1
|
Mick P, Kabir R, Karunatilake M, Kathleen Pichora-Fuller M, Young TL, Sosero Y, Gan-Or Z, Wittich W, Phillips NA. APOE-ε4 is not associated with pure-tone hearing thresholds, visual acuity or cognition, cross-sectionally or over 3 years of follow up in the Canadian Longitudinal Study on Aging. Neurobiol Aging 2024; 138:72-82. [PMID: 38547662 DOI: 10.1016/j.neurobiolaging.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Hearing loss and diminished visual acuity are associated with poorer cognition, but the underlying mechanisms are not understood. The apolipoprotein (APOE) ε4 allelic variant may drive the associations. We tested whether APOE-ε4 allele count (0, 1, or 2) was associated with declines in memory, executive function, pure-tone hearing threshold averages, and pinhole-corrected visual acuity among participants in the Canadian Longitudinal Study on Aging (CLSA). METHODS Multivariable linear mixed regression models were utilized to assess associations between APOE-ε4 allele count and each of the outcome variables. For each main effects model, interactions between APOE-ε4 and sex and age group (45-54-, 55-64-, 65-74-, and 75-85 years) respectively, were analyzed. RESULTS Significant associations were not observed in main effects models. Models including APOE-ε4 * age (but not APOE-ε4 * sex) interaction terms better fit the data compared to main effects models. In age group-stratified models, however, there were minimal differences in effect estimates according to allele count. CONCLUSION APOE-ε4 allele count does not appear to be a common cause of sensory-cognitive associations in this large cohort.
Collapse
Affiliation(s)
- Paul Mick
- University of Saskatchewan, College of Medicine, Department of Surgery, Canada.
| | | | - Malshi Karunatilake
- University of Alberta, College of Health Sciences, Department of Ophthalmology and Visual Sciences, Canada
| | - M Kathleen Pichora-Fuller
- Professor emeritus, University of Toronto, Faculty of Arts and Sciencies, Department of Psychology, Canada
| | - Terry-Lyn Young
- Memorial University of Newfoundland, Faculty of Medicine, Canada
| | - Yuri Sosero
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | - Ziv Gan-Or
- McGill University, Faculty of Medicine and Health Sciences, Department of Human Genetics, Canada
| | | | - Natalie A Phillips
- Concordia University, Faculty of Arts and Sciences, Department of Psychology, Canada
| |
Collapse
|
2
|
Liu JY, Ma LZ, Wang J, Cui XJ, Sheng ZH, Fu Y, Li M, Ou YN, Yu JT, Tan L, Lian Y. Age-Related Association Between APOE ɛ4 and Cognitive Progression in de novo Parkinson's Disease. J Alzheimers Dis 2023; 91:1121-1132. [PMID: 36565124 DOI: 10.3233/jad-220976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND APOE ɛ4 genotype was correlated with exacerbation of pathology and higher risk of dementia in Parkinson's disease (PD). Meanwhile, the differential influence of APOE ɛ4 on cognition in young and old individuals interpreted as antagonistic pleiotropy. OBJECTIVE To examine whether the effect of APOE ɛ4 on cognitive progression in de novo PD is age dependent. METHODS In this study, 613 de novo PD patients were recruited from Parkinson's Progression Markers Initiative (PPMI). To examine the age-dependent relationship between APOE ɛ4 and cognitive changes, we added 3-way interaction of APOE ɛ4*baseline age*time to the linear mixed-effect (LME) models and evaluated the specific roles of APOE ɛ4 in the middle age group and elderly group separately. Cox regression was utilized to examine the progression of cognition in age-stratified PD participants. RESULTS Age significantly modified relationship between APOE ɛ4 and cognitive changes in most cognitive domains (pinteraction <0.05). In the elderly group, APOE ɛ4 carriers showed steeper decline in global cognition (p = 0.001) as well as in most cognitive domains, and they had a greater risk of cognitive progression (adjusted HR 1.625, 95% CI 1.143-2.310, p = 0.007), compared with non-carriers. However, in the middle age group, no significant relationships between APOE ɛ4 and cognitive decline can be detected. CONCLUSION Our results indicated that the APOE ɛ4 allele has an age-dependent effect on cognitive decline in PD patients. The underlying mechanisms need to be investigated in the future.
Collapse
Affiliation(s)
- Jia-Yao Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ling-Zhi Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jun Wang
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xin-Jing Cui
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao, China
| | - Ze-Hu Sheng
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Meng Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Lian
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.,Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
3
|
Lu K, Nicholas JM, Pertzov Y, Grogan J, Husain M, Pavisic IM, James SN, Parker TD, Lane CA, Keshavan A, Keuss SE, Buchanan SM, Murray-Smith H, Cash DM, Malone IB, Sudre CH, Coath W, Wong A, Henley SM, Fox NC, Richards M, Schott JM, Crutch SJ. Dissociable effects of APOE-ε4 and β-amyloid pathology on visual working memory. NATURE AGING 2021; 1:1002-1009. [PMID: 34806027 PMCID: PMC7612005 DOI: 10.1038/s43587-021-00117-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/17/2021] [Indexed: 01/21/2023]
Abstract
Although APOE-ε4 carriers are at significantly higher risk of developing Alzheimer's disease than non-carriers1, controversial evidence suggests that APOE-ε4 might confer some advantages, explaining the survival of this gene (antagonistic pleiotropy)2,3. In a population-based cohort born in one week in 1946 (assessed aged 69-71), we assessed differential effects of APOE-ε4 and β-amyloid pathology (quantified using 18F-Florbetapir-PET) on visual working memory (object-location binding). In 398 cognitively normal participants, APOE-ε4 and β-amyloid had opposing effects on object identification, predicting better and poorer recall respectively. ε4-carriers also recalled locations more precisely, with a greater advantage at higher β-amyloid burden. These results provide evidence of superior visual working memory in ε4-carriers, showing that some benefits of this genotype are demonstrable in older age, even in the preclinical stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Kirsty Lu
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jennifer M. Nicholas
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Yoni Pertzov
- Department of Psychology, The Hebrew University of Jerusalem, Israel
| | - John Grogan
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
- Department of Experimental Psychology, University of Oxford, UK
| | - Ivanna M. Pavisic
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Sarah-Naomi James
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Thomas D. Parker
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christopher A. Lane
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ashvini Keshavan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah E. Keuss
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sarah M. Buchanan
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Heidi Murray-Smith
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M. Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Ian B. Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Carole H. Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - William Coath
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andrew Wong
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Susie M.D. Henley
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nick C. Fox
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, UK
| | - Jonathan M. Schott
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Sebastian J. Crutch
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Narbutas J, Chylinski D, Van Egroo M, Bahri MA, Koshmanova E, Besson G, Muto V, Schmidt C, Luxen A, Balteau E, Phillips C, Maquet P, Salmon E, Vandewalle G, Bastin C, Collette F. Positive Effect of Cognitive Reserve on Episodic Memory, Executive and Attentional Functions Taking Into Account Amyloid-Beta, Tau, and Apolipoprotein E Status. Front Aging Neurosci 2021; 13:666181. [PMID: 34122044 PMCID: PMC8194490 DOI: 10.3389/fnagi.2021.666181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 01/01/2023] Open
Abstract
Studies exploring the simultaneous influence of several physiological and environmental factors on domain-specific cognition in late middle-age remain scarce. Therefore, our objective was to determine the respective contribution of modifiable risk/protective factors (cognitive reserve and allostatic load) on specific cognitive domains (episodic memory, executive functions, and attention), taking into account non-modifiable factors [sex, age, and genetic risk for Alzheimer's disease (AD)] and AD-related biomarker amount (amyloid-beta and tau/neuroinflammation) in a healthy late-middle-aged population. One hundred and one healthy participants (59.4 ± 5 years; 68 women) were evaluated for episodic memory, executive and attentional functioning via neuropsychological test battery. Cognitive reserve was determined by the National Adult Reading Test. The allostatic load consisted of measures of lipid metabolism and sympathetic nervous system functioning. The amyloid-beta level was assessed using positron emission tomography in all participants, whereas tau/neuroinflammation positron emission tomography scans and apolipoprotein E genotype were available for 58 participants. Higher cognitive reserve was the main correlate of better cognitive performance across all domains. Moreover, age was negatively associated with attentional functioning, whereas sex was a significant predictor for episodic memory, with women having better performance than men. Finally, our results did not show clear significant associations between performance over any cognitive domain and apolipoprotein E genotype and AD biomarkers. This suggests that domain-specific cognition in late healthy midlife is mainly determined by a combination of modifiable (cognitive reserve) and non-modifiable factors (sex and age) rather than by AD biomarkers and genetic risk for AD.
Collapse
Affiliation(s)
- Justinas Narbutas
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Gabriel Besson
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christina Schmidt
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - André Luxen
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Eric Salmon
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
- Department of Neurology, CHU de Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA Institute, Cyclotron Research Centre In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Neuroscience of Cognition Research Unit, Faculty of Psychology and Educational Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Gellersen HM, Coughlan G, Hornberger M, Simons JS. Memory precision of object-location binding is unimpaired in APOE ε4-carriers with spatial navigation deficits. Brain Commun 2021; 3:fcab087. [PMID: 33987536 PMCID: PMC8108563 DOI: 10.1093/braincomms/fcab087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Research suggests that tests of memory fidelity, feature binding and spatial navigation are promising for early detection of subtle behavioural changes related to Alzheimer's disease. In the absence of longitudinal data, one way of testing the early detection potential of cognitive tasks is through the comparison of individuals at different genetic risk for Alzheimer's dementia. Most studies have done so using samples aged 70 years or older. Here, we tested whether memory fidelity of long-term object-location binding may be a sensitive marker even among cognitively healthy individuals in their mid-60s by comparing participants at low and higher risk based on presence of the ε4-allele of the apolipoprotein gene (n = 26 ε3ε3, n = 20 ε3ε4 carriers). We used a continuous report paradigm in a visual memory task that required participants to recreate the spatial position of objects in a scene. We employed mixture modelling to estimate the two distinct memory processes that underpin the trial-by-trial variation in localization errors: retrieval success which indexes the proportion of trials where participants recalled any information about an object's position and the precision with which participants retrieved this information. Prior work has shown that these memory paradigms that separate retrieval success from precision are capable of detecting subtle differences in mnemonic fidelity even when retrieval success could not. Nonetheless, Bayesian analyses found good evidence that ε3ε4 carriers did not remember fewer object locations [F(1, 42) = 0.450, P = 0.506, BF01 = 3.02], nor was their precision for the spatial position of objects reduced compared to ε3ε3 carriers [F(1, 42) = 0.12, P = 0.726, BF01 = 3.19]. Because the participants in the sample presented here were a subset of a study on apolipoprotein ε4-carrier status and spatial navigation in the Sea Hero Quest game [Coughlan et al., 2019. PNAS, 116(9)], we obtained these data to contrast genetic effects on the two tasks within the same sample (n = 33). Despite the smaller sample size, wayfinding deficits among ε3ε4 carriers could be replicated [F(1, 33) = 5.60, P = 0.024, BF10 = 3.44]. Object-location memory metrics and spatial navigation scores were not correlated (all r < 0.25, P > 0.1, 0 < BF10 < 3). These findings show spared object-location binding in the presence of a detrimental apolipoprotein ε4 effect on spatial navigation. This suggests that the sensitivity of memory fidelity and binding tasks may not extend to individuals with one ε4-allele in their early to mid-60s. The results provide further support to prior proposals that spatial navigation may be a sensitive marker for the earliest cognitive changes in Alzheimer's disease, even before episodic memory.
Collapse
Affiliation(s)
- Helena M Gellersen
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Gillian Coughlan
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 1W1, Canada
| | | | - Jon S Simons
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
6
|
Gharbi-Meliani A, Dugravot A, Sabia S, Regy M, Fayosse A, Schnitzler A, Kivimäki M, Singh-Manoux A, Dumurgier J. The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20 years follow-up of the Whitehall II study. ALZHEIMERS RESEARCH & THERAPY 2021; 13:5. [PMID: 33397450 PMCID: PMC7784268 DOI: 10.1186/s13195-020-00740-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Approximately 25% of the general population carries at least one ε4 allele of the Apolipoprotein E (APOE ε4), the strongest genetic risk factor for late onset Alzheimer's disease. Beyond its association with late-onset dementia, the association between APOE ε4 and change in cognition over the adult life course remains uncertain. This study aims to examine whether the association between Apolipoprotein E (APOE) ε4 zygosity and cognition function is modified between midlife and old age. METHODS A cohort study of 5561 participants (mean age 55.5 (SD = 5.9) years, 27.1% women) with APOE genotyping and repeated cognitive tests for reasoning, memory, and semantic and phonemic fluency, during a mean (SD) follow-up of 20.2 (2.8) years (the Whitehall II study). We used joint models to examine the association of APOE genotype with cognitive function trajectories between 45 and 85 years taking drop-out, dementia, and death into account and Fine and Gray models to examine associations with dementia. RESULTS Compared to non-carriers, heterozygote (prevalence 25%) and homozygote (prevalence 2%) APOE ε4 carriers had increased risk of dementia, sub-distribution hazard ratios 2.19 (95% CI 1.73, 2.77) and 5.97 (95% CI 3.85, 9.28) respectively. Using data spanning 45-85 years with non-ε4 carriers as the reference, ε4 homozygotes had poorer global cognitive score starting from 65 years; ε4 heterozygotes had better scores between 45 and 55 years, then no difference until poorer cognitive scores from 75 years onwards. In analysis of individual cognitive tests, better cognitive performance in the younger ε4 heterozygotes was primarily attributable to executive function. CONCLUSIONS Both heterozygous and homozygous ε4 carriers had poorer cognition and greater risk of dementia at older ages. Our findings show some support for a complex antagonist pleiotropic effect of APOE ε4 heterozygosity over the adult life course, characterized by cognitive advantage in midlife.
Collapse
Affiliation(s)
- Amin Gharbi-Meliani
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Aline Dugravot
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Séverine Sabia
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Melina Regy
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Aurore Fayosse
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Alexis Schnitzler
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Archana Singh-Manoux
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France.,Department of Epidemiology and Public Health, University College London, London, UK
| | - Julien Dumurgier
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France. .,Cognitive Neurology Center, Lariboisiere - Fernand Widal Hospital, AP-HP, Université de Paris, 200 rue du Faubourg Saint Denis, 75010, Paris, France.
| |
Collapse
|
7
|
Weissberger GH, Nation DA, Nguyen CP, Bondi MW, Han SD. Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neurosci Biobehav Rev 2018; 94:49-58. [PMID: 30125600 DOI: 10.1016/j.neubiorev.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/21/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Abstract
The apolipoprotein (APOE) ε4 allele has been proposed as an example of an antagonistic pleiotropy gene, conferring a beneficial effect on cognition in early life and a detrimental impact on cognition during later years. However, findings on the cognitive associations of the ε4 allele in younger persons are mixed. This PRISMA conforming study aimed to investigate APOE genotype (e4/non-e4) associations across seven cognitive domains (intelligence/achievement, attention/working memory, executive functioning, memory, language, processing speed and visuospatial abilities) in younger humans using a meta-analytic approach. Of 689 records reviewed, 29 studies (34 data-points) were selected for the quantitative synthesis. Participants' ages ranged from 2-40. Results showed that young ε4 carriers did not statistically differ from non-ε4 carriers across any cognitive domains. Overall, findings do not provide compelling support for an antagonistic pleiotropic effect of the ε4 allele across the lifespan.
Collapse
Affiliation(s)
- Gali H Weissberger
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA.
| | - Daniel A Nation
- Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, 90089, CA, USA
| | - Caroline P Nguyen
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive #9116-B, La Jolla, CA, 92093, USA
| | - S Duke Han
- Department of Family Medicine, USC Keck School of Medicine, 1000 S. Fremont Avenue, Unit 22, HSA Building A-6, 4thFloor, Room 6437A, Alhambra, CA, 91803, USA; Department of Psychology, USC Dornsife College of Letters, Arts, and Sciences, Los Angeles, 90089, CA, USA; USC School of Gerontology, Los Angeles, CA, 90089, USA; Department of Neurology, USC Keck School of Medicine, Los Angeles, 90033, CA, USA
| |
Collapse
|
8
|
Lancaster C, Forster S, Tabet N, Rusted J. Putting attention in the spotlight: The influence of APOE genotype on visual search in mid adulthood. Behav Brain Res 2017; 334:97-104. [PMID: 28750833 DOI: 10.1016/j.bbr.2017.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/31/2017] [Accepted: 07/15/2017] [Indexed: 01/10/2023]
Abstract
The Apolipoprotein E e4 allele is associated with greater cognitive decline with age, yet effects of this gene are also observed earlier in the lifespan. This research explores genotype differences (e2, e3, e4) in the allocation of visuospatial attention in mid-adulthood. Sixty-six volunteers, aged 45-55 years, completed two paradigms probing the active selection of information at the focus of attention (a dynamic scaling task) and perceptual capacity differences. Two methods of statistical comparison (parametric statistics, Bayesian inference) found no significant difference between e4 carriers and the homozygous e3 group on either the dynamic scaling or perceptual load task. E2 carriers, however, demonstrated less efficient visual search performance on the dynamic scaling task. The lack of an e4 difference in visuospatial attention, despite previous suggestion in the literature of genotype effects, indicates that select attentional processes are intact in e4 carriers in mid-adulthood. The association of e2 genotype with slower visual search performance complicates the premised protective effects of this allele in cognitive ageing.
Collapse
Affiliation(s)
- Claire Lancaster
- School of Psychology, University of Sussex, Brighton, East Sussex, BN1 9QG, UK.
| | - Sophie Forster
- School of Psychology, University of Sussex, Brighton, East Sussex, BN1 9QG, UK.
| | - Naji Tabet
- Brighton and Sussex Medical School, Centre of Dementia Studies, Brighton, East Sussex, BN1 9PH, UK.
| | - Jennifer Rusted
- School of Psychology, University of Sussex, Brighton, East Sussex, BN1 9QG, UK.
| |
Collapse
|
9
|
Schreiber S, Schreiber F, Lockhart SN, Horng A, Bejanin A, Landau SM, Jagust WJ. Alzheimer Disease Signature Neurodegeneration and APOE Genotype in Mild Cognitive Impairment With Suspected Non-Alzheimer Disease Pathophysiology. JAMA Neurol 2017; 74:650-659. [PMID: 28319241 DOI: 10.1001/jamaneurol.2016.5349] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Importance There are conflicting results claiming that Alzheimer disease signature neurodegeneration may be more, less, or similarly advanced in individuals with β-amyloid peptide (Aβ)-negative (Aβ-) suspected non-Alzheimer disease pathophysiology (SNAP) than in Aβ-positive (Aβ+) counterparts. Objective To examine patterns of neurodegeneration in individuals with SNAP compared with their Aβ+ counterparts. Design, Setting, and Participants A longitudinal cohort study was conducted among individuals with mild cognitive impairment (MCI) and cognitively normal individuals receiving care at Alzheimer's Disease Neuroimaging Initiative sites in the United States and Canada for a mean follow-up period of 30.5 months from August 1, 2005, to June 30, 2015. Several neurodegeneration biomarkers and longitudinal cognitive function were compared between patients with distinct SNAP (Aβ- and neurodegeneration-positive [Aβ-N+]) subtypes and their Aβ+N+ counterparts. Main Outcomes and Measures Participants were classified according to the results of their florbetapir F-18 (Aβ) positron emission tomography and their Alzheimer disease-associated neurodegeneration status (temporoparietal glucose metabolism determined by fluorodeoxyglucose F 18 [FDG]-labeled positron emission tomography and/or hippocampal volume [HV] determined by magnetic resonance imaging: participants with subthreshold HV values were regarded as exhibiting hippocampal volume atrophy [HV+], while subthreshold mean FDG values were considered as FDG hypometabolism [FDG+]). Results The study comprised 265 cognitively normal individuals (135 women and 130 men; mean [SD] age, 75.5 [6.7] years) and 522 patients with MCI (225 women and 297 men; mean [SD] age, 72.6 [7.8] years). A total of 469 individuals with MCI had data on neurodegeneration biomarkers; of these patients, 107 were Aβ-N+ (22.8%; 63 FDG+, 82 HV+, and 38 FDG+HV+) and 187 were Aβ+N+ (39.9%; 135 FDG+, 147 HV+, and 95 FDG+HV+ cases). A total of 209 cognitively normal participants had data on neurodegeneration biomarkers; of these, 52 were Aβ-N+ (24.9%; 30 FDG+, 33 HV+, and 11 FDG+HV+) and 37 were Aβ+N+ (17.7%; 22 FDG+, 26 HV+, and 11 FDG+HV+). Compared with their Aβ+ counterparts, all patients with MCI SNAP subtypes displayed better preservation of temporoparietal FDG metabolism (mean [SD] FDG: Aβ-N+, 1.25 [0.11] vs Aβ+N+, 1.19 [0.11]), less severe atrophy of the lateral temporal lobe, and lower mean (SD) cerebrospinal fluid levels of tau (59.2 [32.8] vs 111.3 [56.4]). In MCI with SNAP, sustained glucose metabolism and gray matter volume were associated with disproportionately low APOE ε4 (Aβ-N+, 18.7% vs Aβ+N+, 70.6%) and disproportionately high APOE ε2 (18.7% vs 4.8%) carrier prevalence. Slower cognitive decline and lower rates of progression to Alzheimer disease (Aβ-N+, 6.5% vs Aβ+N+, 32.6%) were also seen in patients with MCI with SNAP subtypes compared with their Aβ+ counterparts. In cognitively normal individuals, neurodegeneration biomarkers did not differ between Aβ-N+ and Aβ+N+ cases. Conclusions and Relevance In MCI with SNAP, low APOE ε4 and high APOE ε2 carrier prevalence may account for differences in neurodegeneration patterns between Aβ-N+ and Aβ+N+ cases independent from the neuroimaging biomarker modality used to define neurodegeneration associated with Alzheimer disease.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Helen Wills Neuroscience Institute, University of California, Berkeley2Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany3German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Frank Schreiber
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany3German Center for Neurodegenerative Diseases, Magdeburg, Germany4Institute of Control Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Samuel N Lockhart
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Andy Horng
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Alexandre Bejanin
- Memory and Aging Center, Department of Neurology, University of California, San Francisco
| | - Susan M Landau
- Helen Wills Neuroscience Institute, University of California, Berkeley6Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley6Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | |
Collapse
|
10
|
Nock TG, Chouinard-Watkins R, Plourde M. Carriers of an apolipoprotein E epsilon 4 allele are more vulnerable to a dietary deficiency in omega-3 fatty acids and cognitive decline. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1068-1078. [PMID: 28733268 DOI: 10.1016/j.bbalip.2017.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 01/29/2023]
Abstract
Carriers of an epsilon 4 allele (E4) of apolipoprotein E (APOE) develop Alzheimer's disease (AD) earlier than carriers of other APOE alleles. The metabolism of plasma docosahexaenoic acid (DHA, 22:6n-3), an omega-3 fatty acid (n-3 FA), taken up by the brain and concentrated in neurons, is disrupted in E4 carriers, resulting in lower levels of brain DHA. Behavioural and cognitive impairments have been observed in animals with lower brain DHA levels, with emphasis on loss of spatial memory and increased anxiety. E4 mice provided a diet deficient in n-3 FA had a greater depletion of n-3 FA levels in organs and tissues than mice carrying other APOE alleles. However, providing n-3 FA can restore levels of brain DHA in E4 animals and in other models of n-3 FA deficiency. In E4 carriers, supplementation with DHA as early as possible might help to prevent the onset of AD and could halt the progression of, and reverse some of the neurological and behavioural consequences of their higher vulnerability to n-3 FA deficiency.
Collapse
Affiliation(s)
- Tanya Gwendolyn Nock
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Raphaël Chouinard-Watkins
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada
| | - Mélanie Plourde
- Research Center on Aging, Centre Intégré Universitaire de Santé et Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Canada; Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Canada; Institute of Nutrition and Functional Foods, Quebec City, Canada.
| |
Collapse
|
11
|
Zokaei N, Giehl K, Sillence A, Neville MJ, Karpe F, Nobre AC, Husain M. Sex and APOE: A memory advantage in male APOE ε4 carriers in midlife. Cortex 2017; 88:98-105. [PMID: 28086184 PMCID: PMC5333781 DOI: 10.1016/j.cortex.2016.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/05/2016] [Accepted: 12/19/2016] [Indexed: 11/20/2022]
Abstract
Short-term memory in middle-aged individuals with different APOE alleles was examined using a recently developed task which is sensitive to medial temporal lobe (MTL) damage. Individuals (age-range: 40-51 years) with ε3/ε3, ε3/ε4 and ε4/ε4 APOE genotypes (N = 60) performed a delayed estimation task with a sensitive continuous measure of report. The paradigm allowed us to measure memory for items and their locations, as well as maintenance of identity-location feature binding in memory. There was a significant gene-dosage dependent effect of the ε4 allele on performance: memory decay or forgetting was slower in ε4 carriers, as measured by localization error and after controlling for misbinding errors. Furthermore ε4 carriers made less misbinding errors. These findings were specific to male carriers only. Thus, male ε4 carriers are at a behavioral advantage in midlife on a sensitive task of short-term memory. The results would be consistent with an antagonistic pleiotropy hypothesis and hightight the interaction of gender on the influence of APOE in cognition.
Collapse
Affiliation(s)
- Nahid Zokaei
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Kathrin Giehl
- Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Annie Sillence
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matt J Neville
- Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, UK; NIHR Oxford Biomedical Research Centre, ORH Trust, Oxford, Churchill Hospital, Oxford, UK
| | - Fredrik Karpe
- Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Churchill Hospital, Headington, Oxford, UK; NIHR Oxford Biomedical Research Centre, ORH Trust, Oxford, Churchill Hospital, Oxford, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK; Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Salvato G, Patai EZ, McCloud T, Nobre AC. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals. Cortex 2016; 82:206-216. [PMID: 27395443 PMCID: PMC4981431 DOI: 10.1016/j.cortex.2016.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/05/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan.
Collapse
Affiliation(s)
- Gerardo Salvato
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Cognitive Neuropsychology Centre, Niguarda Ca' Granda Hospital, Milano, Italy
| | - Eva Z Patai
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Tayla McCloud
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, United Kingdom; Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
13
|
Lancaster C, Tabet N, Rusted J. The APOE paradox: do attentional control differences in mid-adulthood reflect risk of late-life cognitive decline. Neurobiol Aging 2016; 48:114-121. [PMID: 27661410 DOI: 10.1016/j.neurobiolaging.2016.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 01/17/2023]
Abstract
Possession of an Apolipoprotein E (APOE) e4 allele is an established risk factor for Alzheimer's disease, whereas the less commonly studied e2 variant is premised to offer some protection. This research explores the purported deleterious-protective dichotomy of APOE variants on attentional control in mid-adulthood. Sixty-six volunteers, aged 45-55 years, completed 3 tasks that provided complementary measures of attentional control: prospective memory, sustained attention, and inhibition. Performance was compared between e2 carriers, e4 carriers, and e3 homozygotes (the population norm). Carriers of the e4 allele showed subtle disadvantages, compared with the e3 group, in accuracy of Stroop task and prospective memory performance. Contrary to expectations, e2 carriers showed performance disadvantages in sustained attention. The finding of detrimental effects in attentional control for both e4 and e2 complicates the current model that proposes opposing effects of these variants on later-life cognition. Future research is needed to understand how cognitive differences develop with increasing age, and the physiological mechanisms that underpin these changes.
Collapse
Affiliation(s)
- Claire Lancaster
- School of Psychology, University of Sussex, Brighton, East Sussex, UK
| | - Naji Tabet
- Brighton and Sussex Medical School, Institute of Postgraduate Medicine, Brighton, East Sussex, UK
| | - Jennifer Rusted
- School of Psychology, University of Sussex, Brighton, East Sussex, UK.
| |
Collapse
|
14
|
Tai LM, Thomas R, Marottoli FM, Koster KP, Kanekiyo T, Morris AWJ, Bu G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 2016; 131:709-23. [PMID: 26884068 DOI: 10.1007/s00401-016-1547-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/30/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is associated with cognitive decline during aging, is the greatest genetic risk factor for Alzheimer's disease and has links to other neurodegenerative conditions that affect cognition. Increasing evidence indicates that APOE genotypes differentially modulate the function of the cerebrovasculature (CV), with apoE and its receptors expressed by different cell types at the CV interface (astrocytes, pericytes, smooth muscle cells, brain endothelial cells). However, research on the role of apoE in CV dysfunction has not advanced as quickly as other apoE-modulated pathways. This review will assess what aspects of the CV are modulated by APOE genotypes during aging and under disease states, discuss potential mechanisms, and summarize the therapeutic significance of the topic. We propose that APOE4 induces CV dysfunction through direct signaling at the CV, and indirectly via modulation of peripheral and central pathways. Further, that APOE4 predisposes the CV to damage by, and exacerbates the effects of, additional risk factors (such as sex, hypertension, and diabetes). ApoE4-induced detrimental CV changes include reduced cerebral blood flow (CBF), modified neuron-CBF coupling, increased blood-brain barrier leakiness, cerebral amyloid angiopathy, hemorrhages and disrupted transport of nutrients and toxins. The apoE4-induced detrimental changes may be linked to pericyte migration/activation, astrocyte activation, smooth muscle cell damage, basement membrane degradation and alterations in brain endothelial cells.
Collapse
Affiliation(s)
- Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA.
| | - Riya Thomas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Felecia M Marottoli
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Alan W J Morris
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, 808 S.Wood St., M/C 512, Chicago, IL, 60612, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|