1
|
Ferreira M, Carneiro P, Costa VM, Carvalho F, Meisel A, Capela JP. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review. Rev Neurosci 2024; 35:709-746. [PMID: 38843463 DOI: 10.1515/revneuro-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
Collapse
Affiliation(s)
- Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin, Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - João Paulo Capela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| |
Collapse
|
2
|
Dhadwal N, Cunningham K, Pino W, Hampton S, Fischer D. Altered Mental Status at the Extreme: Behavioral Evaluation of Disorders of Consciousness. Semin Neurol 2024. [PMID: 39102862 DOI: 10.1055/s-0044-1788807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Disorders of consciousness represent altered mental status at its most severe, comprising a continuum between coma, the vegetative state/unresponsive wakefulness syndrome, the minimally conscious state, and emergence from the minimally conscious state. Patients often transition between these levels throughout their recovery, and determining a patient's current level can be challenging, particularly in the acute care setting. Although healthcare providers have classically relied on a bedside neurological exam or the Glasgow Coma Scale to aid with assessment of consciousness, studies have identified multiple limitations of doing so. Neurobehavioral assessment measures, such as the Coma Recovery Scale-Revised, have been developed to address these shortcomings. Each behavioral metric has strengths as well as weaknesses when applied in the acute care setting. In this review, we appraise common assessment approaches, outline alternative measures for fine-tuning these assessments in the acute care setting, and highlight strategies for implementing these practices in an interdisciplinary manner.
Collapse
Affiliation(s)
- Neha Dhadwal
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kyle Cunningham
- Good Shepherd Penn Partners at the Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - William Pino
- Good Shepherd Penn Partners at the Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Hampton
- Department of Physical Medicine and Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Fischer
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
Weitzel L, Bavishi S. Disorders of Consciousness. Phys Med Rehabil Clin N Am 2024; 35:493-506. [PMID: 38945646 DOI: 10.1016/j.pmr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
This article reviews the definition, assessment, neuroimaging, treatment, and rehabilitation for disorders of consciousness after an acquired brain injury. It also explores special considerations and new neuromodulation treatment options.
Collapse
Affiliation(s)
- Levi Weitzel
- Department of Physical Medicine and Rehabilitation, Ohio State University College of Medicine, 370 W 9th Avenue, Columbus, OH 43210, USA.
| | - Sheital Bavishi
- Department of Physical Medicine and Rehabilitation, Brain Injury Program, Dodd Inpatient Rehabilitation Hospital, Ohio State University Wexner Medical Center, 480 Medical Center Drive, Room 1036, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Mofakham S, Robertson J, Lubin N, Cleri NA, Mikell CB. An Unpredictable Brain Is a Conscious, Responsive Brain. J Cogn Neurosci 2024; 36:1643-1652. [PMID: 38579270 DOI: 10.1162/jocn_a_02154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Severe traumatic brain injuries typically result in loss of consciousness or coma. In deeply comatose patients with traumatic brain injury, cortical dynamics become simple, repetitive, and predictable. We review evidence that this low-complexity, high-predictability state results from a passive cortical state, represented by a stable repetitive attractor, that hinders the flexible formation of neuronal ensembles necessary for conscious experience. Our data and those from other groups support the hypothesis that this cortical passive state is because of the loss of thalamocortical input. We identify the unpredictability and complexity of cortical dynamics captured by local field potential as a sign of recovery from this passive coma attractor. In this Perspective article, we discuss how these electrophysiological biomarkers of the recovery of consciousness could inform the design of closed-loop stimulation paradigms to treat disorders of consciousness.
Collapse
|
5
|
Barra ME, Solt K, Yu X, Edlow BL. Restoring consciousness with pharmacologic therapy: Mechanisms, targets, and future directions. Neurotherapeutics 2024; 21:e00374. [PMID: 39019729 PMCID: PMC11452330 DOI: 10.1016/j.neurot.2024.e00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 07/19/2024] Open
Abstract
Severe brain injury impairs consciousness by disrupting a broad spectrum of neurotransmitter systems. Emerging evidence suggests that pharmacologic modulation of specific neurotransmitter systems, such as dopamine, promotes recovery of consciousness. Clinical guidelines now endorse the use of amantadine in individuals with traumatic disorders of consciousness (DoC) based on level 1 evidence, and multiple neurostimulants are used off-label in clinical practice, including methylphenidate, modafinil, bromocriptine, levodopa, and zolpidem. However, the relative contributions of monoaminergic, glutamatergic, cholinergic, GABAergic, and orexinergic neurotransmitter systems to recovery of consciousness after severe brain injury are unknown, and personalized approaches to targeted therapy have yet to be developed. This review summarizes the state-of-the-science in the neurochemistry and neurobiology of neurotransmitter systems involved in conscious behaviors, followed by a discussion of how pharmacologic therapies may be used to modulate these neurotransmitter systems and promote recovery of consciousness. We consider pharmacologic modulation of consciousness at the synapse, circuit, and network levels, with a focus on the mesocircuit model that has been proposed to explain the consciousness-promoting effects of various monoaminergic, glutamatergic, and paradoxically, GABAergic therapies. Though fundamental questions remain about neurotransmitter mechanisms, target engagement and optimal therapy selection for individual patients, we propose that pharmacologic therapies hold great promise to promote recovery and improve quality of life for patients with severe brain injuries.
Collapse
Affiliation(s)
- Megan E Barra
- Department of Pharmacy, Massachusetts General Hospital, Boston, MA, USA; Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xin Yu
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Carlson JM, Lin DJ. Prognostication in Prolonged and Chronic Disorders of Consciousness. Semin Neurol 2023; 43:744-757. [PMID: 37758177 DOI: 10.1055/s-0043-1775792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Patients with prolonged disorders of consciousness (DOCs) longer than 28 days may continue to make significant gains and achieve functional recovery. Occasionally, this recovery trajectory may extend past 3 (for nontraumatic etiologies) and 12 months (for traumatic etiologies) into the chronic period. Prognosis is influenced by several factors including state of DOC, etiology, and demographics. There are several testing modalities that may aid prognostication under active investigation including electroencephalography, functional and anatomic magnetic resonance imaging, and event-related potentials. At this time, only one treatment (amantadine) has been routinely recommended to improve functional recovery in prolonged DOC. Given that some patients with prolonged or chronic DOC have the potential to recover both consciousness and functional status, it is important for neurologists experienced in prognostication to remain involved in their care.
Collapse
Affiliation(s)
- Julia M Carlson
- Division of Neurocritical Care, Department of Neurology, University of North Carolina Hospital, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - David J Lin
- Center for Neurotechnology and Neurorecovery, Division of Neurocritical Care and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Center for Neurorestoration and Neurotechnology, Rehabilitation Research and Development Service, Department of Veterans Affairs, Providence, Rhode Island
| |
Collapse
|
7
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|
9
|
Yu C, Zhu Z, Li S, Xu Y, Yan W, Kang X, Li Y, Dong Q, Tang W, Han X. Clinical and radiological features of medullary infarction caused by spontaneous vertebral artery dissection. Stroke Vasc Neurol 2022; 7:245-250. [PMID: 35241630 PMCID: PMC9240456 DOI: 10.1136/svn-2021-001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/02/2021] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND AND PURPOSE Medullary infarction (MI) caused by spontaneous vertebral artery dissection (sVAD) is an important type of stroke. It is important to distinguish sVAD from other causes of stroke since the treatment strategies and prognosis were different between them. In this study, we aimed to explore the clinical and radiological features of MI in patients with acute MI caused by sVAD. METHODS Patients with acute MI caused by sVAD and non-sVAD in a single tertiary hospital were enrolled from 2010 to 2020. Epidemiologic, clinical and image features were collected and analysed. MI lesions were categorised into three levels rostrocaudally and four arterial groups: anteromedial, anterolateral, lateral and posterior. RESULTS A total of 128 patients with MI were enrolled with 47 cases of sVAD and 81 cases of non-sVAD. Patients with sVAD were younger than those with non-sVAD (med 44 years old vs 58 years old). The sVAD group was less likely to have hypertension (44.68% vs 67.90%; p=0.010) and diabetes (19.15% vs 45.69%; p=0.003), but more likely to have non-sudden onset (27.66% vs 9.87%, p=0.009), minor neck injury (19.15% vs 1.23%; p=0.001) and headache (46.81% vs 7.41%; p=0.000). Vertically, sVAD became more common in caudal medulla than in rostral medulla. Horizontally, the sVAD group was more likely to have lateral MI (91.48% vs 2.96%, p=0.000). In multivariable logistic regression analysis, age, non-sudden onset and headache were independently associated with sVAD with ORs of 0.935 (95% CI 0.892 to 0.981, p=0.006), 3.507 (95% CI 1.060 to 11.599, p=0.040) and 5.426 (95% CI 1.673 to 17.599, p=0.005). CONCLUSION sVAD was not uncommon in patients with MI, especially in patients with lateral MI. Young patients with headache and non-sudden onset should remind clinician the possibility of sVAD.
Collapse
Affiliation(s)
- Chun Yu
- Intensive Care Unit of West Campus, Huashan Hospital Fudan University, Shanghai, China
| | - Zhu Zhu
- Department of Neurology, University of Kentucky, Lexington, Kentucky, USA
| | - Siying Li
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yi Xu
- Department of Neurology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China.,Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Wei Yan
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Xiaocui Kang
- Department of Neurology, Fifth People's Hospital of Shanghai Fudan University, Shanghai, China
| | - Yao Li
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| | - Qiang Dong
- Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Weijun Tang
- Department of Radiology, Huashan Hospital Fudan University, Shanghai, China
| | - Xiang Han
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
10
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
11
|
Edlow BL, Claassen J, Schiff ND, Greer DM. Recovery from disorders of consciousness: mechanisms, prognosis and emerging therapies. Nat Rev Neurol 2021; 17:135-156. [PMID: 33318675 PMCID: PMC7734616 DOI: 10.1038/s41582-020-00428-x] [Citation(s) in RCA: 289] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
Substantial progress has been made over the past two decades in detecting, predicting and promoting recovery of consciousness in patients with disorders of consciousness (DoC) caused by severe brain injuries. Advanced neuroimaging and electrophysiological techniques have revealed new insights into the biological mechanisms underlying recovery of consciousness and have enabled the identification of preserved brain networks in patients who seem unresponsive, thus raising hope for more accurate diagnosis and prognosis. Emerging evidence suggests that covert consciousness, or cognitive motor dissociation (CMD), is present in up to 15-20% of patients with DoC and that detection of CMD in the intensive care unit can predict functional recovery at 1 year post injury. Although fundamental questions remain about which patients with DoC have the potential for recovery, novel pharmacological and electrophysiological therapies have shown the potential to reactivate injured neural networks and promote re-emergence of consciousness. In this Review, we focus on mechanisms of recovery from DoC in the acute and subacute-to-chronic stages, and we discuss recent progress in detecting and predicting recovery of consciousness. We also describe the developments in pharmacological and electrophysiological therapies that are creating new opportunities to improve the lives of patients with DoC.
Collapse
Affiliation(s)
- Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
12
|
Provencio JJ, Hemphill JC, Claassen J, Edlow BL, Helbok R, Vespa PM, Diringer MN, Polizzotto L, Shutter L, Suarez JI, Stevens RD, Hanley DF, Akbari Y, Bleck TP, Boly M, Foreman B, Giacino JT, Hartings JA, Human T, Kondziella D, Ling GSF, Mayer SA, McNett M, Menon DK, Meyfroidt G, Monti MM, Park S, Pouratian N, Puybasset L, Rohaut B, Rosenthal ES, Schiff ND, Sharshar T, Wagner A, Whyte J, Olson DM. The Curing Coma Campaign: Framing Initial Scientific Challenges-Proceedings of the First Curing Coma Campaign Scientific Advisory Council Meeting. Neurocrit Care 2020; 33:1-12. [PMID: 32578124 PMCID: PMC7392933 DOI: 10.1007/s12028-020-01028-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coma and disordered consciousness are common manifestations of acute neurological conditions and are among the most pervasive and challenging aspects of treatment in neurocritical care. Gaps exist in patient assessment, outcome prognostication, and treatment directed specifically at improving consciousness and cognitive recovery. In 2019, the Neurocritical Care Society (NCS) launched the Curing Coma Campaign in order to address the "grand challenge" of improving the management of patients with coma and decreased consciousness. One of the first steps was to bring together a Scientific Advisory Council including coma scientists, neurointensivists, neurorehabilitationists, and implementation experts in order to address the current scientific landscape and begin to develop a framework on how to move forward. This manuscript describes the proceedings of the first Curing Coma Campaign Scientific Advisory Council meeting which occurred in conjunction with the NCS Annual Meeting in October 2019 in Vancouver. Specifically, three major pillars were identified which should be considered: endotyping of coma and disorders of consciousness, biomarkers, and proof-of-concept clinical trials. Each is summarized with regard to current approach, benefits to the patient, family, and clinicians, and next steps. Integration of these three pillars will be essential to the success of the Curing Coma Campaign as will expanding the "curing coma community" to ensure broad participation of clinicians, scientists, and patient advocates with the goal of identifying and implementing treatments to fundamentally improve the outcome of patients.
Collapse
Affiliation(s)
- J Javier Provencio
- Department of Neurology and Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - J Claude Hemphill
- Department of Neurology, Zuckerberg San Francisco General Hospital, University of California, San Francisco, Building 1, Room 101, 1001 Potrero Avenue, San Francisco, CA, 94110, USA.
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raimund Helbok
- Department of Neurology, Neurocritical Care, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul M Vespa
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael N Diringer
- Department of Neurology, Washington University, Barnes-Jewish Hospital, St Louis, MO, USA
| | - Len Polizzotto
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Lori Shutter
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh/UPMC Health System, Pittsburgh, PA, USA
| | - Jose I Suarez
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine, Neurology and Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins University, Baltimore, MD, USA
| | - Yama Akbari
- Departments of Neurology, Neurosurgery and the Beckman Laser Institute, University of California-Irvine, Irvine, CA, USA
| | - Thomas P Bleck
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Melanie Boly
- Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Theresa Human
- Departments of Neurology and Neurosurgery, Washington University, Barnes-Jewish Hospital, St Louis, MO, USA
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Geoffrey S F Ling
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan A Mayer
- Departments of Neurology and Neurosurgery, New York Medical College, Valhalla, NY, USA
| | - Molly McNett
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Martin M Monti
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center/New York Presbyterian Hospital, New York, NY, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Louis Puybasset
- Department of Anesthesiology and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Benjamin Rohaut
- Department of Neurology, Neuro-ICU, Sorbonne University, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicholas D Schiff
- Departments of Neurology, Neuroscience, and Medical Ethics, Weill Cornell Medicine, New York, NY, USA
| | - Tarek Sharshar
- Neuro-anesthesiology and Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, Paris, France
- Experimental Neuropathology, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Amy Wagner
- Department of Physical Medicine and Rehabilitation, Department of Neuroscience, Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - DaiWai M Olson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
13
|
Tang H, Zhu Q, Li W, Qin S, Gong Y, Wang H, Shioda S, Li S, Huang J, Liu B, Fang Y, Liu Y, Wang S, Guo Y, Xia Q, Guo Y, Xu Z. Neurophysiology and Treatment of Disorders of Consciousness Induced by Traumatic Brain Injury: Orexin Signaling as a Potential Therapeutic Target. Curr Pharm Des 2020; 25:4208-4220. [PMID: 31663471 DOI: 10.2174/1381612825666191029101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) can cause disorders of consciousness (DOC) by impairing the neuronal circuits of the ascending reticular activating system (ARAS) structures, including the hypothalamus, which are responsible for the maintenance of the wakefulness and awareness. However, the effectiveness of drugs targeting ARAS activation is still inadequate, and novel therapeutic modalities are urgently needed. METHODS The goal of this work is to describe the neural loops of wakefulness, and explain how these elements participate in DOC, with emphasis on the identification of potential new therapeutic options for DOC induced by TBI. RESULTS Hypothalamus has been identified as a sleep/wake center, and its anterior and posterior regions have diverse roles in the regulation of the sleep/wake function. In particular, the posterior hypothalamus (PH) possesses several types of neurons, including the orexin neurons in the lateral hypothalamus (LH) with widespread projections to other wakefulness-related regions of the brain. Orexins have been known to affect feeding and appetite, and recently their profound effect on sleep disorders and DOC has been identified. Orexin antagonists are used for the treatment of insomnia, and orexin agonists can be used for narcolepsy. Additionally, several studies demonstrated that the agonists of orexin might be effective in the treatment of DOC, providing novel therapeutic opportunities in this field. CONCLUSION The hypothalamic-centered orexin has been adopted as the point of entry into the system of consciousness control, and modulators of orexin signaling opened several therapeutic opportunities for the treatment of DOC.
Collapse
Affiliation(s)
- Huiling Tang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiumei Zhu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siru Qin
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yinan Gong
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Seiji Shioda
- Peptide Drug Innovation, Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa, Tokyo 142-8501, Japan
| | - Shanshan Li
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Huang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Baohu Liu
- Department of Rehabilitation, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Fang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yangyang Liu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shenjun Wang
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongming Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qing Xia
- Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhifang Xu
- Acupuncture Research Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Acu-moxibustion and Tuina Department, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
14
|
Fernández-López L, Molina-Carballo A, Cubero-Millán I, Checa-Ros A, Machado-Casas I, Blanca-Jover E, Jerez-Calero A, Madrid-Fernández Y, Uberos J, Muñoz-Hoyos A. Indole Tryptophan Metabolism and Cytokine S100B in Children with Attention-Deficit/Hyperactivity Disorder: Daily Fluctuations, Responses to Methylphenidate, and Interrelationship with Depressive Symptomatology. J Child Adolesc Psychopharmacol 2020; 30:177-188. [PMID: 32048862 DOI: 10.1089/cap.2019.0072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Indole tryptophan metabolites (ITMs), mainly produced at the gastrointestinal level, participate in bidirectional gut-brain communication and have been implicated in neuropsychiatric pathologies, including attention-deficit/hyperactivity disorder (ADHD). Method: A total of 179 children, 5-14 years of age, including a healthy control group (CG, n = 49), and 107 patients with ADHD participated in the study. The ADHD group was further subdivided into predominantly attention deficit (PAD) and predominantly hyperactive impulsive (PHI) subgroups. Blood samples were drawn at 20:00 and 09:00 hours, and urine was collected between blood draws, at baseline and after 4.63 ± 2.3 months of methylphenidate treatment in the ADHD group. Levels and daily fluctuations of ITM were measured by tandem mass spectrometer, and S100B (as a glial inflammatory marker) by enzyme-linked immunosorbent assay. Factorial analysis of variance (Stata 12.0) was performed with groups/subgroups, time (baseline/after treatment), hour of day (morning/evening), and presence of depressive symptoms (DS; no/yes) as factors. Results: Tryptamine and indoleacetic acid (IAA) showed no differences between the CG and ADHD groups. Tryptamine exhibited higher evening values (p < 0.0001) in both groups. No changes were associated with methylphenidate or DS. At baseline, in comparison with the rest of study sample, PHI with DS+ group showed among them much greater morning than evening IAA (p < 0.0001), with treatment causing a 50% decrease (p = 0.002). Concerning indolepropionic acid (IPA) MPH was associated with a morning IPA decrease and restored the daily profile observed in the CG. S100B protein showed greater morning than evening concentrations (p = 0.001) in both groups. Conclusion: Variations in ITM may reflect changes associated with the presence of DS, including improvement, among ADHD patients.
Collapse
Affiliation(s)
- Luisa Fernández-López
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Molina-Carballo
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Isabel Cubero-Millán
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Ana Checa-Ros
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Irene Machado-Casas
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Enrique Blanca-Jover
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Jerez-Calero
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | | | - José Uberos
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| | - Antonio Muñoz-Hoyos
- Departamento de Pediatría, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Servicio de Neuropediatría y Neurodesarrollo, Servicio Andaluz de Salud, Unidad de Gestión Clínica de Pediatría, Hospital Clínico San Cecilio, Granada, Spain
| |
Collapse
|
15
|
Yoon SY, Lee SC, An YS, Kim YW. Neural correlates and gait characteristics for hypoxic-ischemic brain injury induced freezing of gait. Clin Neurophysiol 2019; 131:46-53. [PMID: 31751839 DOI: 10.1016/j.clinph.2019.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/04/2019] [Accepted: 09/29/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate gait characteristics in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI) and to elucidate neural correlates for FOG using F-18 fluoro-2-deoxy-d-glucose positron emission tomography. METHODS We enrolled 12 patients with FOG after HIBI and 17 patients without FOG after HIBI. We performed three-dimensional gait analyses and compared each parameter and gait variability. Brain metabolism was measured, and we compared regional brain metabolism using a voxel-by-voxel-based statistical mapping analysis. RESULTS The FOG group revealed a significantly decreased joint range of motion (ROM), particularly in the sagittal plane for three-joint summated ROM (p < 0.0025). Spatiotemporal results demonstrated that stride length and step length were decreased in the with FOG group (p < 0.005). FOG severity was negatively correlated with brain metabolism in the left thalamus, and three-joint summated ROM in the sagittal plane was positively associated with brain metabolism in the left thalamus and midbrain (p < 0.05). CONCLUSIONS Central organizational level amplitude disorder may play an important role in the pathophysiology, and disturbance in the cholinergic pathway might contribute to the development of FOG in patients with HIBI. SIGNIFICANCE These findings contribute to understanding FOG in HIBI.
Collapse
Affiliation(s)
- Seo Yeon Yoon
- Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, Gyeonggi-do, Republic of Korea
| | - Sang Chul Lee
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Sil An
- Department of Nuclear Medicine and Molecular Imaging, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Disorder of consciousness (DOC) is a state of prolonged altered consciousness, which can be categorized into coma, vegetative state, or minimally conscious state based on neurobehavioral function. The pathophysiology of DOC is poorly understood but recent advances in neuroimaging and advanced electrophysiological techniques may provide an improved understanding for the neural network involved with consciousness. The primary aim of DOC rehabilitation programs is to promote arousal while preventing secondary medical complications while providing education and training to families. Treatment interventions include both pharmacologic and nonpharmacologic programs, but there are currently no consensus treatment guidelines for individuals with DOC.
Collapse
Affiliation(s)
- Blessen C Eapen
- Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, 7400 Merton Minter, San Antonio, TX 78229, USA.
| | - Jason Georgekutty
- Kessler Institute for Rehabilitation, 201 Pleasant Hill Road, Chester, NJ 07830, USA
| | - Bruno Subbarao
- Polytrauma Rehabilitation Center, South Texas Veterans Healthcare System, 7400 Merton Minter, San Antonio, TX 78229, USA
| | - Sheital Bavishi
- Traumatic Brain Injury Rehabilitation Program, Department of Physical Medicine and Rehabilitation, Ohio State University Wexner Medical Center, 480 Medical Center Drive, Columbus, OH 43210, USA
| | - David X Cifu
- Department of PM&R, Virginia Commonwealth University, US Department of Veterans Affairs, VA/DoD Chronic Effects of NeuroTrauma Consortium, 1223 E. Marshall Street, P.O. Box 980677, Richmond, Virginia 23284-0667, USA
| |
Collapse
|
17
|
Moeller SJ, Konova AB, Tomasi D, Parvaz MA, Goldstein RZ. Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study. Psychopharmacology (Berl) 2016; 233:2559-69. [PMID: 27150080 PMCID: PMC4916842 DOI: 10.1007/s00213-016-4307-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/18/2016] [Indexed: 12/14/2022]
Abstract
RATIONALE The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known. OBJECTIVES We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures. METHODS We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity. RESULTS Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use. CONCLUSIONS Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.
Collapse
Affiliation(s)
- Scott J. Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence may be addressed to: Scott J. Moeller, 1470 Madison Ave (Room 9-115), New York, NY 10029; Tel: 212-824-8973; Fax: 212-803-6743; . Or to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029; tel. (212) 824-9312; fax (212) 996-8931;
| | - Anna B. Konova
- Center for Neural Science, New York University, NY 10003
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892
| | - Muhammad A. Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rita Z. Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029,Correspondence may be addressed to: Scott J. Moeller, 1470 Madison Ave (Room 9-115), New York, NY 10029; Tel: 212-824-8973; Fax: 212-803-6743; . Or to: Rita Z. Goldstein, One Gustave L. Levy Place, Box 1230, New York, NY 10029; tel. (212) 824-9312; fax (212) 996-8931;
| |
Collapse
|
18
|
Greco A, Carboncini MC, Virgillito A, Lanata A, Valenza G, Scilingo EP. Quantitative EEG analysis in minimally conscious state patients during postural changes. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6313-6. [PMID: 24111184 DOI: 10.1109/embc.2013.6610997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mobilization and postural changes of patients with cognitive impairment are standard clinical practices useful for both psychic and physical rehabilitation process. During this process, several physiological signals, such as Electroen-cephalogram (EEG), Electrocardiogram (ECG), Photopletysmography (PPG), Respiration activity (RESP), Electrodermal activity (EDA), are monitored and processed. In this paper we investigated how quantitative EEG (qEEG) changes with postural modifications in minimally conscious state patients. This study is quite novel and no similar experimental data can be found in the current literature, therefore, although results are very encouraging, a quantitative analysis of the cortical area activated in such postural changes still needs to be deeply investigated. More specifically, this paper shows EEG power spectra and brain symmetry index modifications during a verticalization procedure, from 0 to 60 degrees, of three patients in Minimally Consciousness State (MCS) with focused region of impairment. Experimental results show a significant increase of the power in β band (12 - 30 Hz), commonly associated to human alertness process, thus suggesting that mobilization and postural changes can have beneficial effects in MCS patients.
Collapse
|
19
|
Schwarz R, Reif A, Scholz CJ, Weissflog L, Schmidt B, Lesch KP, Jacob C, Reichert S, Heupel J, Volkert J, Kopf J, Hilscher M, Weber H, Kittel-Schneider S. A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. World J Biol Psychiatry 2015; 16:180-9. [PMID: 25162476 DOI: 10.3109/15622975.2014.948064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Methylphenidate (MPH) is a commonly used stimulant medication for treating attention-deficit/hyperactivity disorder (ADHD). Besides inhibiting monoamine reuptake there is evidence that MPH also influences gene expression directly. METHODS We investigated the impact of MPH treatment on gene expression levels of lymphoblastoid cells derived from adult ADHD patients and healthy controls by hypothesis-free, genome-wide microarray analysis. Significant findings were subsequently confirmed by quantitative Real-Time PCR (qRT PCR) analysis. RESULTS The microarray analysis from pooled samples after correction for multiple testing revealed 138 genes to be marginally significantly regulated due to MPH treatment, and one gene due to diagnosis. By qRT PCR we could confirm that GUCY1B3 expression was differential due to diagnosis. We verified chronic MPH treatment effects on the expression of ATXN1, HEY1, MAP3K8 and GLUT3 in controls as well as acute treatment effects on the expression of NAV2 and ATXN1 specifically in ADHD patients. CONCLUSIONS Our preliminary results demonstrate MPH treatment differences in ADHD patients and healthy controls in a peripheral primary cell model. Our results need to be replicated in larger samples and also using patient-derived neuronal cell models to validate the contribution of those genes to the pathophysiology of ADHD and mode of action of MPH.
Collapse
Affiliation(s)
- Ricarda Schwarz
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg , Würzburg , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Réus GZ, Scaini G, Titus SE, Furlanetto CB, Wessler LB, Ferreira GK, Gonçalves CL, Jeremias GC, Quevedo J, Streck EL. Methylphenidate increases glucose uptake in the brain of young and adult rats. Pharmacol Rep 2015; 67:1033-40. [PMID: 26398400 DOI: 10.1016/j.pharep.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. METHODS MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. RESULTS Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. CONCLUSIONS These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Giselli Scaini
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Stephanie E Titus
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Camila B Furlanetto
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela K Ferreira
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela C Jeremias
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Emilio L Streck
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.
| |
Collapse
|
21
|
Abstract
Chronic traumatic encephalopathy (CTE) formerly known as dementia pugilistica is a long-term neurodegenerative disorder associated with repeated subconcussive head injuries in high-contact sports. We reviewed the existing literature on CTE and examined epidemiological trends, risk factors, and its temporal progression, and proposed the underlying pathophysiological mechanisms that may provide unique insights to clinicians with an in-depth understanding of the disease to aid in the diagnosis and prevention, and provide future perspectives for research via search of Medline and Cochrane databases as well as manual review of bibliographies from selected articles and monographs. The prevalence of CTE in recent years is on the rise and almost exclusively affects men, with pathologic signs characterized by progressive memory loss, behavioral changes, and violent tendencies with some patients demonstrating Parkinsonian-like symptoms and signs. Many patients with CTE die following suicide, accident, or complications of drug or alcohol use. Postmortem pathologic analysis is characterized by neurofibrillary tangles and Aβ plaques in 50 % of cases. Currently, there are no ante-mortem diagnostic criteria, but modern imaging techniques such as functional magnetic resonance (MR) imaging, MR spectroscopy, and diffusion tension imaging hold promise for delineating the future diagnostic criteria. Further long-term longitudinal studies are warranted to investigate risk factors that will enhance understanding of the disease progression and its pathogenesis.
Collapse
|
22
|
Ciurleo R, Bramanti P, Calabrò RS. Pharmacotherapy for disorders of consciousness: are 'awakening' drugs really a possibility? Drugs 2014; 73:1849-62. [PMID: 24170667 DOI: 10.1007/s40265-013-0138-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Disorders of consciousness, including the coma state, vegetative state and minimally conscious state, are among the least understood and least curable conditions in modern neurology. Structural or functional injuries may produce impairments in the neuronal circuits (the ascending reticular activating system and thalamocortical loops) responsible for maintaining the wakefulness state and awareness, associated with a change in neurotransmitter concentrations. Pharmacological agents that are able to restore the levels of neurotransmitters and, consequently, neural synaptic plasticity and functional connectivity of consciousness networks, may play an important role as drugs useful in improving the consciousness state. Currently, there is growing interest in the scientific community with regard to pharmacological agents that act on the gamma amino-butyric acid (GABA) system, such as zolpidem and baclofen, and monoamine systems, such as dopaminergic agents and some antidepressants. The purpose of this article is to provide a comprehensive overview of these potential 'awakening' drugs in patients with disorders of consciousness. The possible mechanisms by which these drugs may exert their effects in promoting recovery of consciousness are discussed, highlighting how many findings are often the result of sporadic events rather than prospective controlled trials or implementation of standard treatment guidelines.
Collapse
Affiliation(s)
- Rosella Ciurleo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Palermo S.S. 113, C.da Casazza, 98124, Messina, Italy,
| | | | | |
Collapse
|
23
|
Hong IK, Choi JB, Lee JH. Cortical Changes After Mental Imagery Training Combined With Electromyography-Triggered Electrical Stimulation in Patients With Chronic Stroke. Stroke 2012; 43:2506-9. [DOI: 10.1161/strokeaha.112.663641] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Il Ki Hong
- From the Department of Nuclear Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (I.K.H.); and the Department of Physical Medicine & Rehabilitation, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.B.C., J.H.L.)
| | - Jong Bae Choi
- From the Department of Nuclear Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (I.K.H.); and the Department of Physical Medicine & Rehabilitation, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.B.C., J.H.L.)
| | - Jong Ha Lee
- From the Department of Nuclear Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (I.K.H.); and the Department of Physical Medicine & Rehabilitation, School of Medicine, Kyung Hee University, Seoul, Republic of Korea (J.B.C., J.H.L.)
| |
Collapse
|
24
|
Valenza G, Carboncini MC, Virgillito A, Creatini I, Bonfiglio L, Rossi B, Lanatà A, Scilingo EP. EEG complexity drug-induced changes in disorders of consciousness: a preliminary report. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3724-7. [PMID: 22255149 DOI: 10.1109/iembs.2011.6090633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The goal of this work is to investigate EEG (ElectroEncephaloGram) dynamics after drug intake in patients being in states of Disorders Of Consciousness (DOC) after brain injury. Four patients were involved in the study. All the patients exhibit cerebral lesions located in the same anatomical region. Two nonlinear indexes, such as Lempel-Ziv Complexity (LZC) and Approximate Entropy (ApEn), along with power spectra, were calculated for EEG signals gathered from electrodes placed on both injured and non-injured regions. Experimental results show that after drug administration the two nonlinear indexes calculated from EEG taken from injured regions increase (p < 0.001) while power spectra decrease or remain unchanged. These results do not pretend to draw conclusions about consciousness level either suggest promising therapeutical treatments, but represent only an experimental evidence about the change in the EEG complexity after drug administration.
Collapse
Affiliation(s)
- G Valenza
- Department of Information Engineering and Interdepartmental Research Center E Piaggio, Faculty of Engineering, University of Pisa, Via G Caruso 16, 56122 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Proton-Coupled Electron Transfer. Chem Rev 2012; 112:4016-93. [DOI: 10.1021/cr200177j] [Citation(s) in RCA: 1125] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David R. Weinberg
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
- Department of Physical and Environmental
Sciences, Colorado Mesa University, 1100 North Avenue, Grand Junction,
Colorado 81501-3122, United States
| | - Christopher J. Gagliardi
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Jonathan F. Hull
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Christine Fecenko Murphy
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Caleb A. Kent
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Brittany C. Westlake
- The American Chemical Society,
1155 Sixteenth Street NW, Washington, District of Columbia 20036,
United States
| | - Amit Paul
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Daniel H. Ess
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| | - Dewey Granville McCafferty
- Department
of Chemistry, B219
Levine Science Research Center, Box 90354, Duke University, Durham,
North Carolina 27708-0354, United States
| | - Thomas J. Meyer
- Department
of Chemistry, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290,
United States
| |
Collapse
|
26
|
Laureys S, Schiff ND. Coma and consciousness: Paradigms (re)framed by neuroimaging. Neuroimage 2012; 61:478-91. [PMID: 22227888 DOI: 10.1016/j.neuroimage.2011.12.041] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 12/15/2011] [Indexed: 01/18/2023] Open
Affiliation(s)
- Steven Laureys
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, 4000 Liège, Belgium.
| | | |
Collapse
|
27
|
Kim YW, Kim HS, An YS. Statistical mapping analysis of brain metabolism in patients with subcortical aphasia after intracerebral hemorrhage: a pilot study of F-18 FDG PET images. Yonsei Med J 2012; 53:43-52. [PMID: 22187231 PMCID: PMC3250327 DOI: 10.3349/ymj.2012.53.1.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE This study was aimed to evaluate the brain metabolism in patients with subcortical aphasia after intracerebral hemorrhage (ICH) and the relationship between the severity of aphasia and regional brain metabolism, by using statistical mapping analysis of F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) images. MATERIALS AND METHODS Sixteen right-handed Korean speaking patients with subcortical aphasia following ICH were enrolled. All patients underwent Korean version of the Western Aphasia Battery and the brain F-18 FDG PET study. Using statistical parametric mapping analysis, we compared the brain metabolisms shown on F-18 FDG PET from 16 patients with subcortical aphasia and 16 normal controls. In addition, we investigated the relationship between regional brain metabolism and the severity of aphasia using covariance model. RESULTS Compared to the normal controls, subcortical aphasia after ICH showed diffuse hypometabolism in the ipsilateral cerebrum (frontal, parietal, temporal, occipital, putamen, thalamus) and in the contralateral cerebellum (P (corrected)<0.001), and showed diffuse hypermetabolism in the contralateral cerebrum (frontal, parietal, temporal) and in the ipsilateral cerebellum (P (FDR corrected)<0.001). In the covariance analysis, increase of aphasia quotient was significantly correlated with increased brain metabolism in the both orbitofrontal cortices, the right hippocampal and the right parahippocampal cortices (P (uncorrected)<0.01). CONCLUSION Our findings suggest that frontal, parietal, and temporal cortices, which are parts of neural network for cognition, may have a supportive role for language performance in patients with subcortical aphasia after ICH.
Collapse
Affiliation(s)
- Yong Wook Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
| | | | | |
Collapse
|
28
|
Assessment of consciousness with electrophysiological and neurological imaging techniques. Curr Opin Crit Care 2011; 17:146-51. [PMID: 21206267 DOI: 10.1097/mcc.0b013e328343476d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Brain MRI (diffusion tensor imaging and spectroscopy) and functional neuroimaging (PET, functional MRI, EEG and evoked potential studies) are changing our understanding of patients with disorders of consciousness encountered after coma such as the 'vegetative' or minimally conscious states. RECENT FINDINGS Increasing evidence from functional neuroimaging and electrophysiology demonstrates some residual cognitive processing in a subgroup of patients who clinically fail to show any response to commands, leading to the recent proposal of 'unresponsive wakefulness syndrome' as an alternative name for patients previously coined 'vegetative' or 'apallic'. SUMMARY Consciousness can be viewed as the emergent property of the collective behavior of widespread thalamocortical frontoparietal network connectivity. Data from physiological, pharmacological and pathological alterations of consciousness provide evidence in favor of this hypothesis. Increasing our understanding of the neural correlates of consciousness is helping clinicians to do a better job in terms of diagnosis, prognosis and finally treatment and drug development for these severely brain-damaged patients. The current challenge remains to continue translating this research from the bench to the bedside. Only well controlled large multicentric neuroimaging and electrophysiology studies will enable to identify which paraclinical diagnostic or prognostic test is necessary for our routine evidence-based assessment of individuals with disorders of consciousness.
Collapse
|
29
|
Current world literature. Curr Opin Anaesthesiol 2011; 24:224-33. [PMID: 21386670 DOI: 10.1097/aco.0b013e32834585d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Affiliation(s)
- My Hang V Huynh
- DE-1: High Explosive Science and Technology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | |
Collapse
|