1
|
Baker KB, Plow EB, Nagel S, Rosenfeldt AB, Gopalakrishnan R, Clark C, Wyant A, Schroedel M, Ozinga J, Davidson S, Hogue O, Floden D, Chen J, Ford PJ, Sankary L, Huang X, Cunningham DA, DiFilippo FP, Hu B, Jones SE, Bethoux F, Wolf SL, Chae J, Machado AG. Cerebellar deep brain stimulation for chronic post-stroke motor rehabilitation: a phase I trial. Nat Med 2023; 29:2366-2374. [PMID: 37580534 PMCID: PMC10504081 DOI: 10.1038/s41591-023-02507-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/19/2023] [Indexed: 08/16/2023]
Abstract
Upper-extremity impairment after stroke remains a major therapeutic challenge and a target of neuromodulation treatment efforts. In this open-label, non-randomized phase I trial, we applied deep brain stimulation to the cerebellar dentate nucleus combined with renewed physical rehabilitation to promote functional reorganization of ipsilesional cortex in 12 individuals with persistent (1-3 years), moderate-to-severe upper-extremity impairment. No serious perioperative or stimulation-related adverse events were encountered, with participants demonstrating a seven-point median improvement on the Upper-Extremity Fugl-Meyer Assessment. All individuals who enrolled with partial preservation of distal motor function exceeded minimal clinically important difference regardless of time since stroke, with a median improvement of 15 Upper-Extremity Fugl-Meyer Assessment points. These robust functional gains were directly correlated with cortical reorganization evidenced by increased ipsilesional metabolism. Our findings support the safety and feasibility of deep brain stimulation to the cerebellar dentate nucleus as a promising tool for modulation of late-stage neuroplasticity for functional recovery and the need for larger clinical trials. ClinicalTrials.gov registration: NCT02835443 .
Collapse
Affiliation(s)
- Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cerebrovascular Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sean Nagel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anson B Rosenfeldt
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raghavan Gopalakrishnan
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Cynthia Clark
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Alexandria Wyant
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Madeleine Schroedel
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Ozinga
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sara Davidson
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olivia Hogue
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Darlene Floden
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jacqueline Chen
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul J Ford
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Neuroethics, Cleveland Clinic, Cleveland, OH, USA
| | - Lauren Sankary
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Neuroethics, Cleveland Clinic, Cleveland, OH, USA
| | - Xuemei Huang
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - David A Cunningham
- Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
- Center for Rehabilitation Research, MetroHealth Systems, Cleveland, OH, USA
- Cleveland FES Center, Cleveland, OH, USA
| | - Frank P DiFilippo
- Department of Nuclear Medicine, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen E Jones
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Francois Bethoux
- Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Steven L Wolf
- Center for Movement Science and Physical Therapy, Division of Physical Therapy Education, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - John Chae
- Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA
- Center for Rehabilitation Research, MetroHealth Systems, Cleveland, OH, USA
- Cleveland FES Center, Cleveland, OH, USA
| | - André G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
A review of molecular and genetic factors for determining mild traumatic brain injury severity and recovery. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
3
|
Byard K, Gosling AS, Tucker P, Richmond J, Ashton R, Pickering A, Charles F, Fine H, Reed J. Reflections on the physical, executive developmental and systems applied framework in child neuropsychological rehabilitation. Clin Child Psychol Psychiatry 2022; 27:1221-1233. [PMID: 34920675 DOI: 10.1177/13591045211062384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper describes the influence of the Physical, Executive, Developmental and Systems (PEDS) framework on the delivery of community-based child neuropsychological rehabilitation and how it has been enhanced by the proliferation of neuroscientific, neuropsychological and psychosocial research and evidence-base in childhood brain injury and rehabilitation over the past decade. The paper signposts to some of the key models, theories and concepts currently shaping service delivery. Application of the PEDS framework in a clinical case is described.
Collapse
Affiliation(s)
- Katie Byard
- Department of Clinical Psychology, Recolo UK Ltd, UK
| | | | - Peter Tucker
- Department of Clinical Psychology, Recolo UK Ltd, UK
| | | | | | | | | | - Howard Fine
- Department of Clinical Psychology, Recolo UK Ltd, UK
| | - Jonathan Reed
- Department of Clinical Psychology, Recolo UK Ltd, UK
| |
Collapse
|
4
|
Dimyan MA, Harcum S, Ermer E, Boos AF, Conroy SS, Liu F, Horn LB, Xu H, Zhan M, Chen H, Whitall J, Wittenberg GF. Baseline Predictors of Response to Repetitive Task Practice in Chronic Stroke. Neurorehabil Neural Repair 2022; 36:426-436. [PMID: 35616437 DOI: 10.1177/15459683221095171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Repetitive task practice reduces mean upper extremity motor impairment in populations of patients with chronic stroke, but individual response is highly variable. A method to predict meaningful reduction in impairment in response to training based on biomarkers and other data collected prior to an intervention is needed to establish realistic rehabilitation goals and to effectively allocate resources. OBJECTIVES To identify prognostic factors and better understand the biological substrate for reductions in arm impairment in response to repetitive task practice among patients with chronic (≥6 months) post-stroke hemiparesis. METHODS The intervention is a form of repetitive task practice using a combination of robot-assisted therapy and functional arm use in real-world tasks. Baseline measures include the Fugl-Meyer Assessment, Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, MRI, transcranial magnetic stimulation, kinematics, accelerometry, and genomic testing. RESULTS Mean increase in FM-UE was 4.6 ± 1.0 SE, median 2.5. Approximately one-third of participants had a clinically meaningful response to the intervention, defined as an increase in FM ≥ 5. The selected logistic regression model had a receiver operating curve with AUC = .988 (Std Error = .011, 95% Wald confidence limits: .967-1) showed little evidence of overfitting. Six variables that predicted response represented impairment, functional, and genomic measures. CONCLUSION A simple weighted sum of 6 baseline factors can accurately predict clinically meaningful impairment reduction after outpatient intensive practice intervention in chronic stroke. Reduction of impairment may be a critical first step to functional improvement. Further validation and generalization of this model will increase its utility in clinical decision-making.
Collapse
Affiliation(s)
- Michael A Dimyan
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stacey Harcum
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Elsa Ermer
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy F Boos
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan S Conroy
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Fang Liu
- Rehab & Neural Engineering Labs, Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Linda B Horn
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Min Zhan
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hegang Chen
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George F Wittenberg
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, MD, USA.,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center and Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, MD, USA.,Geriatrics Research, Education and Clinical Center, Human Engineering Research Laboratory, VA Maryland Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Kristinsson S, Fridriksson J. Genetics in aphasia recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:283-296. [PMID: 35078606 DOI: 10.1016/b978-0-12-823384-9.00015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Considerable research efforts have been exerted toward understanding the mechanisms underlying recovery in aphasia. However, predictive models of spontaneous and treatment-induced recovery remain imprecise. Some of the hitherto unexplained variability in recovery may be accounted for with genetic data. A few studies have examined the effects of the BDNF val66met polymorphism on aphasia recovery, yielding mixed results. Advances in the study of stroke genetics and genetics of stroke recovery, including identification of several susceptibility genes through candidate-gene or genome-wide association studies, may have implications for the recovery of language function. The current chapter discusses both the direct and indirect evidence for a genetic basis of aphasia recovery, the implications of recent findings within the field, and potential future directions to advance understanding of the genetics-recovery associations.
Collapse
Affiliation(s)
- Sigfus Kristinsson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
6
|
Cash RFH, Udupa K, Gunraj CA, Mazzella F, Daskalakis ZJ, Wong AHC, Kennedy JL, Chen R. Influence of BDNF Val66Met polymorphism on excitatory-inhibitory balance and plasticity in human motor cortex. Clin Neurophysiol 2021; 132:2827-2839. [PMID: 34592560 DOI: 10.1016/j.clinph.2021.07.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVE While previous studies showed that the single nucleotide polymorphism (Val66Met) of brain-derived neurotrophic factor (BDNF) can impact neuroplasticity, the influence of BDNF genotype on cortical circuitry and relationship to neuroplasticity remain relatively unexplored in human. METHODS Using individualised transcranial magnetic stimulation (TMS) parameters, we explored the influence of the BDNF Val66Met polymorphism on excitatory and inhibitory neural circuitry, its relation to I-wave TMS (ITMS) plasticity and effect on the excitatory/inhibitory (E/I) balance in 18 healthy individuals. RESULTS Excitatory and inhibitory indexes of neurotransmission were reduced in Met allele carriers. An E/I balance was evident, which was influenced by BDNF with higher E/I ratios in Val/Val homozygotes. Both long-term potentiation (LTP-) and depression (LTD-) like ITMS plasticity were greater in Val/Val homozygotes. LTP- but not LTD-like effects were restored in Met allele carriers by increasing stimulus intensity to compensate for reduced excitatory transmission. CONCLUSIONS The influence of BDNF genotype may extend beyond neuroplasticity to neurotransmission. The E/I balance was evident in human motor cortex, modulated by BDNF and measurable using TMS. Given the limited sample, these preliminary findings warrant further investigation. SIGNIFICANCE These novel findings suggest a broader role of BDNF genotype on neurocircuitry in human motor cortex.
Collapse
Affiliation(s)
- R F H Cash
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria 3010, Australia; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia.
| | - K Udupa
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada; Dept of Neurophysiology, NIMHANS, Bengaluru, India
| | - C A Gunraj
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - F Mazzella
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| | - Z J Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, UC San Diego Health, San Diego, CA 92093, USA
| | - A H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - J L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - R Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Brain Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Liu X, Fang JC, Zhi XY, Yan QY, Zhu H, Xie J. The Influence of Val66Met Polymorphism in Brain-Derived Neurotrophic Factor on Stroke Recovery Outcome: A Systematic Review and Meta-analysis. Neurorehabil Neural Repair 2021; 35:550-560. [PMID: 33957818 DOI: 10.1177/15459683211014119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and purpose. A single nucleotide polymorphism at nucleotide 196 (G/A) in the human brain-derived neurotrophic factor (BDNF) gene produces an amino acid substitution (valine to methionine) at codon 66(Val66Met). It is unclear whether carriers of this substitution may have worse functional outcomes after stroke. We aimed to explore the distribution of Val66Met polymorphism and evaluate the effect of different genotypes on stroke functional recovery. Methods. Several databases were searched using the keywords BDNF or brain-derived neurotrophic factor, codon66, G196A, rs6265, or Val66Met, and stroke. Results. A total of 25 articles were relevant to estimate the distribution of alleles; 5 reports were applied in the meta-analysis to assess genetic differences on recovery outcomes. The genetic model analysis showed that the recessive model should be used; we combined data for AA versus GA+GG (GG-Val/Val, GA-Val/Met, AA-Met/Met). The results showed that stroke patients with AA might have worse recovery outcomes than those with GA+GG (odds ratio = 1.90; 95% CI: 1.17-3.10; P = .010; I2 = 69.2%). Overall, the A allele may be more common in Asian patients (48.6%; 95% CI: 45.8%-51.4%, I2 = 54.2%) than Caucasian patients (29.8%; 95% CI: 7.5%-52.1%; I2 = 99.1%). However, in Caucasian patients, the frequency of the A allele in Iranians (87.9%; 95% CI: 83.4%-92.3%) was quite higher than that in other Caucasians (18.7%; 95% CI: 16.6%-20.9%; I2 = 0.00%). Conclusion. Val66Met AA carriers may have worse rehabilitation outcomes than GA+GG carriers. Further studies are needed to determine the effect of Val66Met polymorphism on stroke recovery and to evaluate this relationship with ethnicity, sex, age, stroke type, observe duration, stroke severity, injury location, and therapies.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jun-Chao Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin-Yue Zhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Qiu-Yu Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Hong Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| | - Juan Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.,Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin, China
| |
Collapse
|
8
|
Quality of life 6 and 18 months after mild traumatic brain injury in early childhood: An exploratory study of the role of genetic, environmental, injury, and child factors. Brain Res 2020; 1748:147061. [DOI: 10.1016/j.brainres.2020.147061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/18/2022]
|
9
|
Gagner C, Tuerk C, De Beaumont L, Bernier A, Beauchamp MH. Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Internalizing Behaviors after Early Mild Traumatic Brain Injury. J Neurotrauma 2020; 38:102-110. [PMID: 32605421 DOI: 10.1089/neu.2019.6936] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pediatric traumatic brain injury (TBI) can lead to adverse emotional, social, and behavioral consequences. However, outcome is difficult to predict due to significant individual variability, likely reflecting a complex interaction between injury- and child-related variables. Among these variables are genetically determined individual differences, which can modulate TBI outcome through their influence on neuroplasticity mechanisms. In this study, we examined the effect of Val66Met, a common polymorphism of the brain-derived neurotrophic factor gene known to be involved in neuroplasticity mechanisms, on behavioral symptoms of mild TBI (mTBI) sustained in early childhood. This work is part of a prospective, longitudinal cohort study of early TBI. The current sample consisted of 145 children between ages 18 and 60 months assigned to one of three participant groups: mild TBI, orthopedic injury, or typically developing children. Participants provided a saliva sample to detect the presence of the Val66Met polymorphism, and the Child Behavior Checklist was used to document the presence of behavioral symptoms at 6- and 18-months post-injury. Contrary to our initial hypothesis, at 6 months post-injury, non-carriers of the Val66Met polymorphism in the mTBI group presented significantly more internalizing symptoms (e.g., anxiety/depression and somatic complaints) than Val66Met carriers, who were similar to orthopedically injured and typically developing children. However, at 18 months post-injury, all children with mTBI presented more internalizing symptoms, independent of genotype. The results of the study provide evidence for a protective effect of the Val66Met polymorphism on internalizing behavior symptoms 6 months after early childhood mTBI.
Collapse
Affiliation(s)
- Charlotte Gagner
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| | - Carola Tuerk
- Department of Psychology, University of Montreal, Montréal, Québec, Canada
| | - Louis De Beaumont
- Hôpital du Sacré-Coeur de Montréal Research Center, Montréal, Québec, Canada.,Department of Surgery, University of Montreal, Montréal, Québec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Montréal, Québec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montréal, Québec, Canada.,Sainte-Justine Hospital Research Center, Montréal, Québec, Canada
| |
Collapse
|
10
|
DeMarco AT, Turkeltaub PE. Functional anomaly mapping reveals local and distant dysfunction caused by brain lesions. Neuroimage 2020; 215:116806. [PMID: 32278896 DOI: 10.1016/j.neuroimage.2020.116806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023] Open
Abstract
The lesion method has been important for understanding brain-behavior relationships in humans, but has previously used maps based on structural damage. Lesion measurement based on structural damage may label partly damaged but functional tissue as abnormal, and moreover, ignores distant dysfunction in structurally intact tissue caused by deafferentation, diaschisis, and other processes. A reliable method to map functional integrity of tissue throughout the brain would provide a valuable new approach to measuring lesions. Here, we use machine learning on four dimensional resting state fMRI data obtained from left-hemisphere stroke survivors in the chronic period of recovery and control subjects to generate graded maps of functional anomaly throughout the brain in individual patients. These functional anomaly maps identify areas of obvious structural lesions and are stable across multiple measurements taken months and even years apart. Moreover, the maps identify functionally anomalous regions in structurally intact tissue, providing a direct measure of remote effects of lesions on the function of distant brain structures. Multivariate lesion-behavior mapping using functional anomaly maps replicates classic behavioral localization, identifying inferior frontal regions related to speech fluency, lateral temporal regions related to auditory comprehension, parietal regions related to phonology, and the hand area of motor cortex and descending corticospinal pathways for hand motor function. Further, this approach identifies relationships between tissue function and behavior distant from the structural lesions, including right premotor dysfunction related to ipsilateral hand movement, and right cerebellar regions known to contribute to speech fluency. Brain-wide maps of the functional effects of focal lesions could have wide implications for lesion-behavior association studies and studies of recovery after brain injury.
Collapse
Affiliation(s)
- Andrew T DeMarco
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States.
| | - Peter E Turkeltaub
- Department of Neurology, Georgetown University, Washington, DC, 20057, United States; MedStar National Rehabilitation Hospital, Washington, DC, 20010, United States
| |
Collapse
|
11
|
Yang J, Zhao J, Liu X, Zhu R. LncRNAs a New Target for Post-Stroke Recovery. Curr Pharm Des 2020; 26:3115-3121. [PMID: 32096739 DOI: 10.2174/1381612826666200225141414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
LncRNAs (long non-coding RNAs) are endogenous molecules, involved in complicated biological processes. Increasing evidence has shown that lncRNAs play a vital role in the post-stroke pathophysiology. Furthermore, several lncRNAs were reported to mediate ischemia cascade processes include apoptosis, bloodbrain barier breakdown, angiogenesis, microglial activation induced neuroinflammation which can cause neuron injury and influence neuron recovery after ischemic stroke. In our study, we first summarize current development about lncRNAs and post-stroke, focus on the regulatory roles of lncRNAs on pathophysiology after stroke. We also reviewed genetic variation in lncRNA associated with functional outcome after ischemic stroke. Additionally, lncRNA-based therapeutics offer promising strategies to decrease brain damage and promote neurological recovery following ischemic stroke. We believe that lncRNAs will become promising for the frontier strategies for IS and can open up a new path for the treatment of IS in the future.
Collapse
Affiliation(s)
- Jun Yang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Xu Liu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
12
|
Harcum S, Conroy SS, Boos A, Ermer E, Xu H, Zhan M, Chen H, Whitall J, Dimyan MA, Wittenberg GF. Methods for an Investigation of Neurophysiological and Kinematic Predictors of Response to Upper Extremity Repetitive Task Practice in Chronic Stroke. Arch Rehabil Res Clin Transl 2019; 1. [PMID: 32292910 PMCID: PMC7155389 DOI: 10.1016/j.arrct.2019.100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective To demonstrate the feasibility of algorithmic prediction using a model of baseline arm movement, genetic factors, demographic characteristics, and multimodal assessment of the structure and function of motor pathways. To identify prognostic factors and the biological substrate for reductions in arm impairment in response to repetitive task practice. Design This prospective single-group interventional study seeks to predict response to a repetitive task practice program using an intent-to-treat paradigm. Response is measured as a change of ≥5 points on the Upper Extremity Fugl-Meyer from baseline to final evaluation (at the end of training). Setting General community. Participants Anticipated enrollment of community-dwelling adults with chronic stroke (N = 96; onset≥6mo) and moderate to severe residual hemiparesis of the upper limb as defined by a score of 10-45 points on the Upper Extremity Fugl-Meyer. Intervention The intervention is a form of repetitive task practice using a combination of robot-assisted therapy coupled with functional arm use in real-world tasks administered over 12 weeks. Main Outcome Measures Upper Extremity Fugl-Meyer Assessment (primary outcome), Wolf Motor Function Test, Action Research Arm Test, Stroke Impact Scale, questionnaires on pain and expectancy, magnetic resonance imaging, transcranial magnetic stimulation, arm kinematics, accelerometry, and a saliva sample for genetic testing. Results Methods for this trial are outlined, and an illustration of interindividual variability is provided by example of 2 participants who present similarly at baseline but achieve markedly different outcomes. Conclusion This article presents the design, methodology, and rationale of an ongoing study to develop a predictive model of response to a standardized therapy for stroke survivors with chronic hemiparesis. Applying concepts from precision medicine to neurorehabilitation is practicable and needed to establish realistic rehabilitation goals and to effectively allocate resources.
Collapse
Affiliation(s)
- Stacey Harcum
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, Maryland
| | - Susan S Conroy
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, Maryland
| | - Amy Boos
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Elsa Ermer
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Huichun Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Min Zhan
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Hegang Chen
- Department of Epidemiology and Preventative Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jill Whitall
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, Maryland.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Michael A Dimyan
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, Maryland.,Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - George F Wittenberg
- VA Maryland Health Care System, Baltimore VA Medical Center, Baltimore, Maryland.,Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland.,VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Geriatrics Research, Education, and Clinical Center Et Maryland Exercise and Robotics Center of Excellence, Veterans Affairs Medical Center, Older Americans Independence Center, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Savic M, Cvjeticanin S, Lazovic M, Nikcevic L, Petronic I, Cirovic D, Nikolic D. Morphogenetic Variability as Potential Biomarker of Functional Outcome After Ischemic Stroke. Brain Sci 2019; 9:E138. [PMID: 31197109 PMCID: PMC6627147 DOI: 10.3390/brainsci9060138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of our study was to evaluate the role of morphogenetic variability in functional outcome of patients with ischemic stroke. The prospective study included 140 patients with acute ischemic stroke, all of whom were tested upon: admission; discharge; one month post-discharge; and three months post-discharge. The age was analyzed, as well. The Functional Independence Measure (FIM) test and the Barthel Index (BI) were used for the evaluation of functional outcomes for the eligible participants. We analyzed the presence of 19 homozygous recessive characteristics (HRC) in the studied individuals. There was a significant change in FIM values at discharge (p = 0.033) and in BI values upon admission (p = 0.012) with regards to the presence of different HRCs. Age significantly negatively correlated for the FIM score and BI values at discharge for the group with 5 HRCs (p < 0.05), while for BI only, negative significant correlation was noticed for the group with 5 HRCs at three months post-discharge (p < 0.05), and for the group with 3 HRCs at one month post-discharge (p < 0.05) and three months post-discharge (p < 0.05). Morphogenetic variability might be one among potentially numerous factors that could have an impact on the response to defined treatment protocols for neurologically-impaired individuals who suffered an ischemic stroke.
Collapse
Affiliation(s)
- Milan Savic
- Special Hospital for Cerebrovascular Disorders "Sveti Sava", 11000 Belgrade, Serbia.
| | - Suzana Cvjeticanin
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Milica Lazovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Institute for Rehabilitation, 11000 Belgrade, Serbia.
| | - Ljubica Nikcevic
- Special Hospital for Cerebrovascular Disorders "Sveti Sava", 11000 Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
| | - Ivana Petronic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Physical Medicine and Rehabilitation Department, University Children's Hospital, 11000 Belgrade, Serbia.
| | - Dragana Cirovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Physical Medicine and Rehabilitation Department, University Children's Hospital, 11000 Belgrade, Serbia.
| | - Dejan Nikolic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia.
- Physical Medicine and Rehabilitation Department, University Children's Hospital, 11000 Belgrade, Serbia.
| |
Collapse
|
14
|
Söderholm M, Pedersen A, Lorentzen E, Stanne TM, Bevan S, Olsson M, Cole JW, Fernandez-Cadenas I, Hankey GJ, Jimenez-Conde J, Jood K, Lee JM, Lemmens R, Levi C, Mitchell BD, Norrving B, Rannikmäe K, Rost NS, Rosand J, Rothwell PM, Scott R, Strbian D, Sturm JW, Sudlow C, Traylor M, Thijs V, Tatlisumak T, Woo D, Worrall BB, Maguire JM, Lindgren A, Jern C. Genome-wide association meta-analysis of functional outcome after ischemic stroke. Neurology 2019; 92:e1271-e1283. [PMID: 30796134 PMCID: PMC6511098 DOI: 10.1212/wnl.0000000000007138] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/09/2018] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To discover common genetic variants associated with poststroke outcomes using a genome-wide association (GWA) study. METHODS The study comprised 6,165 patients with ischemic stroke from 12 studies in Europe, the United States, and Australia included in the GISCOME (Genetics of Ischaemic Stroke Functional Outcome) network. The primary outcome was modified Rankin Scale score after 60 to 190 days, evaluated as 2 dichotomous variables (0-2 vs 3-6 and 0-1 vs 2-6) and subsequently as an ordinal variable. GWA analyses were performed in each study independently and results were meta-analyzed. Analyses were adjusted for age, sex, stroke severity (baseline NIH Stroke Scale score), and ancestry. The significance level was p < 5 × 10-8. RESULTS We identified one genetic variant associated with functional outcome with genome-wide significance (modified Rankin Scale scores 0-2 vs 3-6, p = 5.3 × 10-9). This intronic variant (rs1842681) in the LOC105372028 gene is a previously reported trans-expression quantitative trait locus for PPP1R21, which encodes a regulatory subunit of protein phosphatase 1. This ubiquitous phosphatase is implicated in brain functions such as brain plasticity. Several variants detected in this study demonstrated suggestive association with outcome (p < 10-5), some of which are within or near genes with experimental evidence of influence on ischemic stroke volume and/or brain recovery (e.g., NTN4, TEK, and PTCH1). CONCLUSIONS In this large GWA study on functional outcome after ischemic stroke, we report one significant variant and several variants with suggestive association to outcome 3 months after stroke onset with plausible mechanistic links to poststroke recovery. Future replication studies and exploration of potential functional mechanisms for identified genetic variants are warranted.
Collapse
|
15
|
García-Rudolph A, Sánchez-Pinsach D, Salleras EO, Tormos JM. Subacute stroke physical rehabilitation evidence in activities of daily living outcomes: A systematic review of meta-analyses of randomized controlled trials. Medicine (Baltimore) 2019; 98:e14501. [PMID: 30813152 PMCID: PMC6408050 DOI: 10.1097/md.0000000000014501] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stroke is a leading cause of disabilities worldwide. One of the key disciplines in stroke rehabilitation is physical therapy which is primarily aimed at restoring and maintaining activities of daily living (ADL). Several meta-analyses have found different interventions improving functional capacity and reducing disability. OBJECTIVES To systematically evaluate existing evidence, from published systematic reviews of meta-analyses, of subacute physical rehabilitation interventions in (ADLs) for stroke patients. METHODS Umbrella review on meta-analyses of RCTs ADLs in MEDLINE, Web of Science, Scopus, Cochrane, and Google Scholar up to April 2018. Two reviewers independently applied inclusion criteria to select potential systematic reviews of meta-analyses of randomized controlled trials (RCTs) of physical rehabilitation interventions (during subacute phase) reporting results in ADLs. Two reviewers independently extracted name of the 1st author, year of publication, physical intervention, outcome(s), total number of participants, and number of studies from each eligible meta-analysis. The number of subjects (intervention and control), ADL outcome, and effect sizes were extracted from each study. RESULTS Fifty-five meta-analyses on 21 subacute rehabilitation interventions presented in 30 different publications involving a total of 314 RCTs for 13,787 subjects were identified. Standardized mean differences (SMDs), 95% confidence intervals (fixed and random effects models), 95% prediction intervals, and statistical heterogeneity (I and Q test) were calculated. Virtual reality, constraint-induced movement, augmented exercises therapy, and transcranial direct current stimulation interventions resulted statistically significant (P < .05) with moderate improvements (0.5 ≤ SMD ≤ 0.8) and no heterogeneity (I = 0%). Moxibustion, Tai Chi, and acupuncture presented best improvements (SMD > 0.8) but with considerable heterogeneity (I2 > 75%). Only acupuncture reached "suggestive" level of evidence. CONCLUSION Despite the range of interventions available for stroke rehabilitation in subacute phase, there is lack of high-quality evidence in meta-analyses, highlighting the need of further research reporting ADL outcomes.
Collapse
Affiliation(s)
- Alejandro García-Rudolph
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - David Sánchez-Pinsach
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Eloy Opisso Salleras
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Josep María Tormos
- Department of Research and Innovation, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona
- Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
16
|
Romero‐Ortuno R, Forsyth DR. Frailty, the determinants of health and the new evidence base. Aging Med (Milton) 2018; 1:5-6. [PMID: 31942472 PMCID: PMC6880727 DOI: 10.1002/agm2.12010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023] Open
Affiliation(s)
- Roman Romero‐Ortuno
- Department of Medicine for the ElderlyAddenbrooke's HospitalCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Clinical Gerontology UnitDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Duncan R. Forsyth
- Department of Medicine for the ElderlyAddenbrooke's HospitalCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
17
|
Elias GJB, Namasivayam AA, Lozano AM. Deep brain stimulation for stroke: Current uses and future directions. Brain Stimul 2017; 11:3-28. [PMID: 29089234 DOI: 10.1016/j.brs.2017.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/07/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Survivors of stroke often experience significant disability and impaired quality of life related to ongoing maladaptive responses and persistent neurologic deficits. Novel therapeutic options are urgently needed to augment current approaches. One way to promote recovery and ameliorate symptoms may be to electrically stimulate the surviving brain. Various forms of brain stimulation have been investigated for use in stroke, including deep brain stimulation (DBS). OBJECTIVE/METHODS We conducted a comprehensive literature review in order to 1) review the use of DBS to treat post-stroke maladaptive responses including pain, dystonia, dyskinesias, and tremor and 2) assess the use and potential utility of DBS for enhancing plasticity and recovery from post-stroke neurologic deficits. RESULTS/CONCLUSIONS A large variety of brain structures have been targeted in post-stroke patients, including motor thalamus, sensory thalamus, basal ganglia nuclei, internal capsule, and periventricular/periaqueductal grey. Overall, the reviewed clinical literature suggests a role for DBS in the management of several post-stroke maladaptive responses. More limited evidence was identified regarding DBS for post-stroke motor deficits, although existing work tentatively suggests DBS-particularly DBS targeting the posterior limb of the internal capsule-may improve paresis in certain circumstances. Substantial future work is required both to establish optimal targets and parameters for treatment of maladapative responses and to further investigate the effectiveness of DBS for post-stroke paresis.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Andrew A Namasivayam
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Krembil Neuroscience Center, University of Toronto, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
18
|
Bernhardt J, Borschmann K, Boyd L, Carmichael ST, Corbett D, Cramer SC, Hoffmann T, Kwakkel G, Savitz S, Saposnik G, Walker M, Ward N. Moving Rehabilitation Research Forward: Developing Consensus Statements for Rehabilitation and Recovery Research. Neurorehabil Neural Repair 2017; 31:694-698. [DOI: 10.1177/1545968317724290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stroke recovery is the next frontier in stroke medicine. While growth in rehabilitation and recovery research is exponential, a number of barriers hamper our ability to rapidly progress the field. Standardized terminology is absent in both animal and human research, methods are poorly described, recovery biomarkers are not well defined, and we lack consistent timeframes or measures to examine outcomes. Agreed methods and conventions for developing, monitoring, evaluating and reporting interventions directed at improving recovery are lacking, and current approaches are often not underpinned by biology. We urgently need to better understand the biology of recovery and its time course in both animals and humans to translate evidence from basic science into clinical trials. A new international partnership of stroke recovery and rehabilitation experts has committed to advancing the research agenda. In May 2016, the first Stroke Recovery and Rehabilitation Roundtable will be held, with the aim of achieving an agreed approach to the development, conduct and reporting of research. A range of methods will be used to achieve consensus in four priority areas: pre-clinical recovery research; biomarkers of recovery; intervention development, monitoring and reporting; and measurement in clinical trials. We hope to foster a global network of researchers committed to advancing this exciting field. Recovery from stroke is challenging for many survivors. They deserve effective treatments underpinned by our evolving understanding of brain recovery and human behaviour. Working together, we can develop game-changing interventions to improve recovery and quality of life in those living with stroke.
Collapse
Affiliation(s)
- Julie Bernhardt
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Karen Borschmann
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Lara Boyd
- Department of Physical Therapy and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada
| | - S. Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Steven C. Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine, USA
| | - Tammy Hoffmann
- Centre for Research in Evidence-Based Practice, Bond University, Gold Coast, Queensland, Australia
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sean Savitz
- Stroke Program, McGovern Medical School, UT Health, Houston, Texas, USA
| | | | - Marion Walker
- Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK
| | - Nick Ward
- Sobell Department of Motor Neuroscience UCL Institute of Neurology, Queen Square, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
19
|
Lindgren A, Maguire J. Stroke Recovery Genetics. Stroke 2016; 47:2427-34. [DOI: 10.1161/strokeaha.116.010648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Arne Lindgren
- From the Department of Clinical Sciences Lund, Neurology, Lund University, Sweden (A.L.); Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden (A.L.); and School of Nursing and Midwifery, Faculty of Health and Medicine, University of Newcastle, NSW, Australia (J.M.)
| | - Jane Maguire
- From the Department of Clinical Sciences Lund, Neurology, Lund University, Sweden (A.L.); Department of Neurology and Rehabilitation Medicine, Skåne University Hospital, Lund, Sweden (A.L.); and School of Nursing and Midwifery, Faculty of Health and Medicine, University of Newcastle, NSW, Australia (J.M.)
| |
Collapse
|
20
|
Juth V, Holman EA, Chan MK, Cramer SC. Genetics as a molecular window into recovery, its treatment, and stress responses after stroke. J Investig Med 2016; 64:983-8. [PMID: 27045100 PMCID: PMC4942179 DOI: 10.1136/jim-2016-000126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
Stroke remains a major source of adult disability in the USA and worldwide. Most patients show some recovery during the weeks to months following a stroke, but this is generally incomplete. An emerging branch of therapeutics targets the processes underlying this behavioral recovery from stroke toward the goal of reducing long-term disability. A key factor hampering these efforts is the very large degree of variability between stroke survivors. Available data suggest that genetic differences could explain an important fraction of the differences between subjects. The current review considers this from several angles, including genetic differences in relation to drugs that promote recovery. Genetic factors related to physiological and psychological stress responses may also be critically important to understanding recovery after stroke and its treatment. The studies reviewed provide insights into recovery and suggest directions for further research to improve clinical decision-making in this setting. Genetic differences between patients might be used to help clinical trials select specific patient subgroups, on a biological basis, in order to sharpen the precision with which new treatments are evaluated. Pharmacogenomic factors might also provide insights into inter-subject differences in treatment side effects for pharmacological prescriptions, and behavioral interventions, and others. These efforts must be conducted with the strictest ethical standards given the highly sensitive nature of genetic data. Understanding the effect of selected genetic measures could improve a clinician's ability to predict the risk and efficacy of a restorative therapy and to make maximally informed decisions, and in so doing, facilitate individual patient care.
Collapse
Affiliation(s)
- Vanessa Juth
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | - E Alison Holman
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | - Michelle K Chan
- Program in Nursing Science, UC Irvine, Irvine, California, USA
| | | |
Collapse
|
21
|
Shiner CT, Pierce KD, Thompson-Butel AG, Trinh T, Schofield PR, McNulty PA. BDNF Genotype Interacts with Motor Function to Influence Rehabilitation Responsiveness Poststroke. Front Neurol 2016; 7:69. [PMID: 27242654 PMCID: PMC4868962 DOI: 10.3389/fneur.2016.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Persistent motor impairment is common but highly heterogeneous poststroke. Genetic polymorphisms, including those identified on the brain-derived neurotrophic factor (BDNF) and apolipoprotein E (APOE) genes, may contribute to this variability by limiting the capacity for use-dependent neuroplasticity, and hence rehabilitation responsiveness. OBJECTIVE To determine whether BDNF and APOE genotypes influence motor improvement facilitated by poststroke upper-limb rehabilitation. METHODS BDNF-Val66Met and APOE isoform genotypes were determined using leukocyte DNA for 55 community-dwelling patients 2-123 months poststroke. All patients completed a dose-matched upper-limb rehabilitation program of either Wii-based Movement Therapy or Constraint-induced Movement Therapy. Upper-limb motor function was assessed pre- and post-therapy using a suite of functional measures. RESULTS Motor function improved for all patients post-therapy, with no difference between therapy groups. In the pooled data, there was no significant effect of BDNF or APOE genotype on motor function at baseline, or following the intervention. However, a significant interaction between the level of residual motor function and BDNF genotype was identified (p = 0.029), whereby post-therapy improvement was significantly less for Met allele carriers with moderate and high, but not low motor function. There was no significant association between APOE genotype and therapy outcomes. CONCLUSION This study identified a novel interaction between the BDNF-Val66Met polymorphism, motor-function status, and the magnitude of improvement with rehabilitation in chronic stroke. This polymorphism does not preclude, but may reduce, the magnitude of motor improvement with therapy, particularly for patients with higher, but not lower residual motor function. BDNF genotype should be considered in the design and interpretation of clinical trials.
Collapse
Affiliation(s)
- Christine T Shiner
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Angelica G Thompson-Butel
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Terry Trinh
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Penelope A McNulty
- Neuroscience Research Australia, Sydney, NSW, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Bernhardt J, Borschmann K, Boyd L, Thomas Carmichael S, Corbett D, Cramer SC, Hoffmann T, Kwakkel G, Savitz SI, Saposnik G, Walker M, Ward N. Moving rehabilitation research forward: Developing consensus statements for rehabilitation and recovery research. Int J Stroke 2016; 11:454-8. [PMID: 27073187 DOI: 10.1177/1747493016643851] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Stroke recovery is the next frontier in stroke medicine. While growth in rehabilitation and recovery research is exponential, a number of barriers hamper our ability to rapidly progress the field. Standardized terminology is absent in both animal and human research, methods are poorly described, recovery biomarkers are not well defined, and we lack consistent timeframes or measures to examine outcomes. Agreed methods and conventions for developing, monitoring, evaluating and reporting interventions directed at improving recovery are lacking, and current approaches are often not underpinned by biology. We urgently need to better understand the biology of recovery and its time course in both animals and humans to translate evidence from basic science into clinical trials. A new international partnership of stroke recovery and rehabilitation experts has committed to advancing the research agenda. In May 2016, the first Stroke Recovery and Rehabilitation Roundtable will be held, with the aim of achieving an agreed approach to the development, conduct and reporting of research. A range of methods will be used to achieve consensus in four priority areas: pre-clinical recovery research; biomarkers of recovery; intervention development, monitoring and reporting; and measurement in clinical trials. We hope to foster a global network of researchers committed to advancing this exciting field. Recovery from stroke is challenging for many survivors. They deserve effective treatments underpinned by our evolving understanding of brain recovery and human behaviour. Working together, we can develop game-changing interventions to improve recovery and quality of life in those living with stroke.
Collapse
Affiliation(s)
- Julie Bernhardt
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Karen Borschmann
- NHMRC Centre for Research Excellence in Stroke Rehabilitation and Recovery, Victoria, Australia The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia
| | - Lara Boyd
- Department of Physical Therapy and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, BC, Canada
| | - S Thomas Carmichael
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, Canada
| | - Steven C Cramer
- Departments of Neurology, Anatomy & Neurobiology, and Physical Medicine & Rehabilitation, University of California, Irvine, USA
| | - Tammy Hoffmann
- Centre for Research in Evidence-Based Practice, Bond University, Gold Coast, Queensland, Australia
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, Neuroscience Campus Amsterdam, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sean I Savitz
- Stroke Program, McGovern Medical School, UTHealth, Houston, Texas, USA
| | - Gustavo Saposnik
- Department of Medicine, University of Toronto, Toronto, Canada Stroke Outcomes Research Center, Li Ka Shing Knowledge Institute, Toronto, Canada
| | - Marion Walker
- Division of Rehabilitation and Ageing, University of Nottingham, Nottingham, UK
| | - Nick Ward
- Sobell Department of Motor Neuroscience UCL Institute of Neurology, Queen Square, London, UK National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| |
Collapse
|
23
|
BDNF Val66Met Polymorphism Is Related to Motor System Function After Stroke. Phys Ther 2016; 96:533-9. [PMID: 26381810 PMCID: PMC4817211 DOI: 10.2522/ptj.20150135] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The val(66)met polymorphism in brain-derived neurotrophic factor (BDNF) has been associated with poorer outcomes after stroke. The mechanism for this finding remains uncertain but might be related to the reduced motor system activation associated with this polymorphism in healthy people. OBJECTIVE The current study examined whether the presence of the BDNF val(66)met polymorphism is associated with reduced motor system activation after stroke. DESIGN AND METHODS Forty-two patients with stroke who were enrolled in 1 of 2 studies of robot-assisted arm motor therapy participated in the study. All participants were tested for the BDNF val(66)met polymorphism followed by functional magnetic resonance imaging during affected hand movement. RESULTS Participants averaged 12 months poststroke and had wide-ranging motor deficits (Fugl-Meyer scale scores=14-60). Brain activation in participants without the BDNF val(66)met polymorphism (n=26) spanned bilateral motor networks with a larger volume (total=334 cc) than that found in participants with this polymorphism (n=16) (97 cc). Regional analyses were consistent. Participants without this polymorphism showed larger ipsilesional primary sensorimotor cortex activation volume and magnitude compared with those in whom the polymorphism was present. LIMITATIONS The extent to which these findings generalize to other populations of people with stroke, such as those with stroke <7 days prior, remains uncertain. CONCLUSIONS Functional magnetic resonance imaging during affected hand movement showed decreased brain activation among participants with the BDNF val(66)met polymorphism compared with those lacking this polymorphism, especially in the ipsilesional primary sensorimotor cortex contralateral to movement. These results echo findings in healthy people and suggest that genetic factors affecting the normal brain continue to be operative after stroke. The findings suggest a potential imaging-based endophenotype for the BDNF val(66)met polymorphism's effect on the motor system that may be useful in a clinical trial setting.
Collapse
|
24
|
Jones TA, Adkins DL. Motor System Reorganization After Stroke: Stimulating and Training Toward Perfection. Physiology (Bethesda) 2015; 30:358-70. [PMID: 26328881 PMCID: PMC4556825 DOI: 10.1152/physiol.00014.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stroke instigates regenerative responses that reorganize connectivity patterns among surviving neurons. The new connectivity patterns can be suboptimal for behavioral function. This review summarizes current knowledge on post-stroke motor system reorganization and emerging strategies for shaping it with manipulations of behavior and cortical activity to improve functional outcome.
Collapse
Affiliation(s)
- Theresa A Jones
- Psychology Department, Neuroscience Institute, University of Texas at Austin, Austin, Texas; and
| | - DeAnna L Adkins
- Neurosciences Department, and Health Sciences & Research Department, Colleges of Medicine & Health Professions, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Di Pino G, Pellegrino G, Capone F, Assenza G, Florio L, Falato E, Lotti F, Di Lazzaro V. Val66Met BDNF Polymorphism Implies a Different Way to Recover From Stroke Rather Than a Worse Overall Recoverability. Neurorehabil Neural Repair 2015; 30:3-8. [PMID: 25896987 DOI: 10.1177/1545968315583721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In search for individualized predictors of stroke recovery, the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) is attracting great interest, because it has a negative impact on neurotrophin function. Since stroke recovery relies on brain plastic processes, on which BDNF is permissive, the dominant thought is in favor of a worse recovery in Met carriers. Conversely, we suggest that Met carriers do not differ in terms of absolute ability to recover from stroke, but they do differ on the way they recover. In particular, Met carriers rely more on subcortical plasticity, while ValVal patients more on intracortical plastic processes. Indeed, the direct evidence of impaired Met carrier recovery is inconsistent, as a high worldwide diffusion of the polymorphism suggests. The plasticity taking place in cortex, which is the one targeted by noninvasive brain stimulation strategies aimed at enhancing recovery, is less pronounced in Met carrier stroke patients, who have instead spared global recovery potential. Enhanced subcortical plasticity sustains better stroke recovery of Met carrier mice: this may also happen in humans, explaining the weaker interhemispheric cortical excitability imbalance recently described in Met carriers. Thus, BDNF haplotype determines mechanisms and structures involved in stroke recovery. The less pronounced cortical plasticity of Met carrier implies that plastic changes induced by interventional neurophysiological protocols would be better predictors of ValVal chronic outcome and those protocols would be more effective to boost their recovery. Other strategies, more focused on subcortical mechanisms, should be used in Met carriers.
Collapse
Affiliation(s)
| | - Giovanni Pellegrino
- Campus Bio-Medico University, Rome, Italy McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-Based Neurorehabilitation: Recommendations for Neurorehabilitation From Basic Science. J Mot Behav 2015; 47:7-17. [DOI: 10.1080/00222895.2014.931273] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Quinlan EB, Dodakian L, See J, McKenzie A, Le V, Wojnowicz M, Shahbaba B, Cramer SC. Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann Neurol 2015; 77:132-45. [PMID: 25382315 PMCID: PMC4293339 DOI: 10.1002/ana.24309] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/10/2014] [Accepted: 11/07/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study was undertaken to better understand the high variability in response seen when treating human subjects with restorative therapies poststroke. Preclinical studies suggest that neural function, neural injury, and clinical status each influence treatment gains; therefore, the current study hypothesized that a multivariate approach incorporating these 3 measures would have the greatest predictive value. METHODS Patients 3 to 6 months poststroke underwent a battery of assessments before receiving 3 weeks of standardized upper extremity robotic therapy. Candidate predictors included measures of brain injury (including to gray and white matter), neural function (cortical function and cortical connectivity), and clinical status (demographics/medical history, cognitive/mood, and impairment). RESULTS Among all 29 patients, predictors of treatment gains identified measures of brain injury (smaller corticospinal tract [CST] injury), cortical function (greater ipsilesional motor cortex [M1] activation), and cortical connectivity (greater interhemispheric M1-M1 connectivity). Multivariate modeling found that best prediction was achieved using both CST injury and M1-M1 connectivity (r(2) = 0.44, p = 0.002), a result confirmed using Lasso regression. A threshold was defined whereby no subject with >63% CST injury achieved clinically significant gains. Results differed according to stroke subtype; gains in patients with lacunar stroke were best predicted by a measure of intrahemispheric connectivity. INTERPRETATION Response to a restorative therapy after stroke is best predicted by a model that includes measures of both neural injury and function. Neuroimaging measures were the best predictors and may have an ascendant role in clinical decision making for poststroke rehabilitation, which remains largely reliant on behavioral assessments. Results differed across stroke subtypes, suggesting the utility of lesion-specific strategies.
Collapse
Affiliation(s)
| | - Lucy Dodakian
- Department of Neurology, University of California, Irvine
| | - Jill See
- Department of Neurology, University of California, Irvine
| | - Alison McKenzie
- Department of Physical Therapy, University of California, Irvine
| | - Vu Le
- Department of Neurology, University of California, Irvine
| | - Mike Wojnowicz
- Department of Statistics; Chapman University, University of California, Irvine
| | - Babak Shahbaba
- Department of Statistics; Chapman University, University of California, Irvine
| | - Steven C. Cramer
- Department of Anatomy & Neurobiology, University of California, Irvine
- Department of Neurology, University of California, Irvine
| |
Collapse
|
28
|
Pearson-Fuhrhop KM, Cramer SC. Pharmacogenetics of neural injury recovery. Pharmacogenomics 2014; 14:1635-43. [PMID: 24088134 DOI: 10.2217/pgs.13.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Relatively few pharmacological agents are part of routine care for neural injury, although several are used or under consideration in acute stroke, chronic stroke, traumatic brain injury and secondary stroke prevention. Tissue plasminogen activator is approved for the treatment of acute ischemic stroke, and genetic variants may impact the efficacy and safety of this drug. In the chronic phase of stroke, several drugs such as L-dopa, fluoxetine and donepezil are under investigation for enhancing rehabilitation therapy, with varying levels of evidence. One potential reason for the mixed efficacy displayed by these drugs may be the influence of genetic factors that were not considered in prior studies. An understanding of the genetics impacting the efficacy of dopaminergic, serotonergic and cholinergic drugs may allow clinicians to target these potential therapies to those patients most likely to benefit. In the setting of stroke prevention, which is directly linked to neural injury recovery, the most highly studied pharmacogenomic interactions pertain to clopidogrel and warfarin. Incorporating pharmacogenomics into neural injury recovery has the potential to maximize the benefit of several current and potential pharmacological therapies and to refine the choice of pharmacological agent that may be used to enhance benefits from rehabilitation therapy.
Collapse
Affiliation(s)
- Kristin M Pearson-Fuhrhop
- Department of Anatomy & Neurobiology, University of California, Irvine, 200 S Manchester Avenue, Suite 206, Orange, CA 92868, USA
| | | |
Collapse
|
29
|
Zeng S, Jiang JX, Xu MH, Xu LS, Shen GJ, Zhang AQ, Wang XH. Prognostic Value of Apolipoprotein E Epsilon4 Allele in Patients with Traumatic Brain Injury: A Meta-Analysis and Meta-Regression. Genet Test Mol Biomarkers 2014; 18:202-10. [PMID: 24475734 DOI: 10.1089/gtmb.2013.0421] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Shi Zeng
- Department of Neurosurgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - Jian-Xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - Min-Hui Xu
- Department of Neurosurgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - Lun-Shan Xu
- Department of Neurosurgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - Guang-Jian Shen
- Department of Neurosurgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - An-Qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| | - Xu-Hui Wang
- Department of Neurosurgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, YuZhong District, Chongqing, People's Republic of China
| |
Collapse
|
30
|
Viscomi MT, Molinari M. Remote neurodegeneration: multiple actors for one play. Mol Neurobiol 2014; 50:368-89. [PMID: 24442481 DOI: 10.1007/s12035-013-8629-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
Remote neurodegeneration significantly influences the clinical outcome in many central nervous system (CNS) pathologies, such as stroke, multiple sclerosis, and traumatic brain and spinal cord injuries. Because these processes develop days or months after injury, they are accompanied by a therapeutic window of opportunity. The complexity and clinical significance of remote damage is prompting many groups to examine the factors of remote degeneration. This research is providing insights into key unanswered questions, opening new avenues for innovative neuroprotective therapies. In this review, we evaluate data from various remote degeneration models to describe the complexity of the systems that are involved and the importance of their interactions in reducing damage and promoting recovery after brain lesions. Specifically, we recapitulate the current data on remote neuronal degeneration, focusing on molecular and cellular events, as studied in stroke and brain and spinal cord injury models. Remote damage is a multifactorial phenomenon in which many components become active in specific time frames. Days, weeks, or months after injury onset, the interplay between key effectors differentially affects neuronal survival and functional outcomes. In particular, we discuss apoptosis, inflammation, oxidative damage, and autophagy-all of which mediate remote degeneration at specific times. We also review current findings on the pharmacological manipulation of remote degeneration mechanisms in reducing damage and sustaining outcomes. These novel treatments differ from those that have been proposed to limit primary lesion site damage, representing new perspectives on neuroprotection.
Collapse
Affiliation(s)
- Maria Teresa Viscomi
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation I.R.C.C.S., Via del Fosso di Fiorano 65, 00143, Rome, Italy,
| | | |
Collapse
|
31
|
Kops MS, de Haas EN, Rodenburg TB, Ellen ED, Korte-Bouws GA, Olivier B, Güntürkün O, Korte SM, Bolhuis JE. Selection for low mortality in laying hens affects catecholamine levels in the arcopallium, a brain area involved in fear and motor regulation. Behav Brain Res 2013; 257:54-61. [DOI: 10.1016/j.bbr.2013.09.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/05/2023]
|
32
|
Avdoshina V, Bachis A, Mocchetti I. Synaptic dysfunction in human immunodeficiency virus type-1-positive subjects: inflammation or impaired neuronal plasticity? J Intern Med 2013; 273:454-65. [PMID: 23600400 PMCID: PMC3633109 DOI: 10.1111/joim.12050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many people infected with the human immunodeficiency virus type-1 (HIV) exhibit mild or severe neurological problems, termed HIV-associated neurocognitive disorder (HAND), even when receiving antiretroviral therapy. Thus, novel adjunctive therapies must be developed to overcome the neurotoxic effect of HIV. New therapies require a better understanding of the molecular and cellular mechanisms of HIV-induced neurotoxicity and the risk factors that, besides inflammation and T-cell depletion and drugs of abuse, render the central nervous system (CNS) a target of HIV-induced neurotoxicity. HIV appears to impair neuronal plasticity, which refers to the innate ability of the CNS respond to injury and promote recovery of function. The availability of brain-derived neurotrophic factor (BDNF), a potent neurotrophic factor that is present in abundance in the adult brain, is essential for neuronal plasticity. BDNF acts through a receptor system composed of Trk and p75NTR. Here, we present experimental evidence that some of the clinical features of HIV-mediated neurological impairment could result from altered BDNF/TrkB/p75NTR regulation and function.
Collapse
Affiliation(s)
- V Avdoshina
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | | | | |
Collapse
|