1
|
Zhang Q, Yin C, Fang X, Ou Y, Ma D, Tuerxun S. Application of magnetoencephalography in epilepsy. Heliyon 2024; 10:e38841. [PMID: 39430539 PMCID: PMC11490854 DOI: 10.1016/j.heliyon.2024.e38841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that can detect whole-brain neuroelectromagnetic signals in real-time in a single measurement. Due to excellent temporal and spatial resolution and integration of computed tomography or magnetic resonance imaging data, MEG allows signal source analysis. It can pinpoint epileptic foci as well as functional brain regions, reducing the necessity for invasive electrode implantation.
Collapse
Affiliation(s)
- Qingyan Zhang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Chuanming Yin
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Xiujie Fang
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Yunwei Ou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Danyue Ma
- Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
- Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute of Beihang University, Hangzhou 310000, China
| | - Shabier Tuerxun
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| |
Collapse
|
2
|
Bastola S, Jahromi S, Chikara R, Stufflebeam SM, Ottensmeyer MP, De Novi G, Papadelis C, Alexandrakis G. Improved Dipole Source Localization from Simultaneous MEG-EEG Data by Combining a Global Optimization Algorithm with a Local Parameter Search: A Brain Phantom Study. Bioengineering (Basel) 2024; 11:897. [PMID: 39329639 PMCID: PMC11428344 DOI: 10.3390/bioengineering11090897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dipole localization, a fundamental challenge in electromagnetic source imaging, inherently constitutes an optimization problem aimed at solving the inverse problem of electric current source estimation within the human brain. The accuracy of dipole localization algorithms is contingent upon the complexity of the forward model, often referred to as the head model, and the signal-to-noise ratio (SNR) of measurements. In scenarios characterized by low SNR, often corresponding to deep-seated sources, existing optimization techniques struggle to converge to global minima, thereby leading to the localization of dipoles at erroneous positions, far from their true locations. This study presents a novel hybrid algorithm that combines simulated annealing with the traditional quasi-Newton optimization method, tailored to address the inherent limitations of dipole localization under low-SNR conditions. Using a realistic head model for both electroencephalography (EEG) and magnetoencephalography (MEG), it is demonstrated that this novel hybrid algorithm enables significant improvements of up to 45% in dipole localization accuracy compared to the often-used dipole scanning and gradient descent techniques. Localization improvements are not only found for single dipoles but also in two-dipole-source scenarios, where sources are proximal to each other. The novel methodology presented in this work could be useful in various applications of clinical neuroimaging, particularly in cases where recordings are noisy or sources are located deep within the brain.
Collapse
Affiliation(s)
- Subrat Bastola
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| | - Saeed Jahromi
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Rupesh Chikara
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - Steven M. Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA;
| | - Mark P. Ottensmeyer
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Gianluca De Novi
- Medical Device & Simulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02139, USA; (M.P.O.); (G.D.N.)
| | - Christos Papadelis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, Fort Worth, TX 76104, USA
| | - George Alexandrakis
- Bioengineering Department, The University of Texas at Arlington, Arlington, TX 76019, USA; (S.J.); (R.C.); (C.P.); (G.A.)
| |
Collapse
|
3
|
Zauli FM, Del Vecchio M, Pigorini A, Russo S, Massimini M, Sartori I, Cardinale F, d'Orio P, Mikulan E. Localizing hidden Interictal Epileptiform Discharges with simultaneous intracerebral and scalp high-density EEG recordings. J Neurosci Methods 2024; 409:110193. [PMID: 38871302 DOI: 10.1016/j.jneumeth.2024.110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Scalp EEG is one of the main tools in the clinical evaluation of epilepsy. In some cases intracranial Interictal Epileptiform Discharges (IEDs) are not visible from the scalp. Recent studies have shown the feasibility of revealing them in the EEG if their timings are extracted from simultaneous intracranial recordings, but their potential for the localization of the epileptogenic zone is not yet well defined. NEW METHOD We recorded simultaneous high-density EEG (HD-EEG) and stereo-electroencephalography (SEEG) during interictal periods in 8 patients affected by drug-resistant focal epilepsy. We identified IEDs in the SEEG and systematically analyzed the time-locked signals on the EEG by means of evoked potentials, topographical analysis and Electrical Source Imaging (ESI). The dataset has been standardized and is being publicly shared. RESULTS Our results showed that IEDs that were not clearly visible at single-trials could be uncovered by averaging, in line with previous reports. They also showed that their topographical voltage distributions matched the position of the SEEG electrode where IEDs had been identified, and that ESI techniques can reconstruct it with an accuracy of ∼2 cm. Finally, the present dataset provides a reference to test the accuracy of different methods and parameters. COMPARISON WITH EXISTING METHODS Our study is the first to systematically compare ESI methods on simultaneously recorded IEDs, and to share a public resource with in-vivo data for their evaluation. CONCLUSIONS Simultaneous HD-EEG and SEEG recordings can unveil hidden IEDs whose origins can be reconstructed using topographical and ESI analyses, but results depend on the selected methods and parameters.
Collapse
Affiliation(s)
- Flavia Maria Zauli
- Department of Philosophy "P. Martinetti", Università degli Studi di Milano, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy; UOC Maxillo-facial Surgery and dentistry, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Russo
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Ivana Sartori
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy
| | - Francesco Cardinale
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Piergiorgio d'Orio
- ASST GOM Niguarda, Piazza dell'Ospedale Maggiore 3, Milan, Italy; Institute of Neuroscience, Consiglio Nazionale delle Ricerche, Parma, Italy; Department of Medicine and Surgery, Unit of Neuroscience, Università degli Studi di Parma, Parma, Italy
| | - Ezequiel Mikulan
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Hartnett P, Zomorodi N, Goodkin HP, Zawar I. The significance of multimodality approach in the management of non-lesional drug-resistant focal parietal lobe epilepsies. Epilepsia Open 2024; 9:1604-1610. [PMID: 38923414 PMCID: PMC11296086 DOI: 10.1002/epi4.13000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Due to extensive connectivity of the parietal lobe, non-lesional drug-resistant (DRE) parietal lobe epilepsies (PLEs) are difficult to localize and often imitate other epilepsies. Therefore, patients with PLEs have low rates of seizure freedom following epilepsy surgery. Previous studies have highlighted the need to combine EEG and semiology for more accurate localization of PLEs. As sophisticated tools for localization become more available, the use of multiple different neuroimaging and neurophysiologic diagnostic tests may more readily identify PLE. We hereby report a unique case of a complex localization in a non-lesional PLE, which was initially falsely localized to frontal lobe. This case underscores the utility of voxel-based morphometry (VBM) in identifying an epileptogenic lesion on a non-lesional MRI and the significance of multimodality approach including PET, magnetoencephalopathy (MEG), interictal and ictal EEG, semiology and cortical stimulation for accurate localization of PLEs. Understanding epilepsy through multimodality approach in this fashion can help with accurate localization especially in difficulty to localize and deceptive non-lesional PLEs. PLAIN LANGUAGE SUMMARY: Parietal lobe epilepsies are hard to pinpoint in the brain and can mimic other types of epilepsy, especially when brain MRIs appear normal. As sophisticated tools for locating epilepsies in the brain become more available, using multiple diagnostic tests may help identify parietal lobe epilepsies more easily. We describe a unique case of a parietal lobe epilepsy patient with normal brain MRI whose epilepsy was initially misidentified as being in the frontal lobe. Using various advanced diagnostic tests, we accurately found the epilepsy's true location in the parietal lobe and successfully treated the patient with surgery.
Collapse
Affiliation(s)
- Patrick Hartnett
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Naseem Zomorodi
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Howard P. Goodkin
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Ifrah Zawar
- Department of NeurologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
5
|
Yang Y, Luo S, Wang W, Gao X, Yao X, Wu T. From bench to bedside: Overview of magnetoencephalography in basic principle, signal processing, source localization and clinical applications. Neuroimage Clin 2024; 42:103608. [PMID: 38653131 PMCID: PMC11059345 DOI: 10.1016/j.nicl.2024.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Magnetoencephalography (MEG) is a non-invasive technique that can precisely capture the dynamic spatiotemporal patterns of the brain by measuring the magnetic fields arising from neuronal activity along the order of milliseconds. Observations of brain dynamics have been used in cognitive neuroscience, the diagnosis of neurological diseases, and the brain-computer interface (BCI). In this study, we outline the basic principle, signal processing, and source localization of MEG, and describe its clinical applications for cognitive assessment, the diagnoses of neurological diseases and mental disorders, preoperative evaluation, and the BCI. This review not only provides an overall perspective of MEG, ranging from practical techniques to clinical applications, but also enhances the prevalent understanding of neural mechanisms. The use of MEG is expected to lead to significant breakthroughs in neuroscience.
Collapse
Affiliation(s)
- Yanling Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shichang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenjie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiumin Gao
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xufeng Yao
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Tao Wu
- College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Vogrin SJ, Plummer C. EEG Source Imaging-Clinical Considerations for EEG Acquisition and Signal Processing for Improved Temporo-Spatial Resolution. J Clin Neurophysiol 2024; 41:8-18. [PMID: 38181383 DOI: 10.1097/wnp.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024] Open
Abstract
SUMMARY EEG source imaging (ESI) has gained traction in recent years as a useful clinical tool for the noninvasive surgical work-up of patients with drug-resistant focal epilepsy. Despite its proven benefits for the temporo-spatial modeling of spike and seizure sources, ESI remains widely underused in clinical practice. This partly relates to a lack of clarity around an optimal approach to the acquisition and processing of scalp EEG data for the purpose of ESI. Here, we describe some of the practical considerations for the clinical application of ESI. We focus on patient preparation, the impact of electrode number and distribution across the scalp, the benefit of averaging raw data for signal analysis, and the relevance of modeling different phases of the interictal discharge as it evolves from take-off to peak. We emphasize the importance of recording high signal-to-noise ratio data for reliable source analysis. We argue that the accuracy of modeling cortical sources can be improved using higher electrode counts that include an inferior temporal array, by averaging interictal waveforms rather than limiting ESI to single spike analysis, and by careful interrogation of earlier phase components of these waveforms. No amount of postacquisition signal processing or source modeling sophistication, however, can make up for suboptimally recorded scalp EEG data in a poorly prepared patient.
Collapse
Affiliation(s)
- Simon J Vogrin
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia; and
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Chris Plummer
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Neurosciences, St Vincent's Hospital, Melbourne, Victoria, Australia; and
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Eelbode C, Spinelli L, Corniola M, Momjian S, Seeck M, Schaller K, Mégevand P. Implantation and reimplantation of intracranial EEG electrodes in patients considering epilepsy surgery. Epilepsia Open 2023; 8:1622-1627. [PMID: 37873557 PMCID: PMC10690689 DOI: 10.1002/epi4.12846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
In patients with drug-resistant epilepsy who are considering surgery, intracranial EEG (iEEG) helps delineate the putative epileptogenic zone. In a minority of patients, iEEG fails to identify seizure onsets. In such cases, it might be worthwhile to reimplant more iEEG electrodes. The consequences of such a strategy for the patient are unknown. We matched 12 patients in whom the initially implanted iEEG electrodes did not delineate the seizure onset zone precisely enough to offer resective surgery, and in whom additional iEEG electrodes were implanted during the same inpatient stay, to controls who did not undergo reimplantation. Seven cases and eight controls proceeded to resective surgery. No intracranial infection occurred. One control suffered an intracranial hemorrhage. Three cases and two controls suffered from a post-operative neurological or neuropsychological deficit. We found no difference in post-operative seizure control between cases and controls. Compared to an ILAE score of 5 (ie, stable seizure frequency in the absence of resective surgery), cases showed significant improvement. Reimplantation of iEEG electrodes can offer the possibility of resective epilepsy surgery to patients in whom the initial iEEG investigation was inconclusive, without compromising on the risk of complications or seizure control.
Collapse
Affiliation(s)
- Céline Eelbode
- Neurology divisionGeneva University HospitalsGenevaSwitzerland
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
| | - Laurent Spinelli
- Neurology divisionGeneva University HospitalsGenevaSwitzerland
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
| | - Marco Corniola
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
- Neurosurgery DivisionGeneva University HospitalsGenevaSwitzerland
- Neurosurgery DivisionRennes University HospitalRennesFrance
- INSERM UMR 1099 LTSI, University of RennesRennesFrance
| | - Shahan Momjian
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
- Neurosurgery DivisionGeneva University HospitalsGenevaSwitzerland
| | - Margitta Seeck
- Neurology divisionGeneva University HospitalsGenevaSwitzerland
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
| | - Karl Schaller
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
- Neurosurgery DivisionGeneva University HospitalsGenevaSwitzerland
| | - Pierre Mégevand
- Neurology divisionGeneva University HospitalsGenevaSwitzerland
- Clinical Neuroscience DepartmentUniversity of Geneva, Faculty of MedicineGenevaSwitzerland
| |
Collapse
|
8
|
Santalucia R, Carapancea E, Vespa S, Germany Morrison E, Ghasemi Baroumand A, Vrielynck P, Fierain A, Joris V, Raftopoulos C, Duprez T, Ferrao Santos S, van Mierlo P, El Tahry R. Clinical added value of interictal automated electrical source imaging in the presurgical evaluation of MRI-negative epilepsy: A real-life experience in 29 consecutive patients. Epilepsy Behav 2023; 143:109229. [PMID: 37148703 DOI: 10.1016/j.yebeh.2023.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVE During the presurgical evaluation, manual electrical source imaging (ESI) provides clinically useful information in one-third of the patients but it is time-consuming and requires specific expertise. This prospective study aims to assess the clinical added value of a fully automated ESI analysis in a cohort of patients with MRI-negative epilepsy and describe its diagnostic performance, by evaluating sublobar concordance with stereo-electroencephalography (SEEG) results and surgical resection and outcome. METHODS All consecutive patients referred to the Center for Refractory Epilepsy (CRE) of St-Luc University Hospital (Brussels, Belgium) for presurgical evaluation between 15/01/2019 and 31/12/2020 meeting the inclusion criteria, were recruited to the study. Interictal ESI was realized on low-density long-term EEG monitoring (LD-ESI) and, whenever available, high-density EEG (HD-ESI), using a fully automated analysis (Epilog PreOp, Epilog NV, Ghent, Belgium). The multidisciplinary team (MDT) was asked to formulate hypotheses about the epileptogenic zone (EZ) location at sublobar level and make a decision on further management for each patient at two distinct moments: i) blinded to ESI and ii) after the presentation and clinical interpretation of ESI. Results leading to a change in clinical management were considered contributive. Patients were followed up to assess whether these changes lead to concordant results on stereo-EEG (SEEG) or successful epilepsy surgery. RESULTS Data from all included 29 patients were analyzed. ESI led to a change in the management plan in 12/29 patients (41%). In 9/12 (75%), modifications were related to a change in the plan of the invasive recording. In 8/9 patients, invasive recording was performed. In 6/8 (75%), the intracranial EEG recording confirmed the localization of the ESI at a sublobar level. So far, 5/12 patients, for whom the management plan was changed after ESI, were operated on and have at least one-year postoperative follow-up. In all cases, the EZ identified by ESI was included in the resection zone. Among these patients, 4/5 (80%) are seizure-free (ILAE 1) and one patient experienced a seizure reduction of more than 50% (ILAE 4). CONCLUSIONS In this single-center prospective study, we demonstrated the added value of automated ESI in the presurgical evaluation of MRI-negative cases, especially in helping to plan the implantation of depth electrodes for SEEG, provided that ESI results are integrated into the whole multimodal evaluation and clinically interpreted.
Collapse
Affiliation(s)
- Roberto Santalucia
- Cliniques Universitaires Saint-Luc, Paediatric Neurology Unit, Brussels, Belgium; Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium; Centre Hospitalier Neurologique William Lennox (CHNWL), Clinical Neurophysiology, Ottignies, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium.
| | - Evelina Carapancea
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Simone Vespa
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Enrique Germany Morrison
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Amir Ghasemi Baroumand
- Medical Image and Signal Processing, Ghent University, Ghent, Belgium; Epilog NV, Ghent, Belgium
| | - Pascal Vrielynck
- Centre Hospitalier Neurologique William Lennox (CHNWL), Clinical Neurophysiology, Ottignies, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium
| | - Alexane Fierain
- Centre Hospitalier Neurologique William Lennox (CHNWL), Clinical Neurophysiology, Ottignies, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Neurology Unit, Brussels, Belgium
| | - Vincent Joris
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Neurosurgery Unit, Brussels, Belgium
| | - Christian Raftopoulos
- Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Neurosurgery Unit, Brussels, Belgium
| | - Thierry Duprez
- Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Medical Imaging Department, Neuroradiology Unit, Belgium
| | - Susana Ferrao Santos
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Neurology Unit, Brussels, Belgium
| | - Pieter van Mierlo
- Medical Image and Signal Processing, Ghent University, Ghent, Belgium; Epilog NV, Ghent, Belgium
| | - Riëm El Tahry
- Institute of Neurosciences (IoNS/NEUR), Université Catholique de Louvain (UCL), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Reference Center for Refractory Epilepsy (CRE), Brussels, Belgium; Cliniques Universitaires Saint-Luc, Neurology Unit, Brussels, Belgium; WELBIO Department, WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
9
|
Ghaderi A, Niemeier M, Crawford JD. Saccades and presaccadic stimulus repetition alter cortical network topology and dynamics: evidence from EEG and graph theoretical analysis. Cereb Cortex 2023; 33:2075-2100. [PMID: 35639544 DOI: 10.1093/cercor/bhac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parietal and frontal cortex are involved in saccade generation, and their output signals modify visual signals throughout cortex. Local signals associated with these interactions are well described, but their large-scale progression and network dynamics are unknown. Here, we combined source localized electroencephalography (EEG) and graph theory analysis (GTA) to understand how saccades and presaccadic visual stimuli interactively alter cortical network dynamics in humans. Twenty-one participants viewed 1-3 vertical/horizontal grids, followed by grid with the opposite orientation just before a horizontal saccade or continued fixation. EEG signals from the presaccadic interval (or equivalent fixation period) were used for analysis. Source localization-through-time revealed a rapid frontoparietal progression of presaccadic motor signals and stimulus-motor interactions, with additional band-specific modulations in several frontoparietal regions. GTA analysis revealed a saccade-specific functional network with major hubs in inferior parietal cortex (alpha) and the frontal eye fields (beta), and major saccade-repetition interactions in left prefrontal (theta) and supramarginal gyrus (gamma). This network showed enhanced segregation, integration, synchronization, and complexity (compared with fixation), whereas stimulus repetition interactions reduced synchronization and complexity. These cortical results demonstrate a widespread influence of saccades on both regional and network dynamics, likely responsible for both the motor and perceptual aspects of saccades.
Collapse
Affiliation(s)
- Amirhossein Ghaderi
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Matthias Niemeier
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - John Douglas Crawford
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Biology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Psychology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Kinesiology and Health Sciences, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| |
Collapse
|
10
|
Huels ER, Kafashan M, Hickman LB, Ching S, Lin N, Lenze EJ, Farber NB, Avidan MS, Hogan RE, Palanca BJA. Central-positive complexes in ECT-induced seizures: Possible evidence for thalamocortical mechanisms. Clin Neurophysiol 2023; 146:77-86. [PMID: 36549264 PMCID: PMC10273093 DOI: 10.1016/j.clinph.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Central-positive complexes (CPCs) are elicited during electroconvulsive therapy (ECT) as generalized high-amplitude waveforms with maximum positive voltage over the vertex. While these complexes have been qualitatively assessed in previous literature, quantitative analyses are lacking. This study aims to characterize CPCs across temporal, spatial, and spectral domains. METHODS High-density 64-electrode electroencephalogram (EEG) recordings during 50 seizures acquired from 11 patients undergoing right unilateral ECT allowed for evaluation of spatiotemporal characteristics of CPCs via source localization and spectral analysis. RESULTS Peak-amplitude CPC scalp topology was consistent across seizures, showing maximal positive polarity over the midline fronto-central region and maximal negative polarity over the suborbital regions. The sources of these peak potentials were localized to the bilateral medial thalamus and cingulate cortical regions. Delta, beta, and gamma oscillations were correlated with the peak amplitude of CPCs during seizures induced during ketamine, whereas delta and gamma oscillations were associated with CPC peaks during etomidate anesthesia (excluding the dose-charge titration). CONCLUSIONS Our findings demonstrate the consistency of CPC presence across participant, stimulus charge, time, and anesthetic agent, with peaks localized to bilateral medial thalamus and cingulate cortical regions and associated with delta, beta, and gamma band oscillations (depending on the anesthetic condition). SIGNIFICANCE The consistency and reproducibility of CPCs offers ECT as a new avenue for studying the dynamics of generalized seizure activity and thalamocortical networks.
Collapse
Affiliation(s)
- Emma R Huels
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA
| | - MohammadMehdi Kafashan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - L Brian Hickman
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - ShiNung Ching
- Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nan Lin
- Department of Mathematics and Statistics, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Nuri B Farber
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - R Edward Hogan
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ben Julian A Palanca
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Center on Biological Rhythms and Sleep, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Neuroimaging Labs Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
11
|
Kumar A, Lyzhko E, Hamid L, Srivastav A, Stephani U, Japaridze N. Neuronal networks underlying ictal and subclinical discharges in childhood absence epilepsy. J Neurol 2023; 270:1402-1415. [PMID: 36370186 PMCID: PMC9971098 DOI: 10.1007/s00415-022-11462-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
Childhood absence epilepsy (CAE), involves 3 Hz generalized spikes and waves discharges (GSWDs) on the electroencephalogram (EEG), associated with ictal discharges (seizures) with clinical symptoms and impairment of consciousness and subclinical discharges without any objective clinical symptoms or impairment of consciousness. This study aims to comparatively characterize neuronal networks underlying absence seizures and subclinical discharges, using source localization and functional connectivity (FC), to better understand the pathophysiological mechanism of these discharges. Routine EEG data from 12 CAE patients, consisting of 45 ictal and 42 subclinical discharges were selected. Source localization was performed using the exact low-resolution electromagnetic tomography (eLORETA) algorithm, followed by FC based on the imaginary part of coherency. FC based on the thalamus as the seed of interest showed significant differences between ictal and subclinical GSWDs (p < 0.05). For delta (1-3 Hz) and alpha bands (8-12 Hz), the thalamus displayed stronger connectivity towards other brain regions for ictal GSWDs as compared to subclinical GSWDs. For delta band, the thalamus was strongly connected to the posterior cingulate cortex (PCC), precuneus, angular gyrus, supramarginal gyrus, parietal superior, and occipital mid-region for ictal GSWDs. The strong connections of the thalamus with other brain regions that are important for consciousness, and with components of the default mode network (DMN) suggest the severe impairment of consciousness in ictal GSWDs. However, for subclinical discharges, weaker connectivity between the thalamus and these brain regions may suggest the prevention of impairment of consciousness. This may benefit future therapeutic targets and improve the management of CAE patients.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neuropediatrics, Children's Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany. .,Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany. .,Department of Neurology, Columbia University Irving Medical Center, New York, USA.
| | - Ekaterina Lyzhko
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Laith Hamid
- Institute of Medical Psychology and Medical Sociology, University of Kiel, Kiel, Germany ,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Anand Srivastav
- Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany
| | - Ulrich Stephani
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| | - Natia Japaridze
- Department of Neuropediatrics, Children’s Hospital, University Medical Center Schleswig-Holstein, University of Kiel, Kiel, Germany
| |
Collapse
|
12
|
Alamoudi OA, Ilyas A, Pati S, Iasemidis L. Interictal localization of the epileptogenic zone: Utilizing the observed resonance behavior in the spectral band of surrounding inhibition. Front Neurosci 2022; 16:993678. [PMID: 36578827 PMCID: PMC9791262 DOI: 10.3389/fnins.2022.993678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction The gold standard for identification of the epileptogenic zone (EZ) continues to be the visual inspection of electrographic changes around seizures' onset by experienced electroencephalography (EEG) readers. Development of an epileptogenic focus localization tool that can delineate the EZ from analysis of interictal (seizure-free) periods is still an open question of great significance for improved diagnosis (e.g., presurgical evaluation) and treatment of epilepsy (e.g., surgical outcome). Methods We developed an EZ interictal localization algorithm (EZILA) based on novel analysis of intracranial EEG (iEEG) using a univariate periodogram-type power measure, a straight-forward ranking approach, a robust dimensional reduction method and a clustering technique. Ten patients with temporal and extra temporal lobe epilepsies, and matching the inclusion criteria of having iEEG recordings at the epilepsy monitoring unit (EMU) and being Engel Class I ≥12 months post-surgery, were recruited in this study. Results In a nested k-fold cross validation statistical framework, EZILA assigned the highest score to iEEG channels within the EZ in all patients (10/10) during the first hour of the iEEG recordings and up to their first typical clinical seizure in the EMU (i.e., early interictal period). To further validate EZILA's performance, data from two new (Engel Class I) patients were analyzed in a double-blinded fashion; the EZILA successfully localized iEEG channels within the EZ from interictal iEEG in both patients. Discussion Out of the sampled brain regions, iEEG channels in the EZ were most frequently and maximally active in seizure-free (interictal) periods across patients in specific narrow gamma frequency band (∼60-80 Hz), which we have termed focal frequency band (FFB). These findings are consistent with the hypothesis that the EZ may interictally be regulated (controlled) by surrounding inhibitory neurons with resonance characteristics within this narrow gamma band.
Collapse
Affiliation(s)
- Omar A. Alamoudi
- Biomedical Engineering Program, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia,Neurology Department, Texas Institute for Restorative Neurotechnologies (TIRN), University of Texas Medical School, Houston, TX, United States,*Correspondence: Omar A. Alamoudi,
| | - Adeel Ilyas
- Neurology Department, Texas Institute for Restorative Neurotechnologies (TIRN), University of Texas Medical School, Houston, TX, United States,Department of Neurological Surgery, University of Alabama at Birmingham, Birmingham, AL, United States,Vivian L. Smith Department of Neurosurgery, McGovern Medical School at University of Texas (UT) Health Houston, Houston, TX, United States
| | - Sandipan Pati
- Neurology Department, Texas Institute for Restorative Neurotechnologies (TIRN), University of Texas Medical School, Houston, TX, United States
| | - Leon Iasemidis
- Biomedical Engineering Department, Arizona State University, Tempe, AZ, United States,Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
13
|
Ntolkeras G, Tamilia E, AlHilani M, Bolton J, Ellen Grant P, Prabhu SP, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Presurgical accuracy of dipole clustering in MRI-negative pediatric patients with epilepsy: Validation against intracranial EEG and resection. Clin Neurophysiol 2022; 141:126-138. [PMID: 33875376 PMCID: PMC8803140 DOI: 10.1016/j.clinph.2021.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess the utility of interictal magnetic and electric source imaging (MSI and ESI) using dipole clustering in magnetic resonance imaging (MRI)-negative patients with drug resistant epilepsy (DRE). METHODS We localized spikes in low-density (LD-EEG) and high-density (HD-EEG) electroencephalography as well as magnetoencephalography (MEG) recordings using dipoles from 11 pediatric patients. We computed each dipole's level of clustering and used it to discriminate between clustered and scattered dipoles. For each dipole, we computed the distance from seizure onset zone (SOZ) and irritative zone (IZ) defined by intracranial EEG. Finally, we assessed whether dipoles proximity to resection was predictive of outcome. RESULTS LD-EEG had lower clusterness compared to HD-EEG and MEG (p < 0.05). For all modalities, clustered dipoles showed higher proximity to SOZ and IZ than scattered (p < 0.001). Resection percentage was higher in optimal vs. suboptimal outcome patients (p < 0.001); their proximity to resection was correlated to outcome (p < 0.001). No difference in resection percentage was seen for scattered dipoles between groups. CONCLUSION MSI and ESI dipole clustering helps to localize the SOZ and IZ and facilitate the prognostic assessment of MRI-negative patients with DRE. SIGNIFICANCE Assessing the MSI and ESI clustering allows recognizing epileptogenic areas whose removal is associated with optimal outcome.
Collapse
Affiliation(s)
- Georgios Ntolkeras
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel AlHilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; The Hillingdon Hospital NHS Foundation Trust, London, United Kingdom
| | - Jeffrey Bolton
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Sanjay P Prabhu
- Division of Neuroradiology, Department of Radiology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; School of Medicine, Texas Christian University and University of North Texas Health Science Center, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
14
|
Impact of high-density EEG in presurgical evaluation for refractory epilepsy patients. Clin Neurol Neurosurg 2022; 219:107336. [PMID: 35716454 DOI: 10.1016/j.clineuro.2022.107336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Electrical source localization (ESI) can help to identify the seizure onset zone or propagation zone, but it is unclear how dipole localization techniques influence surgical planning. METHODS Patients who received a high density (HD)-EEG from 7/2014-7/2019 at Stanford were included if they met the following inclusion criteria: (1) adequate epileptiform discharges were recorded for source localization analysis, (2) underwent surgical treatment, which was at least 6 months before the survey. Interictal ESI was performed with the LORETA method on age matched MRIs. Six neurophysiologists from the Stanford Epilepsy Program independently reviewed each case through an HIPPA-protected online survey. The same cases were presented again with additional data from the HD-EEG study. Ratings of how much the HD-EEG findings added value and in what way were recorded. RESULTS Fifty out of 202 patients met the inclusion criteria, providing a total of 276 h of HDEEG recordings. All patients had video EEG recordings and at least one brain MRI, 88 % had neuropsychological testing, 78 % had either a PET or SPECT scan. Additional HD-EEG information was rated as helpful in 83.8 %, not useful in 14.4 % and misleading in 1.8 % of cases. In 20.4 % of cases the HD-EEG information altered decision-making in a major way, such as choosing a different surgical procedure, avoidance of invasive recording or suggesting placement of invasive electrodes in a lobe not previously planned. In 21.5 % of cases, HD-EEG changed the plan in a minor way, e.g., extra invasive electrodes near the previously planned sites in the same sub-lobar region. In 42.3 % cases, HD-EEG did not change their plan but provided confirmation. In cases with normal MRI, additional HD-EEG information was more likely to change physicians' decision making during presurgical process when compared to the cases with MRI-visible lesions (53.3 % vs. 34.3 %, p = 0.002). Among patients achieving Engel class I/II outcome, the concordance rate of HD-EEG and resection zone was 64.7 % versus 35.3 % with class III/IV (p = 0.028). CONCLUSION HD-EEG assists presurgical planning for refractory epilepsy patients, with a higher yield in patients with non-lesional MRIs. Concordance of HD-EEG dipole analysis localization and resection site is a favorable outcome indicator.
Collapse
|
15
|
Liu L, Ren J, Li Z, Yang C. A review of MEG dynamic brain network research. Proc Inst Mech Eng H 2022; 236:763-774. [PMID: 35465768 DOI: 10.1177/09544119221092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dynamic description of neural networks has attracted the attention of researchers for dynamic networks may carry more information compared with resting-state networks. As a non-invasive electrophysiological data with high temporal and spatial resolution, magnetoencephalogram (MEG) can provide rich information for the analysis of dynamic functional brain networks. In this review, the development of MEG brain network was summarized. Several analysis methods such as sliding window, Hidden Markov model, and time-frequency based methods used in MEG dynamic brain network studies were discussed. Finally, the current research about multi-modal brain network analysis and their applications with MEG neurophysiology, which are prospected to be one of the research directions in the future, were concluded.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
16
|
Beumer S, Boon P, Klooster DCW, van Ee R, Carrette E, Paulides MM, Mestrom RMC. Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data. Brain Sci 2022; 12:brainsci12050610. [PMID: 35624997 PMCID: PMC9139054 DOI: 10.3390/brainsci12050610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.
Collapse
Affiliation(s)
- Steven Beumer
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Correspondence:
| | - Paul Boon
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Debby C. W. Klooster
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Raymond van Ee
- Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands;
| | - Evelien Carrette
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Maarten M. Paulides
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
- Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
| | - Rob M. C. Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (P.B.); (D.C.W.K.); (E.C.); (M.M.P.); (R.M.C.M.)
| |
Collapse
|
17
|
Polyanskaya M, Demushkina A, Kostylev F, Vasilyev I, Kholin A, Zavadenko N, Alikhanov A. The presurgical evaluation of patients with drug-resistant epilepsy. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:12-20. [DOI: 10.17116/jnevro202212208112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Casale MJ, Marcuse LV, Young JJ, Jette N, Panov FE, Bender HA, Saad AE, Ghotra RS, Ghatan S, Singh A, Yoo JY, Fields MC. The Sensitivity of Scalp EEG at Detecting Seizures-A Simultaneous Scalp and Stereo EEG Study. J Clin Neurophysiol 2022; 39:78-84. [PMID: 32925173 PMCID: PMC8290181 DOI: 10.1097/wnp.0000000000000739] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Compare the detection rate of seizures on scalp EEG with simultaneous intracranial stereo EEG (SEEG) recordings. METHODS Twenty-seven drug-resistant epilepsy patients undergoing SEEG with simultaneous scalp EEG as part of their surgical work-up were included. A total of 172 seizures were captured. RESULTS Of the 172 seizures detected on SEEG, 100 demonstrated scalp ictal patterns. Focal aware and subclinical seizures were less likely to be seen on scalp, with 33% of each observed when compared with focal impaired aware (97%) and focal to bilateral tonic-clonic seizures (100%) (P < 0.001). Of the 72 seizures without ictal scalp correlate, 32 demonstrated an abnormality during the SEEG seizure that was identical to an interictal abnormality. Seizures from patients with MRI lesions were statistically less likely to be seen on scalp than seizures from nonlesional patients (P = 0.0162). Stereo EEG seizures not seen on scalp were shorter in duration (49 seconds) compared with SEEG seizures seen on scalp (108.6 seconds) (P < 0.001). CONCLUSIONS Scalp EEG is not a sensitive tool for the detection of focal aware and subclinical seizures but is highly sensitive for the detection of focal impaired aware and focal to bilateral tonic-clonic seizures. Longer duration of seizure and seizures from patients without MRI lesions were more likely to be apparent on scalp. Abnormalities seen interictally may at times represent an underlying seizure. The cognitive, affective, and behavioral long-term effects of ongoing difficult-to-detect seizures are not known.
Collapse
Affiliation(s)
- Marc J. Casale
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Lara V. Marcuse
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - James J. Young
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Fedor E. Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - H. Allison Bender
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Adam E. Saad
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Ravi S. Ghotra
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Anuradha Singh
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Ji Yeoun Yoo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| | - Madeline C. Fields
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, U.S.A
| |
Collapse
|
19
|
Guo K, Wang J, Cui B, Wang Y, Hou Y, Zhao G, Lu J. [ 18F]FDG PET/MRI and magnetoencephalography may improve presurgical localization of temporal lobe epilepsy. Eur Radiol 2021; 32:3024-3034. [PMID: 34651211 DOI: 10.1007/s00330-021-08336-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/10/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate the clinical value of the combination of [18F]FDG PET/MRI and magnetoencephalography (MEG) ([18F]FDG PET/MRI/MEG) in localizing the epileptogenic zone (EZ) in temporal lobe epilepsy (TLE) patients. METHODS Seventy-three patients with localization-related TLE who underwent [18F]FDG PET/MRI and MEG were enrolled retrospectively. PET/MRI images were interpreted by two radiologists; the focal hypometabolism on PET was identified using statistical parametric mapping (SPM). MEG spike sources were co-registered onto T1-weighted sequence and analyzed by Neuromag software. The clinical value of [18F]FDG PET/MRI, MEG, and PET/MRI/MEG in locating the EZ was assessed using cortical resection and surgical outcomes as criteria. The correlations between surgical outcomes and modalities concordant or non-concordant with cortical resection were analyzed. RESULTS For 46.6% (34/73) of patients, MRI showed definitely structural abnormality concordant with surgical resection. SPM results of [18F]FDG PET showed focal temporal lobe hypometabolism concordant with surgical resection in 67.1% (49/73) of patients, while the concordant cases increased to 82.2% (60/73) patients with simultaneous MRI co-registration. MEG was concordant with surgical resection in 71.2% (52/73) of patients. The lobar localization was defined in 94.5% (69/73) of patients by the [18F]FDG PET/MRI/MEG. The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG (χ2 = 13.948, p < 0.001; χ2 = 5.393, p = 0.020). The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than PET/MRI or MEG (χ2 = 6.695, p = 0.012; χ2 = 16.991, p < 0.0001). CONCLUSIONS Presurgical evaluation by [18F]FDG PET/MRI/MEG could improve the identification of the EZ in TLE and may further guide surgical decision-making. KEY POINTS • Lobar localization was defined in 94.5% of patients by the [18F]FDG PET/MRI/MEG. • The results of PET/MRI/MEG concordance with surgical resection were significantly higher than that of PET/MRI or MEG alone. • The results of PET/MRI/MEG cortical resection concordance with surgical outcome were shown to be better than that of PET/MRI or MEG alone.
Collapse
Affiliation(s)
- Kun Guo
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Jingjuan Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Bixiao Cui
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yihe Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yaqin Hou
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing, 100053, China. .,Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China.
| |
Collapse
|
20
|
Quintiliani M, Bianchi F, Fuggetta F, Chieffo DPR, Ramaglia A, Battaglia DI, Tamburrini G. Role of high-density EEG (hdEEG) in pre-surgical epilepsy evaluation in children: case report and review of the literature. Childs Nerv Syst 2021; 37:1429-1437. [PMID: 33604716 PMCID: PMC8084826 DOI: 10.1007/s00381-021-05069-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Electrical source imaging (ESI) and especially hdEEG represent a noninvasive, low cost and accurate method of localizing epileptic zone (EZ). Such capability can greatly increase seizure freedom rate in surgically treated drug resistant epilepsy cases. Furthermore, ESI might be important in intracranial record planning. CASE REPORT We report the case of a 15 years old boy suffering from drug resistant epilepsy with a previous history of DNET removal. The patient suffered from heterogeneous seizure semiology characterized by anesthesia and loss of tone in the left arm, twisting of the jaw to the left and dysarthria accompanied by daze; lightheadedness sometimes associated with headache and dizziness and at a relatively short time distance negative myoclonus involving the left hand. Clinical evidence poorly match scalp and video EEG monitoring thus requiring hdEEG recording followed by SEEG to define surgical target. Surgery was also guided by ECoG and obtained seizure freedom. DISCUSSION ESI offers an excellent estimate of EZ, being hdEEG and intracranial recordings especially important in defining it. We analyzed our results together with the data from the literature showing how in children hdEEG might be even more crucial than in adults due to the heterogeneity in seizures phenomenology. The complexity of each case and the technical difficulties in dealing with children, stress even more the importance of a noninvasive tool for diagnosis. In fact, hdEEG not only guided in the presented case SEEG planning but may also in the future offer the possibility to replace it.
Collapse
Affiliation(s)
- Michela Quintiliani
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Federico Bianchi
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy.
| | - Filomena Fuggetta
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | | | - Antonia Ramaglia
- Institute of Radiology, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
| | - Domenica Immacolata Battaglia
- Infantile Neuropsychiatry, Fondazione Policlinico Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianpiero Tamburrini
- Pediatric Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo F. Vito 1, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
21
|
Li R, Plummer C, Vogrin SJ, Woods WP, Kuhlmann L, Boston R, Liley DTJ, Cook MJ, Grayden DB. Interictal spike localization for epilepsy surgery using magnetoencephalography beamforming. Clin Neurophysiol 2021; 132:928-937. [PMID: 33636608 DOI: 10.1016/j.clinph.2020.12.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Magnetoencephalography (MEG) kurtosis beamforming is an automated localization method for focal epilepsy. Visual examination of virtual sensors, which are source activities reconstructed by beamforming, can improve performance but can be time-consuming for neurophysiologists. We propose a framework to automate the method and evaluate its effectiveness against surgical resections and outcomes. METHODS We retrospectively analyzed MEG recordings of 13 epilepsy surgery patients who had one-year minimum post-operative follow-up. Kurtosis beamforming was applied and manual inspection was confined to morphological clusters. The region with the Maximum Interictal Spike Frequency (MISF) was validated against prospectively modelled sLORETA solutions and surgical resections linked to outcome. RESULTS Our approach localized spikes in 12 out of 13 patients. In eight patients with Engel I surgical outcomes, beamforming MISF regions were concordant with surgical resection at overlap level for five patients and at lobar level for three patients. The MISF regions localized to spike onset and propagation modelled by sLORETA in two and six patients, respectively. CONCLUSIONS Automated beamforming using MEG can predict postoperative seizure freedom at the lobar level but tends to localize propagated MEG spikes. SIGNIFICANCE MEG beamforming may contribute to non-invasive procedures to predict surgical outcome for patients with drug-refractory focal epilepsy.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia.
| | - Chris Plummer
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Neurology, St. Vincent's Hospital, Fitzroy, VIC, Australia; School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Simon J Vogrin
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Neurology, St. Vincent's Hospital, Fitzroy, VIC, Australia; School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - William P Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Levin Kuhlmann
- Faculty of Information Technology, Monash University, Clayton, VIC 3168, Australia
| | - Ray Boston
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Clinical Studies, New Bolton Centre, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - David T J Liley
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Mark J Cook
- Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Department of Neurology, St. Vincent's Hospital, Fitzroy, VIC, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia; Department of Medicine, The University of Melbourne, Fitzroy, VIC, Australia; Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Galaris E, Gallos I, Myatchin I, Lagae L, Siettos C. Electroencephalography source localization analysis in epileptic children during a visual working-memory task. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3404. [PMID: 33029905 DOI: 10.1002/cnm.3404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
We localize the sources of brain activity of children with epilepsy based on electroencephalograph (EEG) recordings acquired during a visual discrimination working memory task. For the numerical solution of the inverse problem, with the aid of age-specific MRI scans processed from a publicly available database, we use and compare three regularization numerical methods, namely the standardized low resolution brain electromagnetic tomography (sLORETA), the weighted minimum norm estimation (wMNE) and the dynamic statistical parametric mapping (dSPM). We show that all three methods provide the same spatio-temporal patterns of differences between the groups of epileptic and control children. In particular, our analysis reveals statistically significant differences between the two groups in regions of the parietal cortex indicating that these may serve as "biomarkers" for diagnostic purposes and ultimately localized treatment.
Collapse
Affiliation(s)
- Evangelos Galaris
- Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Universita' degli Studi di Napoli Federico II, Napoli, Italy
| | - Ioannis Gallos
- School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Ivan Myatchin
- Department of Anesthesiology, Sint-Trudo Regional Hospital, Sint-Truiden, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Paediatric Neurology, KU Leuven, Leuven, Belgium
| | - Constantinos Siettos
- Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Universita' degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
23
|
Trébuchon A, Liégeois-Chauvel C, Gonzalez-Martinez JA, Alario FX. Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy. Epilepsy Behav 2020; 112:107407. [PMID: 33181892 DOI: 10.1016/j.yebeh.2020.107407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
A crucial element of the surgical treatment of medically refractory epilepsy is to delineate cortical areas that must be spared in order to avoid clinically relevant neurological and neuropsychological deficits postoperatively. For each patient, this typically necessitates determining the language lateralization between hemispheres and language localization within hemisphere. Understanding cortical language systems is complicated by two primary challenges: the extent of the neural tissue involved and the substantial variability across individuals, especially in pathological populations. We review the contributions made through the study of electrophysiological activity to address these challenges. These contributions are based on the techniques of magnetoencephalography (MEG), intracerebral recordings, electrical-cortical stimulation (ECS), and the electrovideo analyses of seizures and their semiology. We highlight why no single modality alone is adequate to identify cortical language systems and suggest avenues for improving current practice.
Collapse
Affiliation(s)
- Agnès Trébuchon
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Catherine Liégeois-Chauvel
- Aix-Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France; Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA
| | | | - F-Xavier Alario
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh (PA), USA; Aix-Marseille Univ, CNRS, LPC, Marseille, France.
| |
Collapse
|
24
|
Vespa S, Baroumand AG, Ferrao Santos S, Vrielynck P, de Tourtchaninoff M, Feys O, Strobbe G, Raftopoulos C, van Mierlo P, El Tahry R. Ictal EEG source imaging and connectivity to localize the seizure onset zone in extratemporal lobe epilepsy. Seizure 2020; 78:18-30. [DOI: 10.1016/j.seizure.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
|
25
|
Mégevand P, Seeck M. Electric source imaging for presurgical epilepsy evaluation: current status and future prospects. Expert Rev Med Devices 2020; 17:405-412. [DOI: 10.1080/17434440.2020.1748008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Pierre Mégevand
- Epilepsy Unit, Neurology Division, Clinical Neuroscience Department, Geneva University Hospitals, Genève, Switzerland
- Basic Neuroscience Department, Faculty of Medicine, University of Geneva, Genève, Switzerland
| | - Margitta Seeck
- Epilepsy Unit, Neurology Division, Clinical Neuroscience Department, Geneva University Hospitals, Genève, Switzerland
| |
Collapse
|
26
|
Rajaei H, Adjouadi M, Cabrerizo M, Janwattanapong P, Pinzon A, Gonzales-Arias S, Barreto A, Andrian J, Rishe N, Yaylali I. Dynamics and Distant Effects of Frontal/Temporal Epileptogenic Focus Using Functional Connectivity Maps. IEEE Trans Biomed Eng 2020; 67:632-643. [DOI: 10.1109/tbme.2019.2919263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Plummer C, Vogrin SJ, Woods WP, Murphy MA, Cook MJ, Liley DTJ. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: a prospective long-term study. Brain 2019; 142:932-951. [PMID: 30805596 PMCID: PMC6459284 DOI: 10.1093/brain/awz015] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/07/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant focal epilepsy is a major clinical problem and surgery is under-used. Better non-invasive techniques for epileptogenic zone localization are needed when MRI shows no lesion or an extensive lesion. The problem is interictal and ictal localization before propagation from the epileptogenic zone. High-density EEG (HDEEG) and magnetoencephalography (MEG) offer millisecond-order temporal resolution to address this but co-acquisition is challenging, ictal MEG studies are rare, long-term prospective studies are lacking, and fundamental questions remain. Should HDEEG-MEG discharges be assessed independently [electroencephalographic source localization (ESL), magnetoencephalographic source localization (MSL)] or combined (EMSL) for source localization? Which phase of the discharge best characterizes the epileptogenic zone (defined by intracranial EEG and surgical resection relative to outcome)? Does this differ for interictal and ictal discharges? Does MEG detect mesial temporal lobe discharges? Thirteen patients (10 non-lesional, three extensive-lesional) underwent synchronized HDEEG-MEG (72–94 channel EEG, 306-sensor MEG). Source localization (standardized low-resolution tomographic analysis with MRI patient-individualized boundary-element method) was applied to averaged interictal epileptiform discharges (IED) and ictal discharges at three phases: ‘early-phase’ (first latency 90% explained variance), ‘mid-phase’ (first of 50% rising-phase, 50% mean global field power), ‘late-phase’ (negative peak). ‘Earliest-solution’ was the first of the three early-phase solutions (ESL, MSL, EMSL). Prospective follow-up was 3–21 (median 12) months before surgery, 14–39 (median 21) months after surgery. IEDs (n = 1474) were recorded, seen in: HDEEG only, 626 (42%); MEG only, 232 (16%); and both 616 (42%). Thirty-three seizures were captured, seen in: HDEEG only, seven (21%); MEG only, one (3%); and both 25 (76%). Intracranial EEG was done in nine patients. Engel scores were I (9/13, 69%), II (2/13,15%), and III (2/13). MEG detected baso-mesial temporal lobe epileptogenic zone sources. Epileptogenic zone OR [odds ratio(s)] were significantly higher for earliest-solution versus early-phase IED-surgical resection and earliest-solution versus all mid-phase and late-phase solutions. ESL outperformed EMSL for ictal-surgical resection [OR 3.54, 95% confidence interval (CI) 1.09–11.55, P = 0.036]. MSL outperformed EMSL for IED-intracranial EEG (OR 4.67, 95% CI 1.19–18.34, P = 0.027). ESL outperformed MSL for ictal-surgical resection (OR 3.73, 95% CI 1.16–12.03, P = 0.028) but was outperformed by MSL for IED-intracranial EEG (OR 0.18, 95% CI 0.05–0.73, P = 0.017). Thus, (i) HDEEG and MEG source solutions more accurately localize the epileptogenic zone at the earliest resolvable phase of interictal and ictal discharges, not mid-phase (as is common practice) or late peak-phase (when signal-to-noise ratios are maximal); (ii) from empirical observation of the differential timing of HDEEG and MEG discharges and based on the superiority of ESL plus MSL over either modality alone and over EMSL, concurrent HDEEG-MEG signals should be assessed independently, not combined; (iii) baso-mesial temporal lobe sources are detectable by MEG; and (iv) MEG is not ‘more accurate’ than HDEEG—emphasis is best placed on the earliest signal (whether HDEEG or MEG) amenable to source localization. Our findings challenge current practice and our reliance on invasive monitoring in these patients.
Collapse
Affiliation(s)
- Chris Plummer
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Simon J Vogrin
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - William P Woods
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Michael A Murphy
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | - Mark J Cook
- Department of Neurology, St Vincent's Hospital, Fitzroy, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Graeme Clark Institute of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - David T J Liley
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Australia
| |
Collapse
|
28
|
Baumgartner C, Koren JP, Britto-Arias M, Zoche L, Pirker S. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res 2019; 8. [PMID: 31700611 PMCID: PMC6820825 DOI: 10.12688/f1000research.17714.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
With a prevalence of 0.8 to 1.2%, epilepsy represents one of the most frequent chronic neurological disorders; 30 to 40% of patients suffer from drug-resistant epilepsy (that is, seizures cannot be controlled adequately with antiepileptic drugs). Epilepsy surgery represents a valuable treatment option for 10 to 50% of these patients. Epilepsy surgery aims to control seizures by resection of the epileptogenic tissue while avoiding neuropsychological and other neurological deficits by sparing essential brain areas. The most common histopathological findings in epilepsy surgery specimens are hippocampal sclerosis in adults and focal cortical dysplasia in children. Whereas presurgical evaluations and surgeries in patients with mesial temporal sclerosis and benign tumors recently decreased in most centers, non-lesional patients, patients requiring intracranial recordings, and neocortical resections increased. Recent developments in neurophysiological techniques (high-density electroencephalography [EEG], magnetoencephalography, electrical and magnetic source imaging, EEG-functional magnetic resonance imaging [EEG-fMRI], and recording of pathological high-frequency oscillations), structural magnetic resonance imaging (MRI) (ultra-high-field imaging at 7 Tesla, novel imaging acquisition protocols, and advanced image analysis [post-processing] techniques), functional imaging (positron emission tomography and single-photon emission computed tomography co-registered to MRI), and fMRI significantly improved non-invasive presurgical evaluation and have opened the option of epilepsy surgery to patients previously not considered surgical candidates. Technical improvements of resective surgery techniques facilitate successful and safe operations in highly delicate brain areas like the perisylvian area in operculoinsular epilepsy. Novel less-invasive surgical techniques include stereotactic radiosurgery, MR-guided laser interstitial thermal therapy, and stereotactic intracerebral EEG-guided radiofrequency thermocoagulation.
Collapse
Affiliation(s)
- Christoph Baumgartner
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria.,Medical Faculty, Sigmund Freud University, Vienna, Austria
| | - Johannes P Koren
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Martha Britto-Arias
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Lea Zoche
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Susanne Pirker
- Department of Neurology, General Hospital Hietzing with Neurological Center Rosenhügel, Vienna, Austria.,Karl Landsteiner Institute for Clinical Epilepsy Research and Cognitive Neurology, Vienna, Austria
| |
Collapse
|
29
|
Islam M, Westin K, Carvalho A, Eriksson M, Lundvall M, Stödberg T, Adelöw C, Lundqvist D, Andersen LM, Lundstrom BN, Cooray G. MEG and navigated TMS jointly enable spatially accurate application of TMS therapy at the epileptic focus in pharmacoresistant epilepsy. Brain Stimul 2019; 12:1312-1314. [PMID: 31296401 DOI: 10.1016/j.brs.2019.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mominul Islam
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Karin Westin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Ana Carvalho
- Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Eriksson
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Lundvall
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Stödberg
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Daniel Lundqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lau M Andersen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Gerald Cooray
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Clinical Neurophysiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
30
|
Mégevand P, Hamid L, Dümpelmann M, Heers M. New horizons in clinical electric source imaging. ZEITSCHRIFT FUR EPILEPTOLOGIE 2019. [DOI: 10.1007/s10309-019-0258-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Tamilia E, AlHilani M, Tanaka N, Tsuboyama M, Peters JM, Grant PE, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Assessing the localization accuracy and clinical utility of electric and magnetic source imaging in children with epilepsy. Clin Neurophysiol 2019; 130:491-504. [PMID: 30771726 DOI: 10.1016/j.clinph.2019.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the accuracy and clinical utility of conventional 21-channel EEG (conv-EEG), 72-channel high-density EEG (HD-EEG) and 306-channel MEG in localizing interictal epileptiform discharges (IEDs). METHODS Twenty-four children who underwent epilepsy surgery were studied. IEDs on conv-EEG, HD-EEG, MEG and intracranial EEG (iEEG) were localized using equivalent current dipoles and dynamical statistical parametric mapping (dSPM). We compared the localization error (ELoc) with respect to the ground-truth Irritative Zone (IZ), defined by iEEG sources, between non-invasive modalities and the distance from resection (Dres) between good- (Engel 1) and poor-outcomes. For each patient, we estimated the resection percentage of IED sources and tested whether it predicted outcome. RESULTS MEG presented lower ELoc than HD-EEG and conv-EEG. For all modalities, Dres was shorter in good-outcome than poor-outcome patients, but only the resection percentage of the ground-truth IZ and MEG-IZ predicted surgical outcome. CONCLUSIONS MEG localizes the IZ more accurately than conv-EEG and HD-EEG. MSI may help the presurgical evaluation in terms of patient's outcome prediction. The promising clinical value of ESI for both conv-EEG and HD-EEG prompts the use of higher-density EEG-systems to possibly achieve MEG performance. SIGNIFICANCE Localizing the IZ non-invasively with MSI/ESI facilitates presurgical evaluation and surgical prognosis assessment.
Collapse
Affiliation(s)
- Eleonora Tamilia
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel AlHilani
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Naoaki Tanaka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Sapporo Neuroimaging Research Group, Sapporo, Japan
| | - Melissa Tsuboyama
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Fetal-Neonatal Neuroimaging Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|