1
|
Ullah I, Wang X, Li H. Novel and experimental therapeutics for the management of motor and non-motor Parkinsonian symptoms. Neurol Sci 2024; 45:2979-2995. [PMID: 38388896 DOI: 10.1007/s10072-023-07278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND : Both motor and non-motor symptoms of Parkinson's disease (PD) have a substantial detrimental influence on the patient's quality of life. The most effective treatment remains oral levodopa. All currently known treatments just address the symptoms; they do not completely reverse the condition. METHODOLOGY In order to find literature on the creation of novel treatment agents and their efficacy for PD patients, we searched PubMed, Google Scholar, and other online libraries. RESULTS According to the most recent study on Parkinson's disease (PD), a great deal of work has been done in both the clinical and laboratory domains, and some current scientists have even been successful in developing novel therapies for PD patients. CONCLUSION The quality of life for PD patients has increased as a result of recent research, and numerous innovative medications are being developed for PD therapy. In the near future, we will see positive outcomes regarding PD treatment.
Collapse
Affiliation(s)
- Inam Ullah
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China.
| | - Hongyu Li
- School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Jing XZ, Yuan XZ, Luo X, Zhang SY, Wang XP. An Update on Nondopaminergic Treatments for Motor and Non-motor Symptoms of Parkinson's Disease. Curr Neuropharmacol 2023; 21:1806-1826. [PMID: 35193486 PMCID: PMC10514518 DOI: 10.2174/1570159x20666220222150811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/19/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022] Open
Abstract
Nondopaminergic neurotransmitters such as adenosine, norepinephrine, serotonin, glutamate, and acetylcholine are all involved in Parkinson's disease (PD) and promote its symptoms. Therefore, nondopaminergic receptors are key targets for developing novel preparations for the management of motor and non-motor symptoms in PD, without the potential adverse events of dopamine replacement therapy. We reviewed English-written articles and ongoing clinical trials of nondopaminergic treatments for PD patients till 2014 to summarize the recent findings on nondopaminergic preparations for the treatment of PD patients. The most promising research area of nondopaminergic targets is to reduce motor complications caused by traditional dopamine replacement therapy, including motor fluctuations and levodopa-induced dyskinesia. Istradefylline, Safinamide, and Zonisamide were licensed for the management of motor fluctuations in PD patients, while novel serotonergic and glutamatergic agents to improve motor fluctuations are still under research. Sustained- release agents of Amantadine were approved for treating levodopa induced dyskinesia (LID), and serotonin 5HT1B receptor agonist also showed clinical benefits to LID. Nondopaminergic targets were also being explored for the treatment of non-motor symptoms of PD. Pimavanserin was approved globally for the management of hallucinations and delusions related to PD psychosis. Istradefylline revealed beneficial effect on daytime sleepiness, apathy, depression, and lower urinary tract symptoms in PD subjects. Droxidopa may benefit orthostatic hypotension in PD patients. Safinamide and Zonisamide also showed clinical efficacy on certain non-motor symptoms of PD patients. Nondopaminergic drugs are not expected to replace dopaminergic strategies, but further development of these drugs may lead to new approaches with positive clinical implications.
Collapse
Affiliation(s)
- Xiao-Zhong Jing
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Zhen Yuan
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Shu-Yun Zhang
- Department of Neurology, Weifang People's Hospital, Weifang, Shandong, China
| | - Xiao-Ping Wang
- Department of Neurology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wang K, Liu ZH, Li XY, Li YF, Li JR, Hui JJ, Li JX, Zhou JW, Yi ZM. Efficacy and safety of selegiline for the treatment of Parkinson's disease: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1134472. [PMID: 37113570 PMCID: PMC10126343 DOI: 10.3389/fnagi.2023.1134472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Drug efficacy generally varies with different durations. There is no systematic review analyzing the effect of selegiline for Parkinson's disease (PD) on different treatment duration. This study aims to analyze how the efficacy and safety of selegiline changes for PD over time. Methods PubMed, the Cochrane Library, Embase, China National Knowledge Infrastructure and Wanfang Database were systematically retrieved for randomized controlled trials (RCTs) and observational studies of selegiline for PD. The search period was from inception to January 18th, 2022. The efficacy outcomes were measured by the mean change from baseline in the total and sub Unified Parkinson's Disease Rating Scale (UPDRS), Hamilton Depression Rating Scale (HAMD) and Webster Rating Scale (WRS) scores. The safety outcomes were measured by the proportion of participants having any adverse events overall and that in different system organ classes. Results Among the 3,786 studies obtained, 27 RCTs and 11 observational studies met the inclusion criteria. Twenty-three studies reported an outcome which was also reported in at least one other study, and were included in meta-analyses. Compared with placebo, selegiline was found with a stronger reduction of total UPDRS score with increasing treatment duration [mean difference and 95% CIs in 1 month: -3.56 (-6.67, -0.45); 3 months: -3.32 (-3.75, -2.89); 6 months: -7.46 (-12.60, -2.32); 12 months: -5.07 (-6.74, -3.41); 48 months: -8.78 (-13.75, -3.80); 60 months: -11.06 (-16.19, -5.94)]. A similar trend was also found from the point estimates in UPDRS I, II, III, HAMD and WRS score. The results of observational studies on efficacy were not entirely consistent. As for safety, compared with placebo, selegiline had higher risk of incurring any adverse events [rate: 54.7% vs. 62.1%; odd ratio and 95% CIs: 1.58 (1.02, 2.44)], with the excess adverse events mainly manifested as neuropsychiatric disorders [26.7% vs. 31.6%; 1.36 (1.06, 1.75)] and no significant change over time. The statistically difference in overall adverse event between selegiline and active controls was not found. Conclusion Selegiline was effective in improving total UPDRS score with increasing treatment duration, and had a higher risk of incurring adverse events, especially the adverse events in the neuropsychiatric system. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier: PROSPERO CRD42021233145.
Collapse
Affiliation(s)
- Ke Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ze-Hui Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, Aerospace Central Hospital, Beijing, China
| | - Xin-Ya Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Yan-Fei Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jia-Rui Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Jiao-Jiao Hui
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, The First People's Hospital of Xianyang, Shaanxi, China
| | - Jing-Xuan Li
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Hebei, China
| | - Jun-Wen Zhou
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Jun-Wen Zhou
| | - Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- *Correspondence: Zhan-Miao Yi
| |
Collapse
|
4
|
Abstract
Monoamine oxidase B (MAO-B) inhibitors have an established role in the treatment of Parkinson's disease as monotherapy or adjuvant to levodopa. Two major recognitions were required for their introduction into this therapeutic field. The first was the elucidation of the novel pharmacological properties of selegiline as a selective MAO-B inhibitor by Knoll and Magyar and the original idea of Riederer and Youdim, supported by Birkmayer, to explore its effect in parkinsonian patients with on-off phases. In the 1960s, MAO inhibitors were mainly studied as potential antidepressants, but Birkmayer found that combined use of levodopa and various MAO inhibitors improved akinesia in Parkinson's disease. However, the serious side effects of the first non-selective MAO inhibitors prevented their further use. Later studies demonstrated that MAO-B, mainly located in glial cells, is important for dopamine metabolism in the brain. Recently, cell and molecular studies revealed interesting properties of selegiline opening new possibilities for neuroprotective mechanisms and a disease-modifying effect of MAO-B inhibitors.
Collapse
|
5
|
Chan HH, Tse MK, Kumar S, Zhuo L. A novel selective MAO-B inhibitor with neuroprotective and anti-Parkinsonian properties. Eur J Pharmacol 2018; 818:254-262. [DOI: 10.1016/j.ejphar.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/20/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
|
6
|
Nagatsu T, Nagatsu I. Tyrosine hydroxylase (TH), its cofactor tetrahydrobiopterin (BH4), other catecholamine-related enzymes, and their human genes in relation to the drug and gene therapies of Parkinson's disease (PD): historical overview and future prospects. J Neural Transm (Vienna) 2016; 123:1255-1278. [PMID: 27491309 DOI: 10.1007/s00702-016-1596-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Tyrosine hydroxylase (TH), which was discovered at the National Institutes of Health (NIH) in 1964, is a tetrahydrobiopterin (BH4)-requiring monooxygenase that catalyzes the first and rate-limiting step in the biosynthesis of catecholamines (CAs), such as dopamine, noradrenaline, and adrenaline. Since deficiencies of dopamine and noradrenaline in the brain stem, caused by neurodegeneration of dopamine and noradrenaline neurons, are mainly related to non-motor and motor symptoms of Parkinson's disease (PD), we have studied human CA-synthesizing enzymes [TH; BH4-related enzymes, especially GTP-cyclohydrolase I (GCH1); aromatic L-amino acid decarboxylase (AADC); dopamine β-hydroxylase (DBH); and phenylethanolamine N-methyltransferase (PNMT)] and their genes in relation to PD in postmortem brains from PD patients, patients with CA-related genetic diseases, mice with genetically engineered CA neurons, and animal models of PD. We purified all human CA-synthesizing enzymes, produced their antibodies for immunohistochemistry and immunoassay, and cloned all human genes, especially the human TH gene and the human gene for GCH1, which synthesizes BH4 as a cofactor of TH. This review discusses the historical overview of TH, BH4-, and other CA-related enzymes and their genes in relation to the pathophysiology of PD, the development of drugs, such as L-DOPA, and future prospects for drug and gene therapy for PD, especially the potential of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Ikuko Nagatsu
- Department of Anatomy, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| |
Collapse
|
7
|
Choi JG, Park G, Kim HG, Oh DS, Kim H, Oh MS. In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17010108. [PMID: 26784178 PMCID: PMC4730349 DOI: 10.3390/ijms17010108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 12/25/2022] Open
Abstract
Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B)) participates in the generation of reactive oxygen species (ROS), such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen) has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+)- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD.
Collapse
Affiliation(s)
- Jin Gyu Choi
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Gunhyuk Park
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Hyo Geun Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Dal-Seok Oh
- Division for Medical Research, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea.
| | - Hocheol Kim
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy and Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
8
|
Cremer JN, Amunts K, Schleicher A, Palomero-Gallagher N, Piel M, Rösch F, Zilles K. Changes in the expression of neurotransmitter receptors in Parkin and DJ-1 knockout mice--A quantitative multireceptor study. Neuroscience 2015; 311:539-51. [PMID: 26546471 DOI: 10.1016/j.neuroscience.2015.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/29/2023]
Abstract
Parkinson's disease (PD) is a well-characterized neurological disorder with regard to its neuropathological and symptomatic appearance. At the genetic level, mutations of particular genes, e.g. Parkin and DJ-1, were found in human hereditary PD with early onset. Neurotransmitter receptors constitute decisive elements in neural signal transduction. Furthermore, since they are often altered in neurological and psychiatric diseases, receptors have been successful targets for pharmacological agents. However, the consequences of PD-associated gene mutations on the expression of transmitter receptors are largely unknown. Therefore, we studied the expression of 16 different receptor binding sites of the neurotransmitters glutamate, GABA, acetylcholine, adrenaline, serotonin, dopamine and adenosine by means of quantitative receptor autoradiography in Parkin and DJ-1 knockout mice. These knockout mice exhibit electrophysiological and behavioral deficits, but do not show the typical dopaminergic cell loss. We demonstrated differential changes of binding site densities in eleven brain regions. Most prominently, we found an up-regulation of GABA(B) and kainate receptor densities in numerous cortical areas of Parkin and DJ-1 knockout mice, as well as increased NMDA but decreased AMPA receptor densities in different brain regions of the Parkin knockout mice. The alterations of three different glutamate receptor types may indicate the potential relevance of the glutamatergic system in the pathogenesis of PD. Furthermore, the cholinergic M1, M2 and nicotinic receptors as well as the adrenergic α2 and the adenosine A(2A) receptors showed differentially increased densities in Parkin and DJ-1 knockout mice. Taken together, knockout of the PD-associated genes Parkin or DJ-1 results in differential changes of neurotransmitter receptor densities, highlighting a possible role of altered non-dopaminergic, and in particular of glutamatergic neurotransmission in PD pathogenesis.
Collapse
Affiliation(s)
- J N Cremer
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, and JARA - Translational Brain Medicine, D-52062 Aachen, Germany.
| | - K Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Cécile & Oskar Vogt Institute of Brain Research, Heinrich-Heine University Düsseldorf, University Hospital Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - A Schleicher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany
| | - N Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, D-52425 Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, and JARA - Translational Brain Medicine, D-52062 Aachen, Germany
| |
Collapse
|
9
|
Abdel-Salam OME. Prevalence, clinical features and treatment of depression in Parkinson’s disease: An update. World J Neurol 2015; 5:17-38. [DOI: 10.5316/wjn.v5.i1.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/10/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is one of the most prevalent neurodegenerative diseases which typically affects individuals over 65 years. Although the symptomatology is predominantly motor, neuropsychiatric manifestations, e.g., depression, apathy, anxiety, and cognitive impairment occur in the course of the illness and can have a great impact on the quality of life in these patients. Parkinson’s disease is commonly comorbid with depression with prevalence rates of depression, generally higher than those reported in general population. Depression in PD is frequently underestimated and consequently undertreated, which have significant effects on the quality of life in these patients. The neurobiology of depression in PD is complex and involves alterations in dopaminergic, serotonergic, noradrenergic and possibly other neurotransmitter systems which are affected in the course of the disease. The tricyclic antidepressants and the selective serotonin reuptake inhibitors are the two classes of antidepressant drugs used for depressive symptoms in PD. Several published studies suggested that both classes are of comparable efficacy. Other serotonergic antidepressants, e.g., nefazodone and trazodone have also been of benefit. Meanwhile, there are limited data available on other drugs but these suggest a benefit from the serotonin and noradrenaline reuptake inhibitors such as mirtazapine, venlafaxine, atomoxetine and duloxetine. Some of the drugs used in symptomatic treatment of PD, e.g., the irreversible selective inhibitors of the enzyme monoamine oxidase-B, rasagiline and selegiline as well as the dopamine receptor agonist pramipexole are likely to have direct antidepressant activity independent of their motor improving action. This would make these drugs an attractive option in depressed subjects with PD. The aim of this review is to provide an updated data on the prevalence, clinical features of depression in subjects with PD. The effects of antiparkinsonian and antidepressant drugs on depressive symptoms in these patients are also discussed.
Collapse
|
10
|
Abdel-Salam OME. Drug therapy for Parkinson’s disease: An update. World J Pharmacol 2015; 4:117-143. [DOI: 10.5497/wjp.v4.i1.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, affecting about 1% of the population above the age of 65. PD is characterized by a selective degeneration of the dopaminergic neurons of the substantia nigra pars compacta. This results in a marked loss of striatal dopamine and the development of the characteristic features of the disease, i.e., bradykinesia, rest tremor, rigidity, gait abnormalities and postural instability. Other types of neurons/neurotransmitters are also involved in PD, including cholinergic, serotonergic, glutamatergic, adenosine, and GABAergic neurotransmission which might have relevance to the motor, non-motor, neuropsychiatric and cognitive disturbances that occur in the course of the disease. The treatment of PD relies on replacement therapy with levodopa (L-dopa), the precursor of dopamine, in combination with a peripheral decarboxylase inhibitor (carbidopa or benserazide). The effect of L-dopa, however, declines over time together with the development of motor complications especially dyskinesia in a significant proportion of patients within 5 years of therapy. Other drugs include dopamine-receptor-agonists, catechol-O-methyltransferase inhibitors, monoamine oxidase type B (MAO-B) inhibitors, anticholinergics and adjuvant therapy with the antiviral drug and the N-methyl-D-aspartate glutamate receptor antagonist amantadine. Although, these medications can result in substantial improvements in parkinsonian symptoms, especially during the early stages of the disease, they are often not successful in advanced disease. Moreover, dopaminergic cell death continues over time, emphasizing the need for neuroprotective or neuroregenerative therapies. In recent years, research has focused on non-dopaminergic approach such as the use of A2A receptor antagonists: istradefylline and preladenant or the calcium channel antagonist isradipine. Safinamide is a selective and reversible inhibitor of MAO-B, a glutamate receptor inhibitor as well as sodium and calcium channel blocker. Minocycline and pioglitazone are other agents which have been shown to prevent dopaminergic nigral cell loss in animal models of PD. There is also an evidence to suggest a benefit from iron chelation therapy with deferiprone and from the use of antioxidants or mitochondrial function enhancers such as creatine, alpha-lipoic acid, l-carnitine, and coenzyme Q10.
Collapse
|
11
|
Tsao CM, Jhang JG, Chen SJ, Ka SM, Wu TC, Liaw WJ, Huang HC, Wu CC. Adjuvant potential of selegiline in attenuating organ dysfunction in septic rats with peritonitis. PLoS One 2014; 9:e108455. [PMID: 25268350 PMCID: PMC4182482 DOI: 10.1371/journal.pone.0108455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/29/2014] [Indexed: 12/18/2022] Open
Abstract
Selegiline, an anti-Parkinson drug, has antioxidant and anti-apoptotic effects. To explore the effect of selegiline on sepsis, we used a clinically relevant animal model of polymicrobial sepsis. Cecal ligation and puncture (CLP) or sham operation was performed in male rats under anesthesia. Three hours after surgery, animals were randomized to receive intravenously selegiline (3 mg/kg) or an equivalent volume of saline. The administration of CLP rats with selegiline (i) increased arterial blood pressure and vascular responsiveness to norepinephrine, (ii) reduced plasma liver and kidney dysfunction, (iii) attenuated metabolic acidosis, (iv) decreased neutrophil infiltration in liver and lung, and (v) improved survival rate (from 44% to 65%), compared to those in the CLP alone rats. The CLP-induced increases of plasma interleukin-6, organ superoxide levels, and liver inducible nitric oxide synthase and caspase-3 expressions were ameliorated by selegiline treatment. In addition, the histological changes in liver and lung were significantly attenuated in the selegiline -treated CLP group compared to those in the CLP group. The improvement of organ dysfunction and survival through reducing inflammation, oxidative stress and apoptosis in peritonitis-induced sepsis by selegiline has potential as an adjuvant agent for critical ill.
Collapse
Affiliation(s)
- Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital, and National Yang-Ming University, Taipei, Taiwan, R.O.C.
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.
| | - Jhih-Gang Jhang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C.
| | - Shiu-Jen Chen
- Department of Nursing, Kang-Ning Junior College of Medical Care and Management, Taipei, Taiwan, R.O.C.
- Department of Physiology, National Defense Medical Center, Taipei, Taiwan, R.O.C.
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan, R.O.C.
| | - Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Wen-Jinn Liaw
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.
- Department of Anesthesiology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, R.O.C.
| | - Hsieh-Chou Huang
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan, R.O.C.
- * E-mail: (HCH); (CCW)
| | - Chin-Chen Wu
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, R.O.C.
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan, R.O.C.
- * E-mail: (HCH); (CCW)
| |
Collapse
|
12
|
Imamura K, Okayasu N, Nagatsu T. Cerebral blood flow and freezing of gait in Parkinson's disease. Acta Neurol Scand 2012; 126:210-8. [PMID: 22324564 DOI: 10.1111/j.1600-0404.2012.01652.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We investigated the relationship between freezing of gait (FOG) severity in Parkinson's disease (PD) and regional cerebral blood flow (rCBF) using single-photon emission computed tomography (SPECT) and evaluated the effect of selegiline therapy. METHOD We evaluated 54 patients with PD (FOG positive: 21 patients, and FOG negative: 33 patients) with N-isopropyl-p-[I-123] iodoamphetamine ((123) I-IMP) SPECT and the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Mini-Mental State Examination (MMSE), and Beck Depression Inventory. [Correction added on 18 April 2012, after online publication: In the preceding statement, 55 instead of 54 patients with PD were evaluated, and FOG negative consisted of 34 instead of 33 patients] Furthermore, we examined rCBF in FOG-negative patients treated with levodopa with or without selegiline. RESULTS Z-values of bilateral Brodmann areas (BA) 10 and 11 and left BA32 showed significant increases in the FOG-positive group compared with the FOG-negative group. [Correction added on 18 April 2012, after online publication: In the preceding statement, Z-values was changed to Z-scores] There were significantly positive correlations between Z-values of these areas and FOG score, especially on both sides of BA11. [Correction added on 18 April 2012, after online publication: In the preceding statement, Z-values was changed to Z-scores] An increase in Z-values in bilateral BA10 and 11 and left BA32 in the levodopa-selegiline treatment group after 1 year was significantly inhibited compared with the levodopa treatment group. [Correction added on 18 April 2012, after online publication: In the preceding statement, left BA32 was changed to right BA32, and Z-values was changed to Z-scores] CONCLUSION There was a close relationship between FOG severity in PD and an increase in rCBF in BA 10, 11 and 32. Furthermore, selegiline's FOG prevention effect may be related to maintaining rCBF in these same areas.
Collapse
Affiliation(s)
- K. Imamura
- Department of Neurology; Okazaki City Hospital; Okazaki City; Aichi; Japan
| | - N. Okayasu
- Department of Radiology; Okazaki City Hospital; Okazaki City; Aichi; Japan
| | - T. Nagatsu
- Department of Pharmacology; Fujita Health University School of Medicine; Toyoake; Aichi; Japan
| |
Collapse
|