1
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Fisher G, Mackels L, Markati T, Sarkozy A, Ochala J, Jungbluth H, Ramdas S, Servais L. Early clinical and pre-clinical therapy development in Nemaline myopathy. Expert Opin Ther Targets 2022; 26:853-867. [PMID: 36524401 DOI: 10.1080/14728222.2022.2157258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Nemaline myopathies (NM) represent a group of clinically and genetically heterogeneous congenital muscle disorders with the common denominator of nemaline rods on muscle biopsy. NEB and ACTA1 are the most common causative genes. Currently, available treatments are supportive. AREAS COVERED We explored experimental treatments for NM, identifying at least eleven mainly pre-clinical approaches utilizing murine and/or human muscle cells. These approaches target either i) the causative gene or associated genes implicated in the same pathway; ii) pathophysiologically relevant biochemical mechanisms such as calcium/myosin regulation of muscle contraction; iii) myogenesis; iv) other therapies that improve or optimize muscle function more generally; v) and/or combinations of the above. The scope and efficiency of these attempts is diverse, ranging from gene-specific effects to those widely applicable to all NM-associated genes. EXPERT OPINION The wide range of experimental therapies currently under consideration for NM is promising. Potential translation into clinical use requires consideration of additional factors such as the potential muscle type specificity as well as the possibility of gene expression remodeling. Challenges in clinical translation include the rarity and heterogeneity of genotypes, phenotypes, and disease trajectories, as well as the lack of longitudinal natural history data and validated outcomes and biomarkers.
Collapse
Affiliation(s)
- Gemma Fisher
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Laurane Mackels
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| | - Theodora Markati
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna Sarkozy
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Hospital, Institute of Child Health, London, UK
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
| | - Sithara Ramdas
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
| | - Laurent Servais
- MDUK Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK.,Neuromuscular Reference Center, University and University Hospital of Liège, Liège, Belgium
| |
Collapse
|
3
|
Florio F, Accordini S, Libergoli M, Biressi S. Targeting Muscle-Resident Single Cells Through in vivo Electro-Enhanced Plasmid Transfer in Healthy and Compromised Skeletal Muscle. Front Physiol 2022; 13:834705. [PMID: 35431987 PMCID: PMC9010744 DOI: 10.3389/fphys.2022.834705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle is composed of syncytial muscle fibers, and by various mononucleated cellular types, such as muscle stem cells, immune cells, interstitial and stromal progenitors. These cell populations play a crucial role during muscle regeneration, and alterations of their phenotypic properties have been associated with defective repair and fibrosis in aging and dystrophic muscle. Studies involving in vivo gene modulation are valuable to investigate the mechanisms underlining cell function and dysfunction in complex pathophysiological settings. Electro-enhanced transfer of plasmids using square-wave generating devices represents a cost-effective approach that is widely used to transport DNA to muscle fibers efficiently. Still, it is not clear if this method can also be applied to mononuclear cells present in muscle. We demonstrate here that it is possible to efficiently deliver DNA into different muscle–resident cell populations in vivo. We evaluated the efficiency of this approach not only in healthy muscle but also in muscles of aging and dystrophic animal models. As an exemplificative application of this method, we used a strategy relying on a reporter gene-based plasmid containing regulatory sequences from the collagen 1 locus, and we determined collagen expression in various cell types reportedly involved in the production of fibrotic tissue in the dystrophic settings. The results enclosed in this manuscript reveal the suitability in applying electro-enhanced transfer of plasmid DNA to mononucleated muscle-resident cells to get insights into the molecular events governing diseased muscle physiology.
Collapse
Affiliation(s)
- Francesca Florio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Silvia Accordini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Libergoli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
| | - Stefano Biressi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Dulbecco Telethon Institute at University of Trento, Trento, Italy
- *Correspondence: Stefano Biressi,
| |
Collapse
|
4
|
Matsuzaka Y, Hirai Y, Hashido K, Okada T. Therapeutic Application of Extracellular Vesicles-Capsulated Adeno-Associated Virus Vector via nSMase2/Smpd3, Satellite, and Immune Cells in Duchenne Muscular Dystrophy. Int J Mol Sci 2022; 23:1551. [PMID: 35163475 PMCID: PMC8836108 DOI: 10.3390/ijms23031551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Yukihiko Hirai
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| | - Kazuo Hashido
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8551, Japan;
| | - Takashi Okada
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan;
| |
Collapse
|
5
|
Yao S, Chen Z, Yu Y, Zhang N, Jiang H, Zhang G, Zhang Z, Zhang B. Current Pharmacological Strategies for Duchenne Muscular Dystrophy. Front Cell Dev Biol 2021; 9:689533. [PMID: 34490244 PMCID: PMC8417245 DOI: 10.3389/fcell.2021.689533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/23/2021] [Indexed: 12/25/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder caused by the absence of dystrophin protein, which is essential for muscle fiber integrity. Loss of dystrophin protein leads to recurrent myofiber damage, chronic inflammation, progressive fibrosis, and dysfunction of muscle stem cells. There is still no cure for DMD so far and the standard of care is principally limited to symptom relief through glucocorticoids treatments. Current therapeutic strategies could be divided into two lines. Dystrophin-targeted therapeutic strategies that aim at restoring the expression and/or function of dystrophin, including gene-based, cell-based and protein replacement therapies. The other line of therapeutic strategies aims to improve muscle function and quality by targeting the downstream pathological changes, including inflammation, fibrosis, and muscle atrophy. This review introduces the important developments in these two lines of strategies, especially those that have entered the clinical phase and/or have great potential for clinical translation. The rationale and efficacy of each agent in pre-clinical or clinical studies are presented. Furthermore, a meta-analysis of gene profiling in DMD patients has been performed to understand the molecular mechanisms of DMD.
Collapse
Affiliation(s)
- Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zihao Chen
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Zongkang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Baoting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
6
|
Marichal-Gallardo P, Börner K, Pieler MM, Sonntag-Buck V, Obr M, Bejarano D, Wolff MW, Kräusslich HG, Reichl U, Grimm D. Single-Use Capture Purification of Adeno-Associated Viral Gene Transfer Vectors by Membrane-Based Steric Exclusion Chromatography. Hum Gene Ther 2021; 32:959-974. [PMID: 33554722 PMCID: PMC10116406 DOI: 10.1089/hum.2019.284] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present membrane-based steric exclusion chromatography (SXC) as a universal capture step for purification of adeno-associated virus (AAV) gene transfer vectors independent of their serotype and surface characteristics. SXC is performed by mixing an unpurified cell culture supernatant containing AAV particles with polyethylene glycol (PEG) and feeding the mixture onto a chromatography filter unit. The purified AAV particles are recovered by flushing the unit with a solution lacking PEG. SXC is an inexpensive single-use method that permits to concentrate, purify, and re-buffer AAV particles with yields >95% and >80% impurity clearance. SXC could theoretically be employed at industrial scales with units of nearly 20 m2.
Collapse
Affiliation(s)
- Pavel Marichal-Gallardo
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Kathleen Börner
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Michael M Pieler
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Vera Sonntag-Buck
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Obr
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Bejarano
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael W Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, Technische Hochschule Mittelhessen, Gießen, Germany
| | - Hans-Georg Kräusslich
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.,Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Dirk Grimm
- Center for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.,Cluster of Excellence CellNetworks, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Hemmati S, Keshavarz-Fathi M, Razi S, Rezaei N. Gene Therapy and Genetic Vaccines. CANCER IMMUNOLOGY 2021:129-142. [DOI: 10.1007/978-3-030-50287-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Aghamiri S, Talaei S, Roshanzamiri S, Zandsalimi F, Fazeli E, Aliyu M, Kheiry Avarvand O, Ebrahimi Z, Keshavarz-Fathi M, Ghanbarian H. Delivery of genome editing tools: A promising strategy for HPV-related cervical malignancy therapy. Expert Opin Drug Deliv 2020; 17:753-766. [PMID: 32281426 DOI: 10.1080/17425247.2020.1747429] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Persistent high-risk human papillomavirus infection is the main cause of various types of cancer especially cervical cancer. The E6 and E7 oncoproteins of HPV play critical roles in promoting carcinogenesis and cancer cell growth. As a result, E6 and E7 oncogenes are considered as promising therapeutic targets for cervical cancer. Recently, the development of genome-editing technologies including transcription activator-like effector nucleases (TALEN), meganucleases (MNs), zinc finger nucleases (ZFN), and more importantly clustered regularly interspaced short palindromic repeat-CRISPR-associated protein (CRISPR-Cas) has sparked a revolution in the cervical cancer-targeted therapy. However, due to immunogenicity, off-target effect, renal clearance, guide RNA (gRNA) nuclease degradation, and difficult direct transportation into the cytoplasm and nucleus, the safe and effective delivery is considered as the Achilles' heel of this robust strategy. AREAS COVERED In this review, we discuss cutting-edge available strategies for in vivo delivery of genome-editing technologies for HPV-induced cervical cancer therapy. Moreover, the combination of genome-editing tools and other therapies has been fully discussed. EXPERT OPINION The combination of nanoparticle-based delivery systems and genome-editing tools is a promising powerful strategy for cervical cancer therapy. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Elnaz Fazeli
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus , Tehran, Iran
| | - Omid Kheiry Avarvand
- Student Research Committee, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| | - Zahra Ebrahimi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN) , Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Hossein Ghanbarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| |
Collapse
|
9
|
Li F, Kolb J, Crudele J, Tonino P, Hourani Z, Smith JE, Chamberlain JS, Granzier H. Expressing a Z-disk nebulin fragment in nebulin-deficient mouse muscle: effects on muscle structure and function. Skelet Muscle 2020; 10:2. [PMID: 31992366 PMCID: PMC6986074 DOI: 10.1186/s13395-019-0219-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs. Nemaline myopathy causes severe muscle weakness as well as structural defects on a sarcomeric level. There is no known cure for this disease. METHODS We studied whether sarcomeric structure and function can be improved by introducing nebulin's Z-disk region into a nebulin-deficient mouse model (Neb cKO) through adeno-associated viral (AAV) vector therapy. Following this treatment, the structural and functional characteristics of both vehicle-treated and AAV-treated Neb cKO and control muscles were studied. RESULTS Intramuscular injection of this AAV construct resulted in a successful expression of the Z-disk fragment within the target muscles. This expression was significantly higher in Neb cKO mice than control mice. Analysis of protein expression revealed that the nebulin fragment was localized exclusively to the Z-disks and that Neb cKO expressed the nebulin fragment at levels comparable to the level of full-length nebulin in control mice. Additionally, the Z-disk fragment displaced full-length nebulin in control mice, resulting in nemaline rod body formation and a worsening of muscle function. Neb cKO mice experienced a slight functional benefit from the AAV treatment, with a small increase in force and fatigue resistance. Disease progression was also slowed as indicated by improved muscle structure and myosin isoform expression. CONCLUSIONS This study reveals that nebulin fragments are well-received by nebulin-deficient mouse muscles and that limited functional benefits are achievable.
Collapse
Affiliation(s)
- Frank Li
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Julie Crudele
- Department of Neurology, University of Washington, Seattle, WA, 98109-8055, USA
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ, 85721, USA.
| |
Collapse
|
10
|
Sayed-Zahid AA, Sher RB, Sukoff Rizzo SJ, Anderson LC, Patenaude KE, Cox GA. Functional rescue in a mouse model of congenital muscular dystrophy with megaconial myopathy. Hum Mol Genet 2019; 28:2635-2647. [PMID: 31216357 PMCID: PMC6687948 DOI: 10.1093/hmg/ddz068] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 01/13/2023] Open
Abstract
Congenital muscular dystrophy with megaconial myopathy (MDCMC) is an autosomal recessive disorder characterized by progressive muscle weakness and wasting. The observation of megamitochondria in skeletal muscle biopsies is exclusive to this type of MD. The disease is caused by loss of function mutations in the choline kinase beta (CHKB) gene which results in dysfunction of the Kennedy pathway for the synthesis of phosphatidylcholine. We have previously reported a rostrocaudal MD (rmd) mouse with a deletion in the Chkb gene resulting in an MDCMC-like phenotype, and we used this mouse to test gene therapy strategies for the rescue and alleviation of the dystrophic phenotype. Introduction of a muscle-specific Chkb transgene completely rescues motor and behavioral function in the rmd mouse model, confirming the cell-autonomous nature of the disease. Intramuscular gene therapy post-disease onset using an adeno-associated viral 6 (AAV6) vector carrying a functional copy of Chkb is also capable of rescuing the dystrophy phenotype. In addition, we examined the ability of choline kinase alpha (Chka), a gene paralog of Chkb, to improve dystrophic phenotypes when upregulated in skeletal muscles of rmd mutant mice using a similar AAV6 vector. The sum of our results in a preclinical model of disease suggest that replacement of the Chkb gene or upregulation of endogenous Chka could serve as potential lines of therapy for MDCMC patients.
Collapse
Affiliation(s)
- Ambreen A Sayed-Zahid
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Stacey J Sukoff Rizzo
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Laura C Anderson
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | | | - Gregory A Cox
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| |
Collapse
|
11
|
Shahnoor N, Siebers EM, Brown KJ, Lawlor MW. Pathological Issues in Dystrophinopathy in the Age of Genetic Therapies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:105-126. [PMID: 30148687 DOI: 10.1146/annurev-pathmechdis-012418-012945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophinopathy is a class of genetic skeletal muscle disease characterized by myofiber degeneration and regeneration due to insufficient levels or functioning of dystrophin. Pathological evaluation for dystrophinopathy includes the identification of dystrophic skeletal muscle pathology and the immunohistochemical evaluation of dystrophin epitopes, but biopsies have become rare in recent years. However, the evaluation of dystrophin expression in the research setting has become critically important due to recent advances in genetic therapies, including exon skipping and gene therapy. Given the number of these therapies under evaluation in patients, it is likely that the traditional methods of evaluating dystrophinopathy will need to evolve in the near future. This review discusses current muscle biopsy diagnostic practices in dystrophinopathy and further focuses on how these practices have evolved in the context of therapeutic interventions for dystrophinopathy.
Collapse
Affiliation(s)
- Nazima Shahnoor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Emily M Siebers
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| | - Kristy J Brown
- Solid Biosciences, Inc., Cambridge, Massachusetts 02139, USA;
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine, and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA; , ,
| |
Collapse
|
12
|
Aguti S, Malerba A, Zhou H. The progress of AAV-mediated gene therapy in neuromuscular disorders. Expert Opin Biol Ther 2018; 18:681-693. [DOI: 10.1080/14712598.2018.1479739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sara Aguti
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Alberto Malerba
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Haiyan Zhou
- The Dubowitz Neuromuscular Centre, Developmental Neurosciences Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
13
|
Maricelli JW, Bishaw YM, Wang B, Du M, Rodgers BD. Systemic SMAD7 Gene Therapy Increases Striated Muscle Mass and Enhances Exercise Capacity in a Dose-Dependent Manner. Hum Gene Ther 2018; 29:390-399. [DOI: 10.1089/hum.2017.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Joseph W. Maricelli
- School of Molecular Biosciences, Washington State University, Pullman, Washington
- Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| | - Yemeserach M. Bishaw
- School of Molecular Biosciences, Washington State University, Pullman, Washington
- Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| | - Bo Wang
- Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| | - Min Du
- Washington Center for Muscle Biology, Washington State University, Pullman, Washington
| | - Buel D. Rodgers
- Washington Center for Muscle Biology, Washington State University, Pullman, Washington
- AAVogen, Inc., Rockville, Maryland
| |
Collapse
|
14
|
Crispi V, Matsakas A. Duchenne muscular dystrophy: genome editing gives new hope for treatment. Postgrad Med J 2018; 94:296-304. [DOI: 10.1136/postgradmedj-2017-135377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive wasting disease of skeletal and cardiac muscles, representing one of the most common recessive fatal inherited genetic diseases with 1:3500–1:5000 in yearly incidence. It is caused by mutations in the DMD gene that encodes the membrane-associated dystrophin protein. Over the years, many have been the approaches to management of DMD, but despite all efforts, no effective treatment has yet been discovered. Hope for the development of potential therapeutics has followed the recent advances in genome editing and gene therapy. This review gives an overview to DMD and summarises current lines of evidence with regard to treatment and disease management alongside the appropriate considerations.
Collapse
|
15
|
Utrophin up-regulation by artificial transcription factors induces muscle rescue and impacts the neuromuscular junction in mdx mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1172-1182. [PMID: 29408646 PMCID: PMC5851675 DOI: 10.1016/j.bbadis.2018.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/16/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
Up-regulation of the dystrophin-related gene utrophin represents a promising therapeutic strategy for the treatment of Duchenne Muscular Dystrophy (DMD). In order to re-program the utrophin expression level in muscle, we engineered artificial zinc finger transcription factors (ZF-ATFs) that target the utrophin 'A' promoter. We have previously shown that the ZF-ATF "Jazz", either by transgenic manipulation or by systemic adeno-associated viral delivery, induces significant rescue of muscle function in dystrophic "mdx" mice. We present the full characterization of an upgraded version of Jazz gene named "JZif1" designed to minimize any possible host immune response. JZif1 was engineered on the Zif268 gene-backbone using selective amino acid substitutions to address JZif1 to the utrophin 'A' promoter. Here, we show that JZif1 induces remarkable amelioration of the pathological phenotype in mdx mice. To investigate the molecular mechanisms underlying Jazz and JZif1 induced muscle functional rescue, we focused on utrophin related pathways. Coherently with utrophin subcellular localization and role in neuromuscular junction (NMJ) plasticity, we found that our ZF-ATFs positively impact the NMJ. We report on ZF-ATF effects on post-synaptic membranes in myogenic cell line, as well as in wild type and mdx mice. These results candidate our ZF-ATFs as novel therapeutic molecules for DMD treatment.
Collapse
|
16
|
Ifuku M, Iwabuchi KA, Tanaka M, Lung MSY, Hotta A. Restoration of Dystrophin Protein Expression by Exon Skipping Utilizing CRISPR-Cas9 in Myoblasts Derived from DMD Patient iPS Cells. Methods Mol Biol 2018; 1828:191-217. [PMID: 30171543 DOI: 10.1007/978-1-4939-8651-4_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a congenital X-linked disease caused by mutations in the gene encoding the dystrophin protein, which is required for myofiber integrity. Exon skipping therapy is an emerging strategy for restoring the open reading frame of the dystrophin gene to produce functional protein in DMD patients by skipping single or multiple exons. Although antisense oligonucleotides are able to target pre-mRNA for exon skipping, their half-lives are short and any therapeutic benefit is transient. In contrast, genome editing by DNA nucleases, such as the CRISPR-Cas9 system, could offer permanent correction by targeting genomic DNA. Our laboratory previously reported that disrupting the splicing acceptor site in exon 45 by plasmid delivery of the CRISPR-Cas9 system in iPS cells, derived from a DMD patient lacking exon 44, successfully restored dystrophin protein expression in differentiated myoblasts. Herein, we describe an optimized methodology to prepare myoblasts differentiated from iPS cells by mRNA transfection of the CRISPR-Cas9 system to skip exon 45 in myoblasts, and evaluate the restored dystrophin by RT-PCR and Western blotting.
Collapse
Affiliation(s)
- Masataka Ifuku
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kumiko A Iwabuchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masami Tanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mandy Siu Yu Lung
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
17
|
Hightower RM, Alexander MS. Genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies. Muscle Nerve 2018; 57:6-15. [PMID: 28877560 PMCID: PMC5759757 DOI: 10.1002/mus.25953] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2017] [Indexed: 01/05/2023]
Abstract
Muscular dystrophy is defined as the progressive wasting of skeletal muscles that is caused by inherited or spontaneous genetic mutations. Next-generation sequencing has greatly improved the accuracy and speed of diagnosis for different types of muscular dystrophy. Advancements in depth of coverage, convenience, and overall reduced cost have led to the identification of genetic modifiers that are responsible for phenotypic variability in affected patients. These genetic modifiers have been postulated to explain key differences in disease phenotypes, including age of loss of ambulation, steroid responsiveness, and the presence or absence of cardiac defects in patients with the same form of muscular dystrophy. This review highlights recent findings on genetic modifiers of Duchenne and facioscapulohumeral muscular dystrophies based on animal and clinical studies. These genetic modifiers hold great promise to be developed into novel therapeutic targets for the treatment of muscular dystrophies. Muscle Nerve 57: 6-15, 2018.
Collapse
Affiliation(s)
- Rylie M. Hightower
- University of Alabama at Birmingham Graduate School of Biomedical Sciences, Birmingham, AL 35294
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at Children’s of Alabama and the University of Alabama at Birmingham, Birmingham, AL, 35294
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, 35294
| |
Collapse
|
18
|
Di Meo I, Marchet S, Lamperti C, Zeviani M, Viscomi C. AAV9-based gene therapy partially ameliorates the clinical phenotype of a mouse model of Leigh syndrome. Gene Ther 2017; 24:661-667. [PMID: 28753212 PMCID: PMC5658670 DOI: 10.1038/gt.2017.53] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/18/2017] [Accepted: 06/13/2017] [Indexed: 02/02/2023]
Abstract
Leigh syndrome (LS) is the most common infantile mitochondrial encephalopathy. No treatment is currently available for this condition. Mice lacking Ndufs4, encoding NADH: ubiquinone oxidoreductase iron-sulfur protein 4 (NDUFS4) recapitulates the main findings of complex I (cI)-related LS, including severe multisystemic cI deficiency and progressive neurodegeneration. In order to develop a gene therapy approach for LS, we used here an AAV2/9 vector carrying the human NDUFS4 coding sequence (hNDUFS4). We administered AAV2/9-hNDUFS4 by intravenous (IV) and/or intracerebroventricular (ICV) routes to either newborn or young Ndufs4-/- mice. We found that IV administration alone was only able to correct the cI deficiency in peripheral organs, whereas ICV administration partially corrected the deficiency in the brain. However, both treatments failed to improve the clinical phenotype or to prolong the lifespan of Ndufs4-/- mice. In contrast, combined IV and ICV treatments resulted, along with increased cI activity, in the amelioration of the rotarod performance and in a significant prolongation of the lifespan. Our results indicate that extraneurological organs have an important role in LS pathogenesis and provide an insight into current limitations of adeno-associated virus (AAV)-mediated gene therapy in multisystem disorders. These findings warrant future investigations to develop new vectors able to efficiently target multiple organs.
Collapse
Affiliation(s)
- I Di Meo
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - S Marchet
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - C Lamperti
- IRCCS Foundation Neurological Institute ‘C. Besta’, Milan, Italy
| | - M Zeviani
- University of Cambridge/Medical Research Council, Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - C Viscomi
- University of Cambridge/Medical Research Council, Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
19
|
van Bremen T, Send T, Sasse P, Bruegmann T. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function. J Muscle Res Cell Motil 2017; 38:331-337. [PMID: 28918572 DOI: 10.1007/s10974-017-9481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
Damage of peripheral nerves results in paralysis of skeletal muscle. Currently, the only treatment option to restore proper function is electrical stimulation of the innervating nerve or of the skeletal muscles directly. However this approach has low spatial and temporal precision leading to co-activation of antagonistic muscles and lacks cell-type selectivity resulting in pain or discomfort by stimulation of sensible nerves. In contrast to electrical stimulation, optogenetic methods enable spatially confined and cell-type selective stimulation of cells expressing the light sensitive channel Channelrhodopsin-2 with precise temporal control over the membrane potential. Herein we summarize the current knowledge about the use of this technology to control skeletal muscle function with the focus on the direct, non-neuronal stimulation of muscle fibers. The high temporal flexibility of using light pulses allows new stimulation patterns to investigate skeletal muscle physiology. Furthermore, the high spatial precision of focused illumination was shown to be beneficial for selective stimulation of distinct nearby muscle groups. Finally, the cell-type specific expression of the light-sensitive effector proteins in muscle fibers will allow pain-free stimulation and open new options for clinical treatments. Therefore, we believe that direct optogenetic stimulation of skeletal muscles is a very potent method for basic scientists that also harbors several distinct advantages over electrical stimulation to be considered for clinical use in the future.
Collapse
Affiliation(s)
- Tobias van Bremen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Thorsten Send
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany. .,Research Training Group 1873, University of Bonn, 53127, Bonn, Germany.
| |
Collapse
|
20
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
21
|
Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN. CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. SCIENCE ADVANCES 2017; 3:e1602814. [PMID: 28439558 PMCID: PMC5389745 DOI: 10.1126/sciadv.1602814] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/14/2017] [Indexed: 05/07/2023]
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the X-linked dystrophin gene (DMD), is characterized by fatal degeneration of striated muscles. Dilated cardiomyopathy is one of the most common lethal features of the disease. We deployed Cpf1, a unique class 2 CRISPR (clustered regularly interspaced short palindromic repeats) effector, to correct DMD mutations in patient-derived induced pluripotent stem cells (iPSCs) and mdx mice, an animal model of DMD. Cpf1-mediated genomic editing of human iPSCs, either by skipping of an out-of-frame DMD exon or by correcting a nonsense mutation, restored dystrophin expression after differentiation to cardiomyocytes and enhanced contractile function. Similarly, pathophysiological hallmarks of muscular dystrophy were corrected in mdx mice following Cpf1-mediated germline editing. These findings are the first to show the efficiency of Cpf1-mediated correction of genetic mutations in human cells and an animal disease model and represent a significant step toward therapeutic translation of gene editing for correction of DMD.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Dystrophin/genetics
- Dystrophin/metabolism
- Humans
- Mice
- Mice, Inbred mdx
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chengzu Long
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John R. McAnally
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kedryn K. Baskin
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John M. Shelton
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Robinson-Hamm JN, Gersbach CA. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy. Hum Genet 2016; 135:1029-40. [PMID: 27542949 PMCID: PMC5006996 DOI: 10.1007/s00439-016-1725-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
Abstract
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.
Collapse
Affiliation(s)
- Jacqueline N Robinson-Hamm
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Box 90281, Durham, NC, 27708-0281, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
23
|
Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 2016; 8:2471-2489. [PMID: 27398133 PMCID: PMC4931144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/03/2016] [Indexed: 06/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive degenerative muscle disorder caused by the absence of dystrophin. There is no curative therapy, although innovative therapeutic approaches have been aggressively investigated over recent years. Currently, the international clinical trial registry platform for this disease has been constructed and clinical trials for innovative therapeutic approaches are underway. Among these, exon skipping and read-through of nonsense mutations are in the most advanced stages, with exon skipping theoretically applicable to a larger number of patients. To date, exon skipping that targets exons 51, 44, 45, and 53 is being globally investigated including in USA, EU, and Japan. The latest announcement from Japan was made, demonstrating successful dystrophin production in muscles of patients with DMD after treating with exon 53 skipping antisense oligonucleotides (ASOs). However, the innovative therapeutic approaches have demonstrated limited efficacy. To address this issue in exon skipping, studies to unveil the mechanism underlying gymnotic delivery of ASO uptake in living cells have been conducted in an effort to improve in vivo delivery. Further, establishing the infrastructures to integrate multi-institutional clinical trials are needed to facilitate the development of successful therapies for DMD, which ultimately is applicable to other myopathies and neurodegenerative diseases, including spinal muscular atrophy and motor neuron diseases.
Collapse
Affiliation(s)
- Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Hirofumi Komaki
- Department of Child Neurology, National Center Hospital, National Center of Neurology and PsychiatryTokyo, Japan
| | - Shin’ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| |
Collapse
|
24
|
Beedle AM. Distribution of myosin heavy chain isoforms in muscular dystrophy: insights into disease pathology. MUSCULOSKELETAL REGENERATION 2016; 2:e1365. [PMID: 27430020 PMCID: PMC4943764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Myosin heavy chain isoforms are an important component defining fiber type specific properties in skeletal muscle, such as oxidative versus glycolytic metabolism, rate of contraction, and fatigability. While the molecular mechanisms that underlie specification of the different fiber types are becoming clearer, how this programming becomes disrupted in muscular dystrophy and the functional consequences of fiber type changes in disease are not fully resolved. Fiber type changes in disease, with specific focus on muscular dystrophies caused by defects in the dystrophin glycoprotein complex, are discussed.
Collapse
Affiliation(s)
- Aaron M Beedle
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30602 USA
| |
Collapse
|