1
|
Zhang Y, Zhu XB, Gan J, Song L, Qi C, Wu N, Wan Y, Hou M, Liu Z. Impulse control behaviors and apathy commonly co-occur in de novo Parkinson's disease and predict the incidence of levodopa-induced dyskinesia. J Affect Disord 2024; 351:895-903. [PMID: 38342317 DOI: 10.1016/j.jad.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE Impulse control behaviors (ICBs) and apathy are believed to represent opposite motivational expressions of the same behavioral spectrum involving hypo- and hyperdopaminergic status, but this has been recently debated. Our study aims to estimate the co-occurrence of ICBs and apathy in early Parkinson's disease (PD) and to determine whether this complex neuropsychiatric condition is an important marker of PD prognoses. METHODS Neuropsychiatric symptoms, clinical data, neuroimaging results, and demographic data from de novo PD patients were obtained from the Parkinson's Progression Markers Initiative, a prospective, multicenter, observational cohort. The clinical characteristics of ICBs co-occurring with apathy and their prevalence were analyzed. We compared the prognoses of the different groups during the 8-year follow-up. Multivariate Cox regression analysis was conducted to predict the development of levodopa-induced dyskinesia (LID) using baseline neuropsychiatric symptoms. RESULTS A total of 422 PD patients and 195 healthy controls (HCs) were included. In brief, 87 (20.6 %) de novo PD patients and 37 (19.0 %) HCs had ICBs at baseline. Among them, 23 (26.4 %) de novo PD patients and 3 (8.1 %) HCs had clinical symptoms of both ICBs and apathy. The ICBs and apathy group had more severe non-motor symptoms than the isolated ICBs group. Cox regression analysis demonstrated that the co-occurrence of ICBs and apathy was a risk factor for LID development (HR 2.229, 95 % CI 1.209 to 4.110, p = 0.010). CONCLUSIONS Co-occurrence of ICBs and apathy is common in patients with early PD and may help to identify the risk of LID development.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Xiao Bo Zhu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China; Department of Neurology, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Gong yuan East Road, Shanghai 201700, People's Republic of China
| | - Jing Gan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Chen Qi
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Na Wu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Ying Wan
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Miaomiao Hou
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong jiang Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
2
|
Toś M, Grażyńska A, Antoniuk S, Siuda J. Impulse Control Disorders in Parkinson's Disease and Atypical Parkinsonian Syndromes-Is There a Difference? Brain Sci 2024; 14:181. [PMID: 38391755 PMCID: PMC10886884 DOI: 10.3390/brainsci14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Impulse control disorders (ICDs) are characterized by potentially harmful actions resulting from disturbances in the self-control of emotions and behavior. ICDs include disorders such as gambling, hypersexuality, binge eating, and compulsive buying. ICDs are known non-motor symptoms in Parkinson's disease (PD) and are associated primarily with the use of dopaminergic treatment (DRT) and especially dopamine agonists (DA). However, in atypical parkinsonism (APS), such as progressive supranuclear palsy (PSP) or multiple system atrophy (MSA), there are only single case reports of ICDs without attempts to determine the risk factors for their occurrence. Moreover, numerous reports in the literature indicate increased impulsivity in PSP. Our study aimed to determine the frequency of individual ICDs in APS compared to PD and identify potential factors for developing ICDs in APS. MATERIALS AND METHODS Our prospective study included 185 patients with PD and 35 with APS (27 patients with PSP and 9 with MSA) hospitalized between 2020 and 2023 at the Neurological Department of University Central Hospital in Katowice. Each patient was examined using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease (QUIP) to assess ICDs. Additionally, other scales were used to assess the advancement of the disease, the severity of depression, and cognitive impairment. Information on age, gender, age of onset, disease duration, and treatment used were collected from medical records and patient interviews. RESULTS ICDs were detected in 23.39% of patients with PD (including binge eating in 11.54%, compulsive buying in 10.44%, hypersexuality in 8.79%, and pathological gambling in 4.40%), in one patient with MSA (hypersexuality and pathological gambling), and in 18.52% of patients with PSP (binge eating in 3.70%, compulsive buying in 7.41%, and hypersexuality in 11.11%). We found no differences in the frequency of ICDs between individual diseases (p = 0.4696). We confirmed that the use of higher doses of DA and L-dopa in patients with PD, as well as a longer disease duration and the presence of motor complications, were associated with a higher incidence of ICDs. However, we did not find any treatment effect on the incidence of ICDs in APS. CONCLUSIONS ICDs are common and occur with a similar frequency in PD and APS. Well-described risk factors for ICDs in PD, such as the use of DRT or longer disease duration, are not fully reflected in the risk factors for ICDs in APS. This applies especially to PSP, which, unlike PD and MSA, is a tauopathy in which, in addition to the use of DRT, other mechanisms related to the disease, such as disorders in neuronal loops and neurotransmitter deficits, may influence the development of ICDs. Further prospective multicenter studies recruiting larger groups of patients are needed to fully determine the risk factors and mechanisms of ICD development in APS.
Collapse
Affiliation(s)
- Mateusz Toś
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Grażyńska
- Department of Imaging Diagnostics and Interventional Radiology, Kornel Gibiński Independent Public Central Clinical Hospital, Medical University of Silesia, 40-055 Katowice, Poland
| | - Sofija Antoniuk
- St. Barbara Regional Specialist Hospital No. 5, 41-200 Sosnowiec, Poland
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
3
|
Zhu X, Gan J, Wu N, Wan Y, Song L, Liu Z, Zhang Y. Assessing impulse control behaviors in early Parkinson's disease: a longitudinal study. Front Neurol 2023; 14:1275170. [PMID: 37954646 PMCID: PMC10634396 DOI: 10.3389/fneur.2023.1275170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
Objective Impulse control behaviors (ICBs) frequently coexist with Parkinson's disease (PD). However, the predictors of ICBs in PD remain unclear, and there is limited data on the biological correlates of ICBs in PD. In this study, we examined clinical, imaging, and biological variables to identify factors associated with longitudinal changes in ICBs in early-stage PD. Methods The data for this study were obtained from the Parkinson's Progression Markers Initiative, an international prospective cohort study that evaluates markers of disease progression in PD. We examined clinical, imaging, and biological variables to determine their associations with ICBs over a period of up to 5 years. Cox regression models were employed to investigate the predictors of ICBs in early-stage, untreated PD. Results The study enrolled 401 individuals with PD and 185 healthy controls (HC). At baseline, 83 PD subjects (20.7%) and 36 HC (19.5%) exhibited ICBs. Over the course of 5 years, the prevalence of ICBs increased in PD (from 20.7% to 27.3%, p < 0.001), while it decreased in HC (from 19.5% to 15.2%, p < 0.001). Longitudinally, the presence of ICBs in PD was associated with depression, anxiety, autonomic dysfunction, and excessive daytime sleepiness (EDS). However, there was no significant association observed with cognitive dysfunction or motor severity. Treatment with dopamine agonists was linked to ICBs at years 3 and 4. Conversely, there was no association found between ICBs and presynaptic dopaminergic dysfunction. Additionally, biofluid markers in baseline and the first year did not show a significant association with ICBs. A predictive index for ICBs was generated, incorporating three baseline characteristics: anxiety, rapid eye movement sleep behavior disorder (RBD), and p-tau levels in cerebrospinal fluid (CSF). Conclusion During the early stages of PD, there is a notable increase in ICBs over time. These ICBs are associated with depression, anxiety, autonomic dysfunction, EDS, and the use of dopaminergic medications, particularly dopamine agonists. Anxiety, RBD, and p-tau levels in CSF are identified as predictors for the incident development of ICBs in early PD. Further longitudinal analyses will provide a more comprehensive understanding of the associations between ICBs and imaging findings, as well as biomarkers. These analyses will help to better characterize the relationships and implications of these factors in the context of ICBs in early PD.
Collapse
|
4
|
Austgen G, Marsh L. Cognitive dysfunction and neuropsychiatric aspects of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:59-90. [PMID: 35248207 DOI: 10.1016/bs.pbr.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Movement abnormalities, by definition, and cognitive changes, to varying extents, affect every patient with Parkinson's disease (PD) and are attributed to the underlying neurodegenerative disease. Various psychiatric disorders occur in most patients at some point over the course of PD, including in the prodromal phase. Even though psychiatric disturbances tend to aggravate motor and cognitive deficits, they are under-recognized and under-treated, and the role of the underlying neurological disease is often minimized. To provide an integrated approach to understanding neuropsychiatric aspects of PD, this chapter reviews how cognitive changes in PD relate to the common psychiatric disturbances in PD along with the prevalence, phenomenology, pathophysiology, and treatment of each.
Collapse
Affiliation(s)
- Gabriela Austgen
- Behavioral Neurology & Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Laura Marsh
- Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Professor, Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences and Department of Neurology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
5
|
Jeong H, Park JY, Lee JH, Baik JH, Kim CY, Cho JY, Driscoll M, Paik YK. Deficiency in RCAT-1 Function Causes Dopamine Metabolism Related Behavioral Disorders in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23042393. [PMID: 35216508 PMCID: PMC8879058 DOI: 10.3390/ijms23042393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
When animals are faced with food depletion, food search-associated locomotion is crucial for their survival. Although food search-associated locomotion is known to be regulated by dopamine, it has yet to investigate the potential molecular mechanisms governing the regulation of genes involved in dopamine metabolism (e.g., cat-1, cat-2) and related behavioral disorders. During the studies of the pheromone ascaroside, a signal of starvation stress in C. elegans, we identified R02D3.7, renamed rcat-1 (regulator of cat genes-1), which had previously been shown to bind to regulatory sequences of both cat-1 and cat-2 genes. It was found that RCAT-1 (R02D3.7) is expressed in dopaminergic neurons and functions as a novel negative transcriptional regulator for cat-1 and cat-2 genes. When a food source becomes depleted, the null mutant, rcat-1(ok1745), exhibited an increased frequency of high-angled turns and intensified area restricted search behavior compared to the wild-type animals. Moreover, rcat-1(ok1745) also showed defects in state-dependent olfactory adaptation and basal slowing response, suggesting that the mutants are deficient in either sensing food or locomotion toward food. However, rcat-1(ok1745) has normal cuticular structures and locomotion genes. The discovery of rcat-1 not only identifies a new subtype of dopamine-related behaviors but also provides a potential therapeutic target in Parkinson’s disease.
Collapse
Affiliation(s)
- Haelim Jeong
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
| | - Jun Young Park
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
| | - Ji-Hyun Lee
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA;
| | - Young-Ki Paik
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-4242
| |
Collapse
|
6
|
Yahya AS, Khawaja S, Chukwuma J. Management of impulse control disorders in Parkinson's disease. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2020. [DOI: 10.1002/pnp.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shakil Khawaja
- Dr Khawaja is a Consultant Old Age Psychiatrist, both at North East London NHS Foundation Trust
| | - Jude Chukwuma
- Dr Chukwuma is a Consultant Psychiatrist at the Priory Group
| |
Collapse
|
7
|
Neuropsychiatric aspects of Parkinson’s disease. J Neural Transm (Vienna) 2019; 126:889-896. [DOI: 10.1007/s00702-019-02019-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
|
8
|
Kon T, Ueno T, Haga R, Tomiyama M. The factors associated with impulse control behaviors in Parkinson's disease: A 2-year longitudinal retrospective cohort study. Brain Behav 2018; 8:e01036. [PMID: 29956879 PMCID: PMC6085905 DOI: 10.1002/brb3.1036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Impulse control behaviors (ICBs) are impulsive-compulsive behaviors often associated with dopamine replacement therapy in Parkinson's disease (PD). Although remission can occur in ICB, only four reports on the ratio of remission and the persistence of ICB have been published, and the associated factors with ICB remission or persistence have been little known. Therefore, we conducted a longitudinal assessment of the remission, persistence, and development of ICB and those associated factors in patients with PD. METHODS We retrospectively investigated a PD database at Aomori Prefectural Central Hospital, Japan. One hundred and forty-eight patients with PD who could be followed up for 2 years were enrolled. ICB was assessed using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's disease. Motor severity (Hoehn and Yahr scale and United Parkinson's Disease Rating Scale), cognitive function (Mini-Mental State Examination), and other clinical variables (sex, age, onset age, disease duration, olfactory dysfunction, and dyskinesia) and medications used to treat PD were assessed. Univariate analyses were performed. RESULTS Seven patients were excluded because of the exclusion criteria, and 141 patients were analyzed. Thirty patients (21.3%) had ICB at baseline, and these patients also had significantly higher use of pergolide. The ICB remission rate was 60%, the ICB persistence ratio was 40%, and the ICB development ratio was 12.6% over 2 years. Statistically, younger age and pergolide use were associated with ICB persistence. Being male, having dyskinesia, and rotigotine, entacapone, zonisamide, and istradefylline use were associated with ICB development. CONCLUSION This study suggests that younger age and pergolide use may be the new associated factors with ICB persistence and that entacapone, zonisamide, and istradefylline use may be associated with the development of ICB. Drug profiles and medication practices in Japan may explain the association of these factors with ICB.
Collapse
Affiliation(s)
- Tomoya Kon
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan.,Department of Neuropathology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Tatsuya Ueno
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Rie Haga
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central Hospital, Aomori, Japan
| |
Collapse
|
9
|
Chamberlain SR, Grant JE. Minnesota Impulse Disorders Interview (MIDI): Validation of a structured diagnostic clinical interview for impulse control disorders in an enriched community sample. Psychiatry Res 2018; 265:279-283. [PMID: 29772488 PMCID: PMC5985960 DOI: 10.1016/j.psychres.2018.05.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Disorders of impulsivity are common, functionally impairing, and highly relevant across different clinical and research settings. Few structured clinical interviews for the identification and diagnosis of impulse control disorders exist, and none have been validated in a community sample in terms of psychometric properties. METHODS The Minnesota Impulse control disorders Interview (MIDI v2.0) was administered to an enriched sample of 293 non-treatment seeking adults aged 18-35 years, recruited using media advertisements in two large US cities. In addition to the MIDI, participants undertook extended clinical interview for other mental disorders, the Barratt impulsiveness questionnaire, and the Padua obsessive-compulsive inventory. The psychometric properties of the MIDI were characterized. RESULTS In logistic regression, the MIDI showed good concurrent validity against the reference measures (versus gambling disorder interview, p < 0.001; Barratt impulsiveness attentional and non-planning scores p < 0.05), and good discriminant validity versus primarily non-impulsive symptoms, including against anxiety, depression, and obsessive-compulsive symptoms (all p > 0.05). Test re-test reliability was excellent (0.95). CONCLUSIONS The MIDI has good psychometric properties and thus may be a valuable interview tool for clinical and research studies involving impulse control disorders. Further research is needed to better understanding the optimal diagnostic classification and neurobiology of these neglected disorders.
Collapse
Affiliation(s)
- Samuel R. Chamberlain
- Department of Psychiatry, University of Cambridge, UK,Cambridge and Peterborough NHS Foundation Trust (CPFT), UK
| | - Jon E. Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, 5841 S. Maryland Avenue, MC 3077, Chicago, IL 60637, USA,Corresponding author.
| |
Collapse
|
10
|
Carbunaru S, Eisinger RS, Ramirez-Zamora A, Bassan D, Cervantes-Arriaga A, Rodriguez-Violante M, Martinez-Ramirez D. Impulse control disorders in Parkinson's: Sleep disorders and nondopaminergic associations. Brain Behav 2018; 8:e00904. [PMID: 29541533 PMCID: PMC5840436 DOI: 10.1002/brb3.904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Impulse control disorders (ICDs) are common among patients with Parkinson's disease (PD). Risk factors identified for developing ICDs include young age, family history, and impulsive personality traits. However, the association of these potentially disabling disorders with nondopaminergic drugs and sleep disorders has been understudied. Our objective was to examine the association between ICDs and nondopaminergic medications and sleep disorders. METHODS We conducted an observational study of 53 patients with PD from the National Institute of Neurology and Neurosurgery. ICDs were diagnosed using the Questionnaire for Impulsive-Compulsive Disorders in Parkinson's Disease Rating Scale (QUIP-RS). Patients underwent polysomnography screening to diagnose the presence of sleep disorders. We documented the presence of dopaminergic and nondopaminergic medications, including monoamine oxidase type B inhibitors (MAOBIs), antidepressants, sleep inductors, and antipsychotics. RESULTS ICDs were reported in 18.9% of the patients (n = 10), and sleep disorders were diagnosed in 81.1% of patients (n = 43). 32.1% of the patients were on antidepressants, 17% on MAOBIs, 15.1% on sleep inductors, and 1.9% on antipsychotics. We observed that QUIP-RS A-D subscore depended on the presence of antidepressants (p = .03) and sleep inductors (p = .02). Sleep disorders were not associated with the total QUIP-RS score (p = .93) or QUIP-RS A-D subscore (p = .81). CONCLUSION Antidepressants and sleep inductors were significant predictors for individual QUIP-RS items and subscores. Our results suggest that nondopaminergic drugs commonly used for PD may be associated with impulse control disorders. We did not identify a relationship between ICDs and polysomnography-confirmed sleep disorders in patients with PD. Larger and longitudinal studies are needed to confirm our results.
Collapse
Affiliation(s)
- Samuel Carbunaru
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida Gainesville FL USA
| | - Robert S Eisinger
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida Gainesville FL USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida Gainesville FL USA
| | - Dana Bassan
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida Gainesville FL USA
| | - Amin Cervantes-Arriaga
- Instituto Nacional de Neurología y Neurocirugía Universidad Nacional Autónoma de México Mexico City México
| | - Mayela Rodriguez-Violante
- Instituto Nacional de Neurología y Neurocirugía Universidad Nacional Autónoma de México Mexico City México
| | - Daniel Martinez-Ramirez
- Department of Neurology Center for Movement Disorders and Neurorestoration University of Florida Gainesville FL USA.,Tecnologico de Monterrey Escuela de Medicina y Ciencias de la Salud Monterrey Nuevo Leon México
| |
Collapse
|
11
|
Rochat L, Billieux J, Gagnon J, Van der Linden M. A multifactorial and integrative approach to impulsivity in neuropsychology: insights from the UPPS model of impulsivity. J Clin Exp Neuropsychol 2017; 40:45-61. [PMID: 28398126 DOI: 10.1080/13803395.2017.1313393] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Risky and excessive behaviors, such as aggressive and compulsive behaviors, are frequently described in patients with brain damage and have dramatic psychosocial consequences. Although there is strong evidence that impulsivity constitutes a key factor at play in these behaviors, the literature about impulsivity in neuropsychology is to date scarce. In addition, examining and understanding these problematic behaviors requires the assumption that impulsivity is a multidimensional construct. Consequently, this article aims at shedding light on frequent risky and excessive behaviors in patients with brain damage by focusing on a unified, comprehensive, and well-validated model, namely, the UPPS model of impulsivity. This model considers impulsivity as a multidimensional construct that includes four facets: urgency, (lack of) premeditation, (lack of) perseverance, and sensation seeking. Furthermore, we discuss the psychological mechanisms underlying the dimensions of impulsivity, as well as the laboratory tasks designed to assess each mechanism and their neural bases. We then present a scale specifically designed to assess these four dimensions of impulsivity in patients with brain damage and examine the data regarding this multidimensional approach to impulsivity in neuropsychology. This review supports the need to adopt a multifactorial and integrative approach toward impulsive behaviors, and the model presented provides a valuable rationale to disentangle the nature of brain systems and mechanisms underlying impulsive behaviors in patients with brain damage. It may also foster further relevant research in the field of impulsivity and improve assessment and rehabilitation of impulsive behaviors in clinical settings.
Collapse
Affiliation(s)
- Lucien Rochat
- a Department of Psychology and Educational Sciences, Cognitive Psychopathology and Neuropsychology Unit , University of Geneva , Geneva , Switzerland.,b Swiss Centre for Affective Sciences , University of Geneva , Geneva , Switzerland
| | - Joël Billieux
- c Institute for Health and Behavior, Integrative Research Unit on Social and Individual Development (INSIDE) , University of Luxembourg , Esch-sur-Alzette , Luxembourg.,d Laboratory for Experimental Psychopathology, Psychological Sciences Research Institute , Université catholique de Louvain , Louvain-La-Neuve , Belgium
| | - Jean Gagnon
- e Department of Psychology , University of Montreal , Montreal , Canada.,f Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) , Montreal , Canada.,g Centre de recherche en neuropsychologie et cognition (CERNEC) , Montreal , Canada
| | - Martial Van der Linden
- a Department of Psychology and Educational Sciences, Cognitive Psychopathology and Neuropsychology Unit , University of Geneva , Geneva , Switzerland.,b Swiss Centre for Affective Sciences , University of Geneva , Geneva , Switzerland
| |
Collapse
|
12
|
Tattooing as a Symptom of Impulse Control Disorder in a Parkinsonian Patient With Pramipexole. J Clin Psychopharmacol 2016; 36:736-737. [PMID: 27749676 DOI: 10.1097/jcp.0000000000000585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Vela L, Martínez Castrillo J, García Ruiz P, Gasca-Salas C, Macías Macías Y, Pérez Fernández E, Ybot I, Lopez Valdés E, Kurtis M, Posada Rodriguez I, Mata M, Ruiz Huete C, Eimil M, Borrue C, del Val J, López-Manzanares L, Rojo Sebastian A, Marasescu R. The high prevalence of impulse control behaviors in patients with early-onset Parkinson's disease: A cross-sectional multicenter study. J Neurol Sci 2016; 368:150-4. [DOI: 10.1016/j.jns.2016.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 05/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
|
14
|
Pycroft L, Boccard SG, Owen SLF, Stein JF, Fitzgerald JJ, Green AL, Aziz TZ. Brainjacking: Implant Security Issues in Invasive Neuromodulation. World Neurosurg 2016; 92:454-462. [PMID: 27184896 DOI: 10.1016/j.wneu.2016.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
The security of medical devices is critical to good patient care, especially when the devices are implanted. In light of recent developments in information security, there is reason to be concerned that medical implants are vulnerable to attack. The ability of attackers to exert malicious control over brain implants ("brainjacking") has unique challenges that we address in this review, with particular focus on deep brain stimulation implants. To illustrate the potential severity of this risk, we identify several mechanisms through which attackers could manipulate patients if unauthorized access to an implant can be achieved. These include blind attacks in which the attacker requires no patient-specific knowledge and targeted attacks that require patient-specific information. Blind attacks include cessation of stimulation, draining implant batteries, inducing tissue damage, and information theft. Targeted attacks include impairment of motor function, alteration of impulse control, modification of emotions or affect, induction of pain, and modulation of the reward system. We also discuss the limitations inherent in designing implants and the trade-offs that must be made to balance device security with battery life and practicality. We conclude that researchers, clinicians, manufacturers, and regulatory bodies should cooperate to minimize the risk posed by brainjacking.
Collapse
Affiliation(s)
- Laurie Pycroft
- Oxford Functional Neurosurgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| | - Sandra G Boccard
- Oxford Functional Neurosurgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Sarah L F Owen
- Department of Applied Health and Professional Development, Oxford Brookes University, Headington Campus, Oxford, United Kingdom
| | - John F Stein
- Department of Physiology, Anatomy, and Genetics, Sherrington Road, Oxford, United Kingdom
| | - James J Fitzgerald
- Oxford Functional Neurosurgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Alexander L Green
- Oxford Functional Neurosurgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
15
|
Seinstra M, Wojtecki L, Storzer L, Schnitzler A, Kalenscher T. No Effect of Subthalamic Deep Brain Stimulation on Intertemporal Decision-Making in Parkinson Patients. eNeuro 2016; 3:ENEURO.0019-16.2016. [PMID: 27257622 PMCID: PMC4876489 DOI: 10.1523/eneuro.0019-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson's disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making--delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)--we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS.
Collapse
Affiliation(s)
- Maayke Seinstra
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lena Storzer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Institute of Experimental Psychology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Venkiteswaran K, Alexander DN, Puhl MD, Rao A, Piquet AL, Nyland JE, Subramanian MP, Iyer P, Boisvert MM, Handly E, Subramanian T, Grigson PS. Transplantation of human retinal pigment epithelial cells in the nucleus accumbens of cocaine self-administering rats provides protection from seeking. Brain Res Bull 2015; 123:53-60. [PMID: 26562520 DOI: 10.1016/j.brainresbull.2015.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/05/2015] [Indexed: 01/05/2023]
Abstract
Chronic exposure to drugs and alcohol leads to damage to dopaminergic neurons and their projections in the 'reward pathway' that originate in the ventral tegmental area (VTA) and terminate in the nucleus accumbens (NAc). This damage is thought to contribute to the signature symptom of addiction: chronic relapse. In this study we show that bilateral transplants of human retinal pigment epithelial cells (RPECs), a cell mediated dopaminergic and trophic neuromodulator, into the medial shell of the NAc, rescue rats with a history of high rates of cocaine self-administration from drug-seeking when returned, after 2 weeks of abstinence, to the drug-associated chamber under extinction conditions (i.e., with no drug available). Excellent survival was noted for the transplant of RPECs in the shell and/or the core of the NAc bilaterally in all rats that showed behavioral recovery from cocaine seeking. Design based unbiased stereology of tyrosine hydroxylase (TH) positive cell bodies in the VTA showed better preservation (p<0.035) in transplanted animals compared to control animals. This experiment shows that the RPEC graft provides beneficial effects to prevent drug seeking in drug addiction via its effects directly on the NAc and its neural network with the VTA.
Collapse
Affiliation(s)
- Kala Venkiteswaran
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Danielle N Alexander
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Matthew D Puhl
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Anand Rao
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Amanda L Piquet
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Jennifer E Nyland
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Megha P Subramanian
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Puja Iyer
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Matthew M Boisvert
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Erin Handly
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Thyagarajan Subramanian
- Department of Neurology, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | - Patricia Sue Grigson
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|