1
|
Iskender I. Technical Advances Targeting Multiday Preservation of Isolated Ex Vivo Lung Perfusion. Transplantation 2024; 108:1319-1332. [PMID: 38499501 DOI: 10.1097/tp.0000000000004992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Indications for ex vivo lung perfusion (EVLP) have evolved from assessment of questionable donor lungs to treatment of some pathologies and the logistics. Yet up to 3 quarters of donor lungs remain discarded across the globe. Multiday preservation of discarded human lungs on EVLP platforms would improve donor lung utilization rates via application of sophisticated treatment modalities, which could eventually result in zero waitlist mortality. The purpose of this article is to summarize advances made on the technical aspects of the protocols in achieving a stable multiday preservation of isolated EVLP. Based on the evidence derived from large animal and/or human studies, the following advances have been considered important in achieving this goal: ability to reposition donor lungs during EVLP; perfusate adsorption/filtration modalities; perfusate enrichment with plasma and/or donor whole blood, nutrients, vitamins, and amino acids; low-flow, pulsatile, and subnormothermic perfusion; positive outflow pressure; injury specific personalized ventilation strategies; and negative pressure ventilation. Combination of some of these advances in an automatized EVLP device capable of managing perfusate biochemistry and ventilation would likely speed up the processes of achieving multiday preservation of isolated EVLP.
Collapse
Affiliation(s)
- Ilker Iskender
- Department of Cardiac Surgery, East Limburg Hospital, Genk, Belgium
| |
Collapse
|
2
|
Sakanoue I, Okamoto T, Ayyat KS, Yun JJ, Farver CF, Fujioka H, Date H, McCurry KR. Intermittent Ex Vivo Lung Perfusion in a Porcine Model for Prolonged Lung Preservation. Transplantation 2024; 108:669-678. [PMID: 37726888 DOI: 10.1097/tp.0000000000004802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND Ex vivo lung perfusion expands the lung transplant donor pool and extends preservation time beyond cold static preservation. We hypothesized that repeated regular ex vivo lung perfusion would better maintain lung grafts. METHODS Ten pig lungs were randomized into 2 groups. The control underwent 16 h of cold ischemic time and 2 h of cellular ex vivo lung perfusion. The intermittent ex vivo lung perfusion group underwent cold ischemic time for 4 h, ex vivo lung perfusion (first) for 2 h, cold ischemic time for 10 h, and 2 h of ex vivo lung perfusion (second). Lungs were assessed, and transplant suitability was determined after 2 h of ex vivo lung perfusion. RESULTS The second ex vivo lung perfusion was significantly associated with better oxygenation, limited extravascular water, higher adenosine triphosphate, reduced intraalveolar edema, and well-preserved mitochondria compared with the control, despite proinflammatory cytokine elevation. No significant difference was observed in the first and second perfusion regarding oxygenation and adenosine triphosphate, whereas the second was associated with lower dynamic compliance and higher extravascular lung water than the first. Transplant suitability was 100% for the first and 60% for the second ex vivo lung perfusion, and 0% for the control. CONCLUSIONS The second ex vivo lung perfusion had a slight deterioration in graft function compared to the first. Intermittent ex vivo lung perfusion created a better condition for lung grafts than cold static preservation, despite cytokine elevation. These results suggested that intermittent ex vivo lung perfusion may help prolong lung preservation.
Collapse
Affiliation(s)
- Ichiro Sakanoue
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Kamal S Ayyat
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - James J Yun
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| | - Carol F Farver
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Hisashi Fujioka
- Cryo-Electron Microscopy Core, Case Western Reserve University, Cleveland, OH
| | - Hiroshi Date
- Department of Thoracic Surgery, Kyoto University, Kyoto, Japan
| | - Kenneth R McCurry
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Transplant Center, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
3
|
Lee ACH, Edobor A, Wigakumar T, Lysandrou M, Johnston LK, McMullen P, Mirle V, Diaz A, Piech R, Rose R, Jendrisak M, di Sabato D, Shanmugarajah K, Fung J, Donington J, Madariaga ML. Donor leukocyte trafficking during human ex vivo lung perfusion. Clin Transplant 2022; 36:e14670. [PMID: 35396887 PMCID: PMC9540615 DOI: 10.1111/ctr.14670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022]
Abstract
Background Ex vivo lung perfusion (EVLP) is used to assess and preserve lungs prior to transplantation. However, its inherent immunomodulatory effects are not completely understood. We examine perfusate and tissue compartments to determine the change in immune cell composition in human lungs maintained on EVLP. Methods Six human lungs unsuitable for transplantation underwent EVLP. Tissue and perfusate samples were obtained during cold storage and at 1‐, 3‐ and 6‐h during perfusion. Flow cytometry, immunohistochemistry, and bead‐based immunoassays were used to measure leukocyte composition and cytokines. Mean values between baseline and time points were compared by Student's t test. Results During the 1st hour of perfusion, perfusate neutrophils increased (+22.2 ± 13.5%, p < 0.05), monocytes decreased (−77.5 ± 8.6%, p < 0.01) and NK cells decreased (−61.5 ± 22.6%, p < 0.01) compared to cold storage. In contrast, tissue neutrophils decreased (−22.1 ± 12.2%, p < 0.05) with no change in monocytes and NK cells. By 6 h, perfusate neutrophils, NK cells, and tissue neutrophils were similar to baseline. Perfusate monocytes remained decreased, while tissue monocytes remained unchanged. There was no significant change in B cells or T cell subsets. Pro‐inflammatory cytokines (IL‐1b, G‐CSF, IFN‐gamma, CXCL2, CXCL1 granzyme A, and granzyme B) and lymphocyte activating cytokines (IL‐2, IL‐4, IL‐6, IL‐8) increased during perfusion. Conclusions Early mobilization of innate immune cells occurs in both perfusate and tissue compartments during EVLP, with neutrophils and NK cells returning to baseline and monocytes remaining depleted after 6 h. The immunomodulatory effect of EVLP may provide a therapeutic window to decrease the immunogenicity of lungs prior to transplantation.
Collapse
Affiliation(s)
| | - Arianna Edobor
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Maria Lysandrou
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Laura K Johnston
- Office of Shared Research Facilities, University of Chicago, Chicago, Illinois, USA
| | - Phillip McMullen
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Vikranth Mirle
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ashley Diaz
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Ryan Piech
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Rebecca Rose
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - Diego di Sabato
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | | - John Fung
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Jessica Donington
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
4
|
A translational rat model for ex vivo lung perfusion of pre-injured lungs after brain death. PLoS One 2021; 16:e0260705. [PMID: 34855870 PMCID: PMC8638921 DOI: 10.1371/journal.pone.0260705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022] Open
Abstract
The process of brain death (BD) detrimentally affects donor lung quality. Ex vivo lung perfusion (EVLP) is a technique originally designed to evaluate marginal donor lungs. Nowadays, its potential as a treatment platform to repair damaged donor lungs is increasingly studied in experimental models. Rat models for EVLP have been described in literature before, yet the pathophysiology of BD was not included in these protocols and prolonged perfusion over 3 hours without anti-inflammatory additives was not achieved. We aimed to establish a model for prolonged EVLP of rat lungs from brain-dead donors, to provide a reliable platform for future experimental studies. Rat lungs were randomly assigned to one of four experimental groups (n = 7/group): 1) healthy, directly procured lungs, 2) lungs procured from rats subjected to 3 hours of BD and 1 hour cold storage (CS), 3) healthy, directly procured lungs subjected to 6 hours EVLP and 4), lungs procured from rats subjected to 3 hours of BD, 1 hour CS and 6 hours EVLP. Lungs from brain-dead rats showed deteriorated ventilation parameters and augmented lung damage when compared to healthy controls, in accordance with the pathophysiology of BD. Subsequent ex vivo perfusion for 6 hours was achieved, both for lungs of healthy donor rats as for pre-injured donor lungs from brain-dead rats. The worsened quality of lungs from brain-dead donors was evident during EVLP as well, as corroborated by deteriorated ventilation performance, increased lactate production and augmented inflammatory status during EVLP. In conclusion, we established a stable model for prolonged EVLP of pre-injured lungs from brain-dead donor rats. In this report we describe tips and pitfalls in the establishment of the rat EVLP model, to enhance reproducibility by other researchers.
Collapse
|
5
|
Gloria JN, Yerxa J, Kesseli SJ, Davis RP, Samoylova ML, Barbas AS, Hartwig MG. Subnormothermic ex vivo lung perfusion attenuates graft inflammation in a rat transplant model. J Thorac Cardiovasc Surg 2021; 164:e59-e70. [PMID: 33640121 DOI: 10.1016/j.jtcvs.2021.01.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Ex vivo lung perfusion has emerged as a novel technique to safely preserve lungs before transplantation. Recent studies have demonstrated an accumulation of inflammatory molecules in the perfusate during ex vivo lung perfusion. These proinflammatory molecules, including damage-associated molecular patterns and inflammatory cytokines, may contribute to acute and chronic allograft dysfunction. At present, ex vivo lung perfusion is performed clinically at normothermic temperature (37°C). The effect of lowering temperature to the subnormothermic range during ex vivo lung perfusion has not been reported. In this study, we hypothesized that lower ex vivo lung perfusion temperature will lead to a reduction in allograft inflammation and result in improved post-transplant graft function. METHODS Lewis rat heart-lung blocs underwent 4 hours of ex vivo lung perfusion in 3 temperature groups: 37°C (MP37), 30°C (MP30), and 25°C (MP25). In the control group, lung grafts were preserved by static cold storage before transplantation. After ex vivo lung perfusion or static cold storage, the left lung was transplanted for 2 hours before the animal was killed. Sera and tissue were collected and analyzed. RESULTS There were no differences in partial pressure of arterial oxygenation to fraction of inspired oxygen ratios during 4 hours of ex vivo lung perfusion between temperature groups. Tumor necrosis factor α significantly increased in the MP37 group during ex vivo lung perfusion, whereas this was not seen at lower temperatures. Extracellular DNA and high-mobility group box 1 perfusate concentrations increased significantly during ex vivo lung perfusion in all groups, but the rate of increase was diminished at lower temperature. Two hours post-transplant, there were no significant differences in partial pressure of arterial oxygenation to fraction of inspired oxygen ratios of the lung graft or serum damage-associated molecular pattern levels among groups. On histologic grading after transplantation, greater injury was observed in the MP30 and MP37 groups, but not MP25, when compared with static cold storage. CONCLUSIONS Subnormothermic ex vivo lung perfusion at 25°C reduces the production of inflammatory mediators during ex vivo lung perfusion and is associated with reduced histologic graft injury after transplantation.
Collapse
Affiliation(s)
| | - John Yerxa
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Samuel J Kesseli
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC.
| | - Robert P Davis
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC
| | - Mariya L Samoylova
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Andrew S Barbas
- Division of Abdominal Transplant Surgery, Department of Surgery, Duke University, Durham, NC
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University, Durham, NC; Department of Immunology, Duke University School of Medicine, Durham, NC
| | | |
Collapse
|