1
|
Wagenhäuser I, Almanzar G, Förg FB, Stein A, Eiter I, Reusch J, Mees J, Herzog A, Vogel U, Frey A, Lâm TT, Schubert-Unkmeir A, Dölken L, Kurzai O, Frantz S, Gabel A, Petri N, Prelog M, Krone M. Heterologous and homologous COVID-19 mRNA vaccination schemes for induction of basic immunity show similar immunogenicity regarding long-term spike-specific cellular immunity in healthcare workers. Vaccine 2024; 42:126132. [PMID: 39034219 DOI: 10.1016/j.vaccine.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Healthcare workers (HCWs) are recommended to receive at least three spike-antigen exposures to generate basic immunity and to mediate herd protection of vulnerable patients. So far, less attention has been put on the cellular immune response induced by homologous (three BTN162b2mRNA doses) or heterologous (mRNA-1273 as third dose building on two BTN162bmRNA doses) and the immunological impact of breakthrough infections (BTIs). Therefore, in 356 vaccinated HCWs with or without BTIs the Anti-SARS-CoV-2-Spike-IgG concentrations and avidities and B- and T-cell-reactivity against SARS-CoV-2-Spike-S1- and Nucleocapsid-antigens were assessed with Interferon-gamma-ELISpot and by flow-cytometry. HCWs who had hybrid immunity due to BTIs exhibited strong T-cell-reactivity against the Spike-S1-antigen. A lasso regression model revealed a significant reduction in T-cell immune responses among smokers (p < 0.0001), with less significant impact observed for age, sex, heterologous vaccination, body-mass-index, Anti-Nucleocapsid T-cell reactivity, days since last COVID-19-immunization, and Anti-SARS-CoV-2-Spike-IgG. Although subgroup analysis revealed higher Anti-SARS-CoV-2-Spike-IgG after heterologous vaccination, similar cellular reactivity and percentages of Spike-reactive T- and B-cells were found between homologous and heterologous vaccination. Anti-SARS-CoV-2-Spike-IgG concentrations and avidity significantly correlated with activated T-cells. CD4 + and CD8 + responses correlated with each other. A strong long-term cellular immune response should be considered as baseline for recommendations of booster doses in HCWs with prioritization of smokers. HCWs presented significant T-cellular reactivity towards Spike-S1-antigen with particularly strong responses in hybrid immunized HCWs who had BTIs. HCWs without BTI presented similar percentages of Spike-specific B- and T-cells between homologous or heterologous vaccination indicating similar immunogenicity for both mRNA vaccines, BNT162b2mRNA and mRNA-1273.
Collapse
Affiliation(s)
- Isabell Wagenhäuser
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Giovanni Almanzar
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Franziska Bernhardine Förg
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Astrid Stein
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Isabella Eiter
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Julia Reusch
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Juliane Mees
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Anna Herzog
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Ulrich Vogel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Alexandra Schubert-Unkmeir
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany; Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Jena, 07745, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Alexander Gabel
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, 97080, Germany
| | - Martina Prelog
- Pediatric Rheumatology/Special Immunology / Department of Pediatrics, University Hospital Würzburg, Würzburg, 97080, Germany.
| | - Manuel Krone
- Infection Control and Antimicrobial Stewardship Unit, University Hospital Würzburg, Würzburg, 97080, Germany; Institute for Hygiene and Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
2
|
Malahe SRK, den Hartog Y, Rietdijk WJR, van Baarle D, de Kuiper R, Reijerkerk D, Ras AM, Geers D, Diavatopoulos DA, Messchendorp AL, van der Molen RG, Imhof C, Frölke SC, Bemelman FJ, Gansevoort RT, Hilbrands LB, Sanders JSF, GeurtsvanKessel CH, Kho MML, de Vries RD, Reinders MEJ, Baan CC. Repeated COVID-19 Vaccination Drives Memory T- and B-cell Responses in Kidney Transplant Recipients: Results From a Multicenter Randomized Controlled Trial. Transplantation 2024; 108:00007890-990000000-00797. [PMID: 38902860 PMCID: PMC11581438 DOI: 10.1097/tp.0000000000005119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Insight into cellular immune responses to COVID-19 vaccinations is crucial for optimizing booster programs in kidney transplant recipients (KTRs). METHODS In an immunologic substudy of a multicenter randomized controlled trial (NCT05030974) investigating different repeated vaccination strategies in KTR who showed poor serological responses after 2 or 3 doses of an messenger RNA (mRNA)-based vaccine, we compared SARS-CoV-2-specific interleukin-21 memory T-cell and B-cell responses by enzyme-linked immunosorbent spot (ELISpot) assays and serum IgG antibody levels. Patients were randomized to receive: a single dose of mRNA-1273 (100 μg, n = 25), a double dose of mRNA-1273 (2 × 100 μg, n = 25), or a single dose of adenovirus type 26 encoding the SARS-CoV-2 spike glycoprotein (Ad26.COV2.S) (n = 25). In parallel, we also examined responses in 50 KTR receiving 100 μg mRNA-1273, randomized to continue (n = 25) or discontinue (n = 25) mycophenolate mofetil/mycophenolic acid. As a reference, the data were compared with KTR who received 2 primary mRNA-1273 vaccinations. RESULTS Repeated vaccination increased the seroconversion rate from 21% to 66% in all patients, which was strongly associated with enhanced levels of SARS-CoV-2-specific interleukin-21 memory T cells (odd ratio, 3.84 [1.89-7.78]; P < 0.001) and B cells (odd ratio, 35.93 [6.94-186.04]; P < 0.001). There were no significant differences observed in these responses among various vaccination strategies. In contrast to KTR vaccinated with 2 primary vaccinations, the number of antigen-specific memory B cells demonstrated potential for classifying seroconversion after repeated vaccination (area under the curve, 0.64; 95% confidence interval, 0.37-0.90; P = 0.26 and area under the curve, 0.95; confidence interval, 0.87-0.97; P < 0.0001, respectively). CONCLUSIONS Our study emphasizes the importance of virus-specific memory T- and B-cell responses for comprehensive understanding of COVID-19 vaccine efficacy among KTR.
Collapse
Affiliation(s)
- S. Reshwan K. Malahe
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Yvette den Hartog
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wim J. R. Rietdijk
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology and Infection Prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronella de Kuiper
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Derek Reijerkerk
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alicia M. Ras
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daryl Geers
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dimitri A. Diavatopoulos
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - A. Lianne Messchendorp
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Renate G. van der Molen
- Radboud Institute for Molecular Life Sciences, Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Céline Imhof
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sophie C. Frölke
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Frederike J. Bemelman
- Renal Transplant Unit, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ron T. Gansevoort
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Luuk B. Hilbrands
- Department of Nephrology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Marcia M. L. Kho
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marlies E. J. Reinders
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Carla C. Baan
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC Transplant Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Bronder S, Mihm J, Urschel R, Klemis V, Schmidt T, Marx S, Abu-Omar A, Hielscher F, Guckelmus C, Widera M, Sester U, Sester M. Potent induction of humoral and cellular immunity after bivalent BA.4/5 mRNA vaccination in dialysis patients. NPJ Vaccines 2024; 9:25. [PMID: 38326340 PMCID: PMC10850212 DOI: 10.1038/s41541-024-00816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Knowledge on immunogenicity of the bivalent Omicron BA.4/5 vaccine in dialysis patients and the effect of a previous infection is limited. Therefore, vaccine-induced humoral and cellular immunity was analyzed in dialysis patients and immunocompetent controls with and without prior infection. In an observational study, 33 dialysis patients and 58 controls matched for age, sex and prior infection status were recruited. Specific IgG, neutralizing antibody activity and cellular immunity towards the spike-antigen from parental SARS-CoV-2 and Omicron-subvariants BA.1, BA.2 and BA.4/5 were analyzed before and 13-18 days after vaccination. The bivalent vaccine led to a significant induction of IgG, neutralizing titers, and specific CD4+ and CD8+ T-cell levels. Neutralizing activity towards the parental strain was higher than towards the Omicron-subvariants, whereas specific T-cell levels towards parental spike and Omicron-subvariants did not differ indicating substantial cross-reactivity. Dialysis patients with prior infection had significantly higher spike-specific CD4+ T-cell levels with lower CTLA-4 expression compared to infection-naive patients. When compared to controls, no differences were observed between infection-naive individuals. Among convalescent individuals, CD4+ T-cell levels were higher in patients and neutralizing antibodies were higher in controls. Vaccination was overall well tolerated in both dialysis patients and controls with significantly less adverse events among patients. In conclusion, our study did not provide any evidence for impaired immunogenicity of the bivalent Omicron BA.4/5 vaccine in dialysis patients. Unlike in controls, previous infection of patients was even associated with higher levels of spike-specific CD4+ T cells, which may reflect prolonged encounter with antigen during infection.
Collapse
Affiliation(s)
- Saskia Bronder
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | | | - Rebecca Urschel
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Verena Klemis
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Tina Schmidt
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Amina Abu-Omar
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Franziska Hielscher
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Candida Guckelmus
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | | | - Martina Sester
- Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), Saarland University, Homburg, Germany.
| |
Collapse
|
4
|
Messchendorp AL, Sanders JSF, Abrahams AC, Bemelman FJ, Bouwmans P, van den Dorpel RMA, Hilbrands LB, Imhof C, Reinders MEJ, Rispens T, Steenhuis M, ten Dam MAGJ, Vart P, de Vries APJ, Hemmelder MH, Gansevoort RT. Incidence and Severity of COVID-19 in Relation to Anti-Receptor-Binding Domain IgG Antibody Level after COVID-19 Vaccination in Kidney Transplant Recipients. Viruses 2024; 16:114. [PMID: 38257814 PMCID: PMC10820724 DOI: 10.3390/v16010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Kidney transplant recipients (KTRs) elicit an impaired immune response after COVID-19 vaccination; however, the exact clinical impact remains unclear. We therefore analyse the relationship between antibody levels after vaccination and the risk of COVID-19 in a large cohort of KTRs. All KTRs living in the Netherlands were invited to send a blood sample 28 days after their second COVID-19 vaccination for measurement of their IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein (anti-RBD IgG). Information on COVID-19 was collected from the moment the blood sample was obtained until 6 months thereafter. Multivariable Cox and logistic regression analyses were performed to analyse which factors affected the occurrence and severity (i.e., hospitalization and/or death) of COVID-19. In total, 12,159 KTRs were approached, of whom 2885 were included in the analyses. Among those, 1578 (54.7%) became seropositive (i.e., anti-RBD IgG level >50 BAU/mL). Seropositivity was associated with a lower risk for COVID-19, also after adjusting for multiple confounders, including socio-economic status and adherence to COVID-19 restrictions (HR 0.37 (0.19-0.47), p = 0.005). When studied on a continuous scale, we observed a log-linear relationship between antibody level and the risk for COVID-19 (HR 0.52 (0.31-0.89), p = 0.02). Similar results were found for COVID-19 severity. In conclusion, antibody level after COVID-19 vaccination is associated in a log-linear manner with the occurrence and severity of COVID-19 in KTRs. This implies that if future vaccinations are indicated, the aim should be to reach for as high an antibody level as possible and not only seropositivity to protect this vulnerable patient group from disease.
Collapse
Affiliation(s)
- A. Lianne Messchendorp
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Jan-Stephan F. Sanders
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Alferso C. Abrahams
- Department of Nephrology and Hypertension, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Frederike J. Bemelman
- Division of Nephrology, Department of Internal Medicine, Amsterdam University Medical Center, Location Amsterdam Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Pim Bouwmans
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- CARIM School for Cardiovascular Disease, University of Maastricht, 6211 LK Maastricht, The Netherlands
| | | | - Luuk B. Hilbrands
- Department of Nephrology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Céline Imhof
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Marlies E. J. Reinders
- Erasmus MC Transplant Institute, Nephrology and Transplantation, Department of Internal Medicine, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, 1006 AD Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research, 1006 AD Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Marc A. G. J. ten Dam
- Department of Internal Medicine, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Priya Vart
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Aiko P. J. de Vries
- Leiden University Medical Center, Department of Nephrology and Leiden Transplant Center, 2333 ZA Leiden, The Netherlands
| | - Marc H. Hemmelder
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Ron T. Gansevoort
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | | |
Collapse
|
5
|
Hoek RAS, Liu S, GeurtsvanKessel CH, Verschuuren EAM, Vonk JM, Hellemons ME, Kool M, Wijbenga N, Bogers S, Scherbeijn S, Rugebregt S, van Gemert JP, Steenhuis WN, Niesters HGM, van Baarle D, de Vries RD, Van Leer Buter C. Humoral and cellular immune responses after COVID-19 vaccination of lung transplant recipients and patients on the waiting list: a 6-month follow-up. Front Immunol 2024; 14:1254659. [PMID: 38239369 PMCID: PMC10794507 DOI: 10.3389/fimmu.2023.1254659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Background Data on cellular response and the decay of antibodies and T cells in time are scarce in lung transplant recipients (LTRs). Additionally, the development and durability of humoral and cellular immune responses have not been investigated in patients on the waitlist for lung transplantation (WLs). Here, we report our 6-month follow-up of humoral and cellular immune responses of LTRs and WLs, compared with controls. Methods Humoral responses to two doses of the mRNA-1273 vaccination were assessed by determining spike (S)-specific IgG antibodies and neutralizing antibodies. Cellular responses were investigated by interferon gamma (IFN-γ) release assay (IGRA) and IFN-γ ELISpot assay at 28 days and 6 months after the second vaccination. Results In LTRs, the level of antibodies and T-cell responses was significantly lower at 28 days after the second vaccination. Also, WLs had lower antibody titers and lower T-cell responses compared with controls. Six months after the second vaccination, all groups showed a decrease in antibody titers and T-cell responses. In WLs, the rate of decline of neutralizing antibodies and T-cell responses was significantly higher than in controls. Conclusion Our results show that humoral and cellular responses in LTRs, if they develop, decrease at rates comparable with controls. In contrast, the inferior cellular responses and the rapid decay of both humoral and cellular responses in the WL groups imply that WLs may not be protected adequately by two vaccinations and repeat boostering may be necessary to induce protection that lasts beyond the months immediately post-transplantation.
Collapse
Affiliation(s)
- Rogier A. S. Hoek
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Siqi Liu
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Erik A. M. Verschuuren
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Judith M. Vonk
- Department of Epidemiology and Groningen Research Institute for Asthma and Chronic Obstructive Pulmonary Disease (COPD) (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Merel E. Hellemons
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nynke Wijbenga
- Department of Pulmonary Medicine, Erasmus Medical Center (MC) Transplant Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Susanne Bogers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sandra Scherbeijn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sharona Rugebregt
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Johanna P. van Gemert
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Willie N. Steenhuis
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debbie van Baarle
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Coretta Van Leer Buter
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
6
|
Viganò M, Beretta M, Lepore M, Abete R, Benatti SV, Grassini MV, Camagni S, Chiodini G, Vargiu S, Vittori C, Iachini M, Terzi A, Neri F, Pinelli D, Casotti V, Di Marco F, Ruggenenti P, Rizzi M, Colledan M, Fagiuoli S. Vaccination Recommendations in Solid Organ Transplant Adult Candidates and Recipients. Vaccines (Basel) 2023; 11:1611. [PMID: 37897013 PMCID: PMC10611006 DOI: 10.3390/vaccines11101611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Prevention of infections is crucial in solid organ transplant (SOT) candidates and recipients. These patients are exposed to an increased infectious risk due to previous organ insufficiency and to pharmacologic immunosuppression. Besides infectious-related morbidity and mortality, this vulnerable group of patients is also exposed to the risk of acute decompensation and organ rejection or failure in the pre- and post-transplant period, respectively, since antimicrobial treatments are less effective than in the immunocompetent patients. Vaccination represents a major preventive measure against specific infectious risks in this population but as responses to vaccines are reduced, especially in the early post-transplant period or after treatment for rejection, an optimal vaccination status should be obtained prior to transplantation whenever possible. This review reports the currently available data on the indications and protocols of vaccination in SOT adult candidates and recipients.
Collapse
Affiliation(s)
- Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy (S.F.)
| | - Marta Beretta
- Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.B.); (F.D.M.)
| | - Marta Lepore
- Unit of Nephrology and Dialysis, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.L.); (P.R.)
| | - Raffaele Abete
- Cardiology Division, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy (C.V.)
| | - Simone Vasilij Benatti
- Infectious Diseases Unit, ASST Papa Giovanni XXII, 24127 Bergamo, Italy; (S.V.B.); (M.R.)
| | - Maria Vittoria Grassini
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy (S.F.)
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90128 Palermo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.C.); (F.N.); (D.P.); (M.C.)
| | - Greta Chiodini
- Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.B.); (F.D.M.)
| | - Simone Vargiu
- Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.B.); (F.D.M.)
| | - Claudia Vittori
- Cardiology Division, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy (C.V.)
| | - Marco Iachini
- Unit of Nephrology and Dialysis, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.L.); (P.R.)
| | - Amedeo Terzi
- Cardiothoracic Department, ASST Papa Giovanni XXII, 24127 Bergamo, Italy;
| | - Flavia Neri
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.C.); (F.N.); (D.P.); (M.C.)
| | - Domenico Pinelli
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.C.); (F.N.); (D.P.); (M.C.)
| | - Valeria Casotti
- Pediatric Hepatology, Gastroenterology and Transplantation Unit, ASST Papa Giovanni XXII, 24127 Bergamo, Italy;
| | - Fabiano Di Marco
- Pulmonary Medicine Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.B.); (F.D.M.)
- Department of Health Sciences, University of Milan, 20158 Milan, Italy
| | - Piero Ruggenenti
- Unit of Nephrology and Dialysis, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (M.L.); (P.R.)
- Department of Renal Medicine, Clinical Research Centre for Rare Diseases “Aldo e Cele Daccò”, Institute of Pharmacologic Research “Mario Negri IRCCS”, Ranica, 24020 Bergamo, Italy
| | - Marco Rizzi
- Infectious Diseases Unit, ASST Papa Giovanni XXII, 24127 Bergamo, Italy; (S.V.B.); (M.R.)
| | - Michele Colledan
- Department of Organ Failure and Transplantation, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy; (S.C.); (F.N.); (D.P.); (M.C.)
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy (S.F.)
- Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
7
|
Udomkarnjananun S, Gatechompol S, Leelahavanichkul A, Kerr SJ. Cellular immune response of SARS-CoV-2 vaccination in kidney transplant recipients: a systematic review and meta-analysis. Front Immunol 2023; 14:1220148. [PMID: 37575225 PMCID: PMC10415203 DOI: 10.3389/fimmu.2023.1220148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Background Evidence has demonstrated inferior humoral immune responses after SARS-CoV-2 vaccination in kidney transplant recipients compared to the general population. However, data on cellular immune responses in this population have not been established. Methods We searched the MEDLINE, Scopus, and Cochrane databases and included studies reporting cellular immune response rates in kidney transplant recipients after receiving SARS-CoV-2 vaccines. Studies that reported factors associated with cellular immune responders or non-responders were also included (PROSPERO: CRD42022375544). Results From a total of 1,494 articles searched, 53 articles were included in the meta-analysis. In all, 21 studies assessed cellular immune response by interferon-γ enzyme-linked immunosorbent spot (IFN-γ ELISPOT), 22 studies used interferon-γ release assay (IGRA), and 10 studies used flow cytometric analysis. The pooled response rate after two doses (standard regimen) and three doses of vaccination was 47.5% (95%CI 38.4-56.7%) and 69.1% (95%CI 56.3-80.6%) from IFN-γ ELISPOT, 25.8% (95%CI 19.7-32.4%) and 14.7% (95%CI 8.5-22.2%) from IGRA, and 73.7% (95%CI 55.2-88.8%) and 86.5% (95%CI 75.3-94.9%) from flow cytometry, respectively. Recipients with seroconversion were associated with a higher chance of having cellular immune response (OR 2.58; 95%CI 1.89-3.54). Cellular immune response in kidney transplant recipients was lower than in dialysis patients (OR 0.24; 95%CI 0.16-0.34) and the general population (OR 0.10; 95%CI 0.07-0.14). Age and immunosuppressants containing tacrolimus or corticosteroid were associated with inferior cellular immune response. Conclusion Cellular immune response after SARS-CoV-2 vaccination in kidney transplant recipients was lower than in dialysis patients and the general population. Age, tacrolimus, and corticosteroid were associated with poor response. Cellular immune response should also be prioritized in vaccination studies. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022375544.
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Excellence Center for Organ Transplantation (ECOT), King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
- Immunology Unit, Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| | - Stephen J. Kerr
- HIV-NAT, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
- Biostatistics Excellence Centre, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
8
|
Rossi M, Pessolano G, Gambaro G. What has vaccination against COVID-19 in CKD patients taught us? J Nephrol 2023; 36:1257-1266. [PMID: 37140817 PMCID: PMC10157569 DOI: 10.1007/s40620-023-01640-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Effective vaccination strategies are of crucial importance to protecting patients who are vulnerable to infections, such as patients with chronic kidney disease. This is because the decreased efficiency of the immune system in chronic kidney disease impairs vaccine-induced immunisation. COVID-19 has prompted investigation of the immune response to SARS-CoV-2 vaccines in chronic kidney disease and in kidney transplant recipients in an effort to improve efficacy. The seroconversion rate after two vaccine doses is reduced, especially in kidney transplant recipients. Furthermore, although the seroconversion rate in chronic kidney disease patients is as high as in healthy subjects, anti-spike antibody titres are lower than in healthy vaccinated individuals, and these titres decrease rapidly. Although the vaccine-induced anti-spike antibody titre correlates with neutralising antibody levels and with protection against COVID-19, the protective prognostic significance of their titre is decreased due to the emergence of SARS-CoV-2 variants other than the Wuhan index virus against which the original vaccines were produced. Cellular immunity is also relevant, and because of cross-reactivity to the spike protein, epitopes of different viral variants confer protection against newly emerging variants of SARS-CoV-2. A multi-dose vaccination strategy is the most effective way to obtain a sufficient serological response. In kidney transplant recipients, a 5-week discontinuation period from antimetabolite drugs in concomitance with vaccine administration may also increase the vaccine's efficacy. The newly acquired knowledge obtained from COVID-19 vaccination is of general interest for the success of other vaccinations in chronic kidney disease patients.
Collapse
Affiliation(s)
- Mattia Rossi
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy.
| | - Giuseppina Pessolano
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy
| | - Giovanni Gambaro
- Division of Nephrology, Department of Medicine, University of Verona, Piazzale A. Stefani 1, 37126, Verona, Italy
| |
Collapse
|