Süsal C, Ibrahim E, Kälble F, Speer C, Nusshag C, Pego da Silva L, Sommerer C, Wang L, Ni M, Hückelhoven-Krauss A, Czock D, Merle U, Mehrabi A, Sander A, Hackbusch M, Eckert C, Waldherr R, Schnitzler P, Müller-Tidow C, Hoheisel JD, Mustafa SA, Alhamdani MS, Bauer AS, Reiser J, Zeier M, Schmitt M, Schaier M, Terness P. Phase I trial of donor-derived modified immune cell infusion in kidney transplantation. J Clin Invest 2021; 130:2364-2376. [PMID: 31990685 DOI: 10.1172/jci133595] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUNDPreclinical experiments have shown that donor blood cells, modified in vitro by an alkylating agent (modified immune cells [MICs]), induced long-term specific immunosuppression against the allogeneic donor.METHODSIn this phase I trial, patients received either 1.5 × 106 MICs per kg BW on day -2 (n = 3, group A), or 1.5 × 108 MICs per kg BW on day -2 (n = 3, group B) or day -7 (n = 4, group C) before living donor kidney transplantation in addition to post-transplantation immunosuppression. The primary outcome measure was the frequency of adverse events (AEs) until day 30 (study phase) with follow-up out to day 360.RESULTSMIC infusions were extremely well tolerated. During the study phase, 10 treated patients experienced a total of 69 AEs that were unlikely to be related or not related to MIC infusion. No donor-specific human leukocyte antigen Abs or rejection episodes were noted, even though the patients received up to 1.3 × 1010 donor mononuclear cells before transplantation. Group C patients with low immunosuppression during follow-up showed no in vitro reactivity against stimulatory donor blood cells on day 360, whereas reactivity against third-party cells was still preserved. Frequencies of CD19+CD24hiCD38hi transitional B lymphocytes (Bregs) increased from a median of 6% before MIC infusion to 20% on day 180, which was 19- and 68-fold higher, respectively, than in 2 independent cohorts of transplanted controls. The majority of Bregs produced the immunosuppressive cytokine IL-10. MIC-treated patients showed the Immune Tolerance Network operational tolerance signature.CONCLUSIONMIC administration was safe and could be a future tool for the targeted induction of tolerogenic Bregs.TRIAL REGISTRATIONEudraCT number: 2014-002086-30; ClinicalTrials.gov identifier: NCT02560220.FUNDINGFederal Ministry for Economic Affairs and Technology, Berlin, Germany, and TolerogenixX GmbH, Heidelberg, Germany.
Collapse
Affiliation(s)
- Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Anita Schmitt
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Christian Kleist
- Transplantation Immunology, Institute of Immunology.,Department of Nuclear Medicine
| | | | | | - Caner Süsal
- Transplantation Immunology, Institute of Immunology
| | - Eman Ibrahim
- Transplantation Immunology, Institute of Immunology
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Luiza Pego da Silva
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | - Claudia Sommerer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lei Wang
- TolerogenixX GmbH, Heidelberg, Germany.,Department of Hematology, Oncology and Rheumatology
| | - Ming Ni
- Department of Hematology, Oncology and Rheumatology
| | | | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology
| | | | | | - Anja Sander
- Institute of Medical Biometry and Informatics
| | | | | | | | - Paul Schnitzler
- Virology, Center for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Jörg D Hoheisel
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Shakhawan A Mustafa
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany.,Kurdistan Institution for Strategic Studies and Scientific Research, Kurdistan Region, Iraq
| | | | - Andrea S Bauer
- Division of Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Jochen Reiser
- Department of Medicine, Rush Medical College, Rush University, Chicago, Illinois, USA
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthias Schaier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany.,TolerogenixX GmbH, Heidelberg, Germany
| | | |
Collapse
|
10
|
Cherukuri A, Mohib K, Rothstein DM. Regulatory B cells: TIM-1, transplant tolerance, and rejection. Immunol Rev 2021; 299:31-44. [PMID: 33484008 PMCID: PMC7968891 DOI: 10.1111/imr.12933] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Regulatory B cells (Bregs) ameliorate autoimmune disease and prevent allograft rejection. Conversely, they hinder effective clearance of pathogens and malignancies. Breg activity is mainly attributed to IL-10 expression, but also utilizes additional regulatory mechanisms such as TGF-β, FasL, IL-35, and TIGIT. Although Bregs are present in various subsets defined by phenotypic markers (including canonical B cell subsets), our understanding of Bregs has been limited by the lack of a broadly inclusive and specific phenotypic or transcriptional marker. TIM-1, a broad marker for Bregs first identified in transplant models, plays a major role in Breg maintenance and induction. Here, we expand on the role of TIM-1+ Bregs in immune tolerance and propose TIM-1 as a unifying marker for Bregs that utilize various inhibitory mechanisms in addition to IL-10. Further, this review provides an in-depth assessment of our understanding of Bregs in transplantation as elucidated in murine models and clinical studies. These studies highlight the major contribution of Bregs in preventing allograft rejection, and their ability to serve as highly predictive biomarkers for clinical transplant outcomes.
Collapse
Affiliation(s)
- Aravind Cherukuri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
11
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|
12
|
Suchanek O, Clatworthy MR. Novel strategies to target the humoral alloimmune response. HLA 2020; 96:667-680. [PMID: 33022883 DOI: 10.1111/tan.14092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/24/2022]
Abstract
Antibody-mediated rejection (ABMR) represents a major cause of late allograft loss in solid organ transplantation worldwide. This process is driven by donor-specific antibodies (DSA), which develop either de-novo or, in sensitized patients, are preformed at the time of transplantation. Effective targeting of ABMR has been hampered by a lack of robust randomized controlled trials (RCT), required for the regulatory approval of new therapeutics. In this review, we discuss the evidence behind the present "standard" of care and recent progress in the development of novel strategies targeting different aspects of the alloimmune humoral response, including naïve and memory B-cell activation, the germinal centre reaction, plasma cell survival and antibody effector functions. In particular, we focus on co-stimulation blockade and its combination with next-generation proteasome inhibitors, new depleting monoclonal antibodies (anti-CD19, anti-BCMA, anti-CD38, anti-CD138), interleukin-6 blockade, complement inhibition and DSA degradation. These treatment modalities, when used in the appropriate clinical context and combination, have the potential to finally improve long-term allograft survival.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
13
|
Braun WE, Herlitz L, Li J, Schold J, Poggio E, Stephany B, Fatica R, Nally J, Brown K, Fairchild R, Baldwin W, Goldfarb D, Kiser W, Augustine J, Avery R, Tomford JW, Nakamoto S. Continuous function of 80 primary renal allografts for 30-47 years with maintenance prednisone and azathioprine/mycophenolate mofetil therapy: A clinical mosaic of long-term successes. Clin Transplant 2020; 35:e14131. [PMID: 33112428 DOI: 10.1111/ctr.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022]
Abstract
Eighty primary renal allograft recipients, 61 living-related and 19 deceased donor, transplanted from 1963 through 1984 had continuous graft function for 30-47 years. They were treated with three different early immunosuppression programs (1963-1970: thymectomy, splenectomy, high oral prednisone; 1971-1979: divided-dose intravenous methylprednisolone; and 1980-1984: antilymphocyte globulin) each with maintenance prednisone and azathioprine, and no calcineurin inhibitor. Long-term treatment often included the anti-platelet medication, dipyridamole. Although both recipient and donor ages were young (27.2 ± 9.5 and 33.1 ± 12.0 years, respectively), six recipients with a parent donor had >40-year success. At 35 years, death-censored graft survival was 85.3% and death with a functioning graft 84.2%; overall graft survival was 69.5% (Kaplan-Meier estimate). Biopsy-documented early acute cellular and highly probable antibody-mediated rejections were reversed with divided-dose intravenous methylprednisolone. Complications are detailed in an integrated timeline. Hypogammaglobulinemia identified after 20 years doubled the infection rate. An association between a monoclonal gammopathy of undetermined significance and non-plasma-cell malignancies was identified. Twenty-seven azathioprine-treated patients tested after 37 years had extremely low levels of T1/T2 B lymphocytes representing a "low immunosuppression state of allograft acceptance (LISAA)". The lifetime achievements of these patients following a single renal allograft and low-dose maintenance immunosuppression are remarkable. Their success evolved as a clinical mosaic.
Collapse
Affiliation(s)
- William E Braun
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Jianbo Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Jesse Schold
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Emilio Poggio
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Brian Stephany
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Richard Fatica
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Nally
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Kathleen Brown
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Robert Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - William Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - David Goldfarb
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - William Kiser
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Joshua Augustine
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| | - Robin Avery
- Division of Infectious Disease (Transplant/Oncology), Johns Hopkins, Baltimore, MD, USA
| | - J Walton Tomford
- Department of Infectious Disease, Cleveland Clinic, Cleveland, OH, USA
| | - Satoru Nakamoto
- Department of Nephrology & Hypertension, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Beckett J, Hester J, Issa F, Shankar S. Regulatory B cells in transplantation: roadmaps to clinic. Transpl Int 2020; 33:1353-1368. [PMID: 32725703 DOI: 10.1111/tri.13706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/08/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022]
Abstract
Over the last two decades, an additional and important role for B cells has been established in immune regulation. Preclinical studies demonstrate that regulatory B cells (Breg) can prolong allograft survival in animal models and induce regulatory T cells. Operationally tolerant human kidney transplant recipients demonstrate B-cell-associated gene signatures of immune tolerance, and novel therapeutic agents can induce Bregs in phase I clinical trials in transplantation. Our rapidly expanding appreciation of this novel B-cell subtype has made the road to clinical application a reality. Here, we outline several translational pathways by which Bregs could soon be introduced to the transplant clinic.
Collapse
Affiliation(s)
- Joseph Beckett
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joanna Hester
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Fadi Issa
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Sushma Shankar
- Transplant Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Christakoudi S, Runglall M, Mobillo P, Rebollo-Mesa I, Tsui TL, Nova-Lamperti E, Taube C, Norris S, Kamra Y, Hilton R, Augustine T, Bhandari S, Baker R, Berglund D, Carr S, Game D, Griffin S, Kalra PA, Lewis R, Mark PB, Marks SD, MacPhee I, McKane W, Mohaupt MG, Paz-Artal E, Kon SP, Serón D, Sinha MD, Tucker B, Viklický O, Stahl D, Lechler RI, Lord GM, Hernandez-Fuentes MP. Development and validation of the first consensus gene-expression signature of operational tolerance in kidney transplantation, incorporating adjustment for immunosuppressive drug therapy. EBioMedicine 2020; 58:102899. [PMID: 32707447 PMCID: PMC7374249 DOI: 10.1016/j.ebiom.2020.102899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Kidney transplant recipients (KTRs) with "operational tolerance" (OT) maintain a functioning graft without immunosuppressive (IS) drugs, thus avoiding treatment complications. Nevertheless, IS drugs can influence gene-expression signatures aiming to identify OT among treated KTRs. METHODS We compared five published signatures of OT in peripheral blood samples from 18 tolerant, 183 stable, and 34 chronic rejector KTRs, using gene-expression levels with and without adjustment for IS drugs and regularised logistic regression. FINDINGS IS drugs explained up to 50% of the variability in gene-expression and 20-30% of the variability in the probability of OT predicted by signatures without drug adjustment. We present a parsimonious consensus gene-set to identify OT, derived from joint analysis of IS-drug-adjusted expression of five published signature gene-sets. This signature, including CD40, CTLA4, HSD11B1, IGKV4-1, MZB1, NR3C2, and RAB40C genes, showed an area under the curve 0⋅92 (95% confidence interval 0⋅88-0⋅94) in cross-validation and 0⋅97 (0⋅93-1⋅00) in six months follow-up samples. INTERPRETATION We advocate including adjustment for IS drug therapy in the development stage of gene-expression signatures of OT to reduce the risk of capturing features of treatment, which could be lost following IS drug minimisation or withdrawal. Our signature, however, would require further validation in an independent dataset and a biomarker-led trial. FUNDING FP7-HEALTH-2012-INNOVATION-1 [305147:BIO-DrIM] (SC,IR-M,PM,DSt); MRC [G0801537/ID:88245] (MPH-F); MRC [MR/J006742/1] (IR-M); Guy's&StThomas' Charity [R080530]&[R090782]; CONICYT-Bicentennial-Becas-Chile (EN-L); EU:FP7/2007-2013 [HEALTH-F5-2010-260687: The ONE Study] (MPH-F); Czech Ministry of Health [NV19-06-00031] (OV); NIHR-BRC Guy's&StThomas' NHS Foundation Trust and KCL (SC); UK Clinical Research Networks [portfolio:7521].
Collapse
Affiliation(s)
- Sofia Christakoudi
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | - Manohursingh Runglall
- NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Paula Mobillo
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Irene Rebollo-Mesa
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Tjir-Li Tsui
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | | | - Catharine Taube
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Sonia Norris
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Yogesh Kamra
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK
| | - Rachel Hilton
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Titus Augustine
- Manchester Royal Infirmary, Oxford Rd, Manchester M13 9WL, UK
| | - Sunil Bhandari
- Hull University Teaching Hospitals NHS Trust, Anlaby Rd, Hull HU3 2JZ, UK
| | - Richard Baker
- St James's University Hospital, Beckett St, Leeds LS9 7TF, UK
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, 751 85 Uppsala, Sweden
| | - Sue Carr
- Leicester General Hospital, Gwendolen Rd, Leicester LE5 4PW, UK
| | - David Game
- Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Sian Griffin
- Cardiff and Vale University Health Board, Cardiff CF14 4XW, UK
| | - Philip A Kalra
- Salford Royal NHS Foundation Trust, Stott Ln, Salford M6 8HD, UK
| | - Robert Lewis
- Queen Alexandra Hospital, Southwick Hill Rd, Cosham, Portsmouth PO6 3LY, UK
| | - Patrick B Mark
- University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Stephen D Marks
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK; University College London Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London WC1N 1EH, UK
| | - Iain MacPhee
- St George's Hospital, Blackshaw Rd, London SW17 0QT, UK & Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London SW17 0RE
| | - William McKane
- Northern General Hospital, Herries Rd, Sheffield S5 7AU, UK
| | - Markus G Mohaupt
- Internal Medicine, Lindenhofgruppe Berne, Switzerland; University of Bern, Berne, Switzerland; School of Medicine, University of Nottingham, Nottingham NG5 1PB, UK
| | - Estela Paz-Artal
- Department of Immunology and imas12 Research Institute, University Hospital 12 de Octubre, Madrid, Spain
| | - Sui Phin Kon
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Daniel Serón
- Hospital Universitario Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Manish D Sinha
- Evelina London Children's Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Beatriz Tucker
- King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Ondrej Viklický
- Transplantační laboratoř, Institut klinické a experimentální medicíny (IKEM), Vídeňská 1958/9, 140 21 Praha 4, Czech Republic
| | - Daniel Stahl
- Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London SE5 8AF, UK
| | - Robert I Lechler
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| | - Graham M Lord
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; NIHR Biomedical Research Centre at Guy's & St Thomas' NHS Foundation Trust and King's College London, Great Maze Pond, London SE1 9RT, UK; Guy's and St Thomas' NHS Foundation Trust, Great Maze Pond, London SE1 9RT, UK
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, King's College London, Great Maze Pond, London SE1 9RT, UK; King's Health Partners, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
16
|
Differential Effects of MS Therapeutics on B Cells-Implications for Their Use and Failure in AQP4-Positive NMOSD Patients. Int J Mol Sci 2020; 21:ijms21145021. [PMID: 32708663 PMCID: PMC7404039 DOI: 10.3390/ijms21145021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
B cells are considered major contributors to multiple sclerosis (MS) pathophysiology. While lately approved disease-modifying drugs like ocrelizumab deplete B cells directly, most MS medications were not primarily designed to target B cells. Here, we review the current understanding how approved MS medications affect peripheral B lymphocytes in humans. These highly contrasting effects are of substantial importance when considering these drugs as therapy for neuromyelitis optica spectrum disorders (NMOSD), a frequent differential diagnosis to MS, which is considered being a primarily B cell- and antibody-driven diseases. Data indicates that MS medications, which deplete B cells or induce an anti-inflammatory phenotype of the remaining ones, were effective and safe in aquaporin-4 antibody positive NMOSD. In contrast, drugs such as natalizumab and interferon-β, which lead to activation and accumulation of B cells in the peripheral blood, lack efficacy or even induce catastrophic disease activity in NMOSD. Hence, we conclude that the differential effect of MS drugs on B cells is one potential parameter determining the therapeutic efficacy or failure in antibody-dependent diseases like seropositive NMOSD.
Collapse
|
17
|
Gupta PK, McIntosh CM, Chong AS, Alegre ML. The pursuit of transplantation tolerance: new mechanistic insights. Cell Mol Immunol 2019; 16:324-333. [PMID: 30760917 DOI: 10.1038/s41423-019-0203-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Donor-specific transplantation tolerance that enables weaning from immunosuppressive drugs but retains immune competence to non-graft antigens has been a lasting pursuit since the discovery of neonatal tolerance. More recently, efforts have been devoted not only to understanding how transplantation tolerance can be induced but also the mechanisms necessary to maintain it as well as how inflammatory exposure challenges its durability. This review focuses on recent advances regarding key peripheral mechanisms of T cell tolerance, with the underlying hypothesis that a combination of several of these mechanisms may afford a more robust and durable tolerance and that a better understanding of these individual pathways may permit longitudinal tracking of tolerance following clinical transplantation to serve as biomarkers. This review may enable a personalized assessment of the degree of tolerance in individual patients and the opportunity to strengthen the robustness of peripheral tolerance.
Collapse
Affiliation(s)
- Pawan K Gupta
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Anita S Chong
- Department of Surgery, The University of Chicago, Chicago, IL, 60637, USA
| | - Maria-Luisa Alegre
- Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
18
|
Kawai T, Leventhal J, Wood K, Strober S. Summary of the Third International Workshop on Clinical Tolerance. Am J Transplant 2019; 19:324-330. [PMID: 30133954 PMCID: PMC6349553 DOI: 10.1111/ajt.15086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 01/25/2023]
Abstract
The Third International Workshop on Clinical Tolerance was held in Stanford, California, September 8-9, 2017. This is a summary of Workshop presentations of clinical trials designed to withdraw or minimize immunosuppressive (IS) drugs in kidney and liver transplant patients without subsequent evidence of rejection. All clinical protocols had in common the use of donor or recipient cell therapy combined with organ transplantation. Tolerance to HLA matched and mismatched living donor kidney transplants with complete withdrawal of IS drugs without subsequent rejection for up to 14 years of observation was achieved in more than 50 patients enrolled in trials in four medical centers after the establishment of transient or persistent chimerism. Complete IS drug withdrawal without chimerism was reported in a prospective trial of liver transplantation combined with injection of regulatory T cells. IS drug minimization without rejection was reported in recipients of living donor kidney transplants enrolled in the One Study consortium after injection of recipient regulatory T cells, or injection of donor regulatory monocytes or dendritic cells. In conclusion, considerable progress has been made in achieving IS drug withdrawal after cell therapy in recipients of organ transplants.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph Leventhal
- Department of Surgery, Northwestern University School of Medicine, Chicago, IL, USA
| | - Kathryn Wood
- Nuffield Department of Surgical Sciences, Oxford University, Oxford, UK
| | - Samuel Strober
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Ezekian B, Schroder PM, Freischlag K, Yoon J, Kwun J, Knechtle SJ. Contemporary Strategies and Barriers to Transplantation Tolerance. Transplantation 2018; 102:1213-1222. [PMID: 29757903 PMCID: PMC6059978 DOI: 10.1097/tp.0000000000002242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/30/2022]
Abstract
The purpose of this review is to discuss immunologic tolerance as it applies to solid organ transplantation and to identify barriers that hinder the achievement of this long-term goal. First, the definition of tolerance and an introduction of mechanisms by which tolerance exists or can be achieved will be discussed. Next, a review of contemporary attempts at achieving transplant tolerance will be described. Finally, a discussion of the humoral barriers to transplantation tolerance and potential ways to overcome these barriers will be presented.
Collapse
Affiliation(s)
- Brian Ezekian
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Paul M. Schroder
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Kyle Freischlag
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Janghoon Yoon
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Stuart J. Knechtle
- Duke Transplant Center, Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
20
|
Newell KA, Adams AB, Turka LA. Biomarkers of operational tolerance following kidney transplantation - The immune tolerance network studies of spontaneously tolerant kidney transplant recipients. Hum Immunol 2018; 79:380-387. [PMID: 29448053 PMCID: PMC5924709 DOI: 10.1016/j.humimm.2018.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/29/2018] [Accepted: 02/09/2018] [Indexed: 01/08/2023]
Abstract
Studies of kidney transplant recipients who have developed spontaneous and sustained tolerance have revealed an association with B cells. Unexpectedly tolerant individuals are characterized by increased numbers and frequencies of B cells in the blood and increased expression of genes associated with B cells in the blood and urine. Comparisons of the B cell repertoires of tolerant individuals and those receiving immunosuppression reveal that not only are the B cells more numerous but developmental differences result in a repertoire comprised of more naïve and transitional B cells in the tolerant cohort. B cells isolated from tolerant individuals also display functional differences compared to those from individuals receiving immunosuppression. Many of these differences may serve to suppress alloimmunity. Lastly a significant number of transplant recipients receiving standard immunosuppression display B cell-biased patterns of gene expression predictive of tolerance or a pro-tolerogenic state. Interestingly, this pattern is associated with improved renal allograft function. While recent studies have raised the concern that immunosuppressive drugs heavily influence B cell-based "signatures of tolerance", a substantial body of work suggests that differences in B cells may be a useful tool for identifying tolerant kidney transplant recipients or guiding their immunosuppressive management.
Collapse
Affiliation(s)
- Kenneth A Newell
- Department of Surgery, Emory University School of Medicine, Emory University, United States.
| | - Andrew B Adams
- Department of Surgery, Emory University School of Medicine, Emory University, United States
| | - Laurence A Turka
- Center for Transplantation Sciences, Massachusetts General Hospital and the Immune Tolerance Network, United States
| |
Collapse
|
21
|
Polyomavirus BK Nephropathy-Associated Transcriptomic Signatures: A Critical Reevaluation. Transplant Direct 2018; 4:e339. [PMID: 29464200 PMCID: PMC5811268 DOI: 10.1097/txd.0000000000000752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/07/2017] [Indexed: 12/29/2022] Open
Abstract
Background Recent work using DNA microarrays has suggested that genes related to DNA replication, RNA polymerase assembly, and pathogen recognition receptors can serve as surrogate tissue biomarkers for polyomavirus BK nephropathy (BKPyVN). Methods We have examined this premise by looking for differential regulation of these genes using a different technology platform (RNA-seq) and an independent set 25 biopsies covering a wide spectrum of diagnoses. Results RNA-seq could discriminate T cell–mediated rejection from other common lesions seen in formalin fixed biopsy material. However, overlapping RNA-seq signatures were found among all disease processes investigated. Specifically, genes previously reported as being specific for the diagnosis of BKPyVN were found to be significantly upregulated in T cell–mediated rejection, inflamed areas of fibrosis/tubular atrophy, as well as acute tubular injury. Conclusions In conclusion, the search for virus specific molecular signatures is confounded by substantial overlap in pathogenetic mechanisms between BKPyVN and nonviral forms of allograft injury. Clinical heterogeneity, overlapping exposures, and different morphologic patterns and stage of disease are a source of substantial variability in “Omics” experiments. These variables should be better controlled in future biomarker studies on BKPyVN, T cell–mediated rejection, and other forms of allograft injury, before widespread implementation of these tests in the transplant clinic.
Collapse
|
22
|
Miller ML, Chong AS, Alegre ML. Fifty Shades of Tolerance: Beyond a Binary Tolerant/Non-Tolerant Paradigm. CURRENT TRANSPLANTATION REPORTS 2017; 4:262-269. [PMID: 31098340 DOI: 10.1007/s40472-017-0166-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose of review It has long been considered that tolerance in a transplant recipient is a binary all-or-none state: either the graft is accepted without immunosuppression identifying the recipient as tolerant, or the recipient rejects the graft and is not tolerant. This tolerance paradigm, however, does not accurately reflect data emerging from animal models and patients and requires revision. Recent Findings It is becoming appreciated that there may be different gradations in the quality of tolerance based on underlying cellular mechanisms of immunological tolerance, and that individuals may enhance their tolerance by strengthening or combining different cellular mechanisms. Furthermore, evidence suggests that even if tolerance is lost, the loss may be only temporary, and in some circumstances tolerance can be restored. Summary Shifting our focus from an all-or-nothing tolerance paradigm to one with many shades may help us better understand how tolerance operates, and how this state may be tracked and enhanced for better patient outcomes.
Collapse
Affiliation(s)
- Michelle L Miller
- Department of Medicine, Section of Rheumatology, University of Chicago
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago
| | | |
Collapse
|
23
|
Massart A, Ghisdal L, Abramowicz M, Abramowicz D. Operational tolerance in kidney transplantation and associated biomarkers. Clin Exp Immunol 2017; 189:138-157. [PMID: 28449211 DOI: 10.1111/cei.12981] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
In the 1960s, our predecessors won a historical battle against acute rejection and ensured that transplantation became a common life-saving treatment. In parallel with this success, or perhaps because of it, we lost the battle for long-lived transplants, being overwhelmed with chronic immune insults and the toxicities of immunosuppression. It is likely that current powerful treatments block acute rejection, but at the same time condemn the few circulating donor cells that would have been able to elicit immunoregulatory host responses towards the allograft. Under these conditions, spontaneously tolerant kidney recipients - i.e. patients who maintain allograft function in the absence of immunosuppression - are merely accidents; they are scarce, mysterious and precious. Several teams pursue the goal of finding a biomarker that would guide us towards the 'just right' level of immunosuppression that avoids rejection while leaving some space for donor immune cells. Some cellular assays are attractive because they are antigen-specific, and provide a comprehensive view of immune responses toward the graft. These seem to closely follow patient regulatory capacities. However, these tests are cumbersome, and require abundant cellular material from both donor and recipient. The latest newcomers, non-antigen-specific recipient blood transcriptomic biomarkers, offer the promise that a practicable and simple signature may be found that overcomes the complexity of a system in which an infinite number of individual cell combinations can lead possibly to graft acceptance. Biomarker studies are as much an objective - identifying tolerant patients, enabling tolerance trials - as a means to deciphering the underlying mechanisms of one of the most important current issues in transplantation.
Collapse
Affiliation(s)
- A Massart
- Department of Nephrology, Dialysis, and Transplantation, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - L Ghisdal
- Department of Nephrology, Centre Hospitalier EpiCURA, Baudour, Belgium
| | - M Abramowicz
- Department of Human Genetics, CUB Hôpital Erasme and Institute of Interdisciplinary Research in Molecular and Human Biology (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - D Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen and Antwerp University, Antwerp, Belgium
| |
Collapse
|
24
|
Chong AS, Khiew SH. Transplantation tolerance: don't forget about the B cells. Clin Exp Immunol 2017; 189:171-180. [PMID: 28100001 DOI: 10.1111/cei.12927] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing a state of transplantation tolerance that leads to indefinite graft survival without the need for lifelong immunosuppression has been achieved successfully in limited numbers of transplant recipients in the clinic. These successes led to studies aimed at identifying potential biomarkers that diagnose allograft tolerance and identify the patients most amenable to drug minimization, and implicated an enriched B cell signature of tolerance. The emergence of a specialized subset of regulatory B cell (Bregs ), that possess immune-modulatory function in inflammation and autoimmune disease, raised the possibility that Bregs play critical roles in the promotion of transplantation tolerance and that Bregs are the underlying explanation for the B cell signature of tolerance. However, B cells are best known to play a key role in humoral immunity, and excessive production of donor specific antibodies has clear deleterious effects in transplantation. Thus, for tolerance to be persistent, alloantibody responses must also be curtailed, either through the suppression of T cell help or the induction of B cell-intrinsic dysfunction. Recent findings indicate a unique subset of follicular regulatory T cells (Tfr) that can suppress B cell function and induce epigenetic modifications that result in sustained defects in B cell differentiation and function. In this review, we summarize studies in animals and humans that suggest roles for Bregs and dysfunctional B cells in transplantation tolerance, and discuss how these insights may provide a roadmap for new approaches to diagnose, and new therapies to induce allograft tolerance.
Collapse
Affiliation(s)
- A S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - S H Khiew
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, IL, USA
| |
Collapse
|